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Radio astronomy (SKA) Indoor localization, smart buildings

Field estimation/detection

Design sparse space-time samplers
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Sparse sensing

Why sparse sensing?

- Economical constraints (hardware cost)

- Limited physical space

- Limited data storage space

- Reduce communications bandwidth

- Reduce processing overhead
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Sparse sensing

What is sparse sensing?

Select the “best” subset of sensors out of the candidate sensors
that guarantee a certain desired estimation accuracy.

Sensor selection for estimation – uncorrelated observations:

convex optimization: design {0, 1}M selection vector
[Joshi-Boyd-09], [Chepuri-Leus-13]

greedy methods and heuristics: submodularity
[Krause-Singh-Guestrin-08], [Ranieri-Chebira-Vetterli-14]
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Sparse sensing for estimation

Suppose the unknown θ ∈ R
N follows

x ∼ N (h(θ),Σ)

y

=

Φ(w) =

{0,1}K×M

︷ ︸︸ ︷
diagr(w) x ∼ N (h(θ),Σ)

“Design sparsest w”

diagr(·) - diagonal matrix with the argument on its diagonal but with the zero rows removed.
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Design problem

Problem 1

argmin
w

‖w‖0

s.to f (w) ≤ λ

w ∈ {0, 1}M

f (w) performance measure
λ accuracy requirement

Problem 2

argmin
w

f (w)

s.to ‖w‖0 = K

w ∈ {0, 1}M

K number of selected sensors

Non-convex Boolean problem
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Convex relaxation

Boolean constraint is relaxed to the box constraint [0, 1]M

ℓ0(-quasi) norm is relaxed to either:

(a.) ℓ1-norm:
∑

M

m=1 wm

(b.) sum-of-logs:
∑

M

m=1 ln (wm + δ) with δ > 0

(c.) your favorite approximation

Relaxed problem 1

argmin
w

1Tw

s.to f (w) ≤ λ

w ∈ [0, 1]M

What is convex f (w) for estimation with
correlated observations?
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Estimation accuracy f (w) — Cramér-Rao bound

Best subset of sensors yields the lowest error

E = E{(θ̂ − θ)(θ̂ − θ)T}

θ̂ estimate of θ

Closed-form expression for E is not always available
(e.g., non-linear, non-Gaussian)

Cramér-Rao bound (CRB) as a performance measure
- well-suited for offline design problems
- reveals (local) identifiability
- improves performance of any practical algorithm
- equal to the MSE for the linear case
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f (w) for estimation - scalar measures

For Gaussian observations, Fisher information matrix

F(w,θ) = [Φ(w)J(θ)]T Σ−1(w) [Φ(w)J(θ)]

J(θ) = ∂h(θ)/∂θ ; Σ(w) = ΦΣΦT

Prominent scalar measures (related to the confidence
ellipsoid):

1 A-optimality (average error):

f (w) := tr{(F(w, θ))−1}

2 E-optimality (worst case error):

f (w) := λmax{(F(w, θ))−1} = λmin{F(w, θ)}.

These performance metrics
- in its current form are not convex on w ∈ [0, 1]M

- depend on the true parameter
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Equivalent convex expression for f (w)

Express

Σ = aI+ S for any a 6= 0 ∈ R such that S ≻ 0

Constraint (E-optimal design)

JT (θ)ΦT

(
aI+ΦSΦT

)
−1

ΦJ(θ) � λIN

is equivalent to




S−1 + a−1diag(w) S−1J(θ)

JT (θ)S−1 JT (θ)S−1J(θ)− λIN


 � 0,

an LMI —linear/convex in w.

Hint: use matrix inversion lemma and ΦTΦ = diag(w)
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Solver

SDP problem based on ℓ1-norm heuristics (E-optimal design):

argmin
w

1Tw

s.to




S−1 + a−1diag(w) S−1J(θ)

JT (θ)S−1 JT (θ)S−1J(θ)− λIN


 � 0, ∀θ ∈ T ,

0 ≤ wm ≤ 1, m = 1, . . . ,M .
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Sensor placement for source localization

Sensors along the horizontal edges are equicorrelated (with
correlation coefficient = 0.5)

Sensors along the vertical edges are not correlated
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Out of M = 80 available uncorrelated sensors (�) and correlated sensors

(⋄), 14 sensors indicated by (∗) are selected. The source domain is

indicated by (◦).
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Is correlation good?

Linear model, Gaussian regression matrix

Equicorrelated correlation matrix: Σ =
[
(1− ρ)I+ ρ11T

]
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best K = 5 sensors
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# of sensors required (and MSE) reduces as sensors become
more coherent
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Conclusions

Design space-time sparse samplers
to reduce sensing and other related costs

Fundamental statistical inference problems:
Estimation, filtering, and detection

Applications in networks:
environmental monitoring, location-aware
services, spectrum sensing,. . .
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Thank You!!

For more on sparse sensing for statistical inference, see:
http://cas.et.tudelft.nl/∼sundeep
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