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Abstract—In this paper, the focus is on optimal sensor place-
ment and power rating selection for parameter estimation in
wireless sensor networks (WSNs). We take into account the
amount of energy harvested by the sensing nodes, communication
link quality, and the observation accuracy at the sensor level. In
particular, the aim is to reconstruct the estimation parameter
with minimum error at a fusion center under a system budget
constraint. To achieve this goal, a subset of sensing locations
is selected from a large pool of candidate sensing locations.
Furthermore, the type of sensor to be placed at those locations
is selected from a given set of sensor types (e.g., sensors with
different power ratings). We further investigate whether it is
better to install a large number of cheap sensors, a few expensive
sensors or a combination of different sensor types at the optimal
locations.

Index Terms—Wireless sensor networks, sensor selection, con-
vex optimization, energy harvesting, estimation.

I. INTRODUCTION

Advanced sensor networks are needed in order to meet

the increasing needs of internet of things applications, such

as automated surveillance, environmental monitoring, smart

cities, and so on. To guarantee a durable autonomous sensor

network, sensing nodes should be capable of processing and

communicating data with restricted energy harvesting (EH)

and consumption budgets.

Sensors are usually restricted to be placed in certain loca-

tions to protect them from defects or simply due to physical

space constraints. Therefore, optimal sensor placement, i.e., to

select the best subset of sensing locations out of a large set of

available locations, keeping in mind the network infrastructure

and the inference task, forms an important sensor network

design task.

Sensor placement is a combinatorial problem, which can be

solved optimally through an exhaustive search by evaluating

a performance measure (e.g., inference accuracy, budget con-

straints) for all possible combinations of sensing locations.

However, when the number of candidate locations is large,

this process will be computationally intractable. Instead, a

suboptimal solution can be obtained by greedily selecting

sensors one by one. Such a greedy algorithm is near optimal,

This work is supported by the KAUST-MIT-TUD consortium under grant
OSR-2015-Sensors-2700.

if the performance measure can be expressed as a submodular

set function of the sensing locations [1], [2]. Alternatively, the

sensor placement problem can be solved suboptimally using

convex optimization [3], which utilizes the convexity of the

cost and constraint functions to solve the optimization problem

[4], [5].

The sensor selection problem can be performed either

online or offline. In online sensor selection [6], real time

measurements are usually collected and these are used to

make decisions on whether to activate or deactivate sensors. In

offline sensor selection [3], [5], the objective is to place a set of

sensors such that a desired performance is met based on some

prior statistics, which do not depend on real measurements.

We focus on the offline sensor selection in this paper.

The goal of this paper is to combine optimal sensor place-

ment with a novel and important dimension that adds the

flexibility to the network designer, namely, to choose the type

of sensor from a pool of available sensor types. For example,

sensor types may have different modulation schemes, power

budgets/battery capacities, quantization levels and costs. This

gives network designers the flexibility to place more expensive

sensors (with more power budget, quantization levels, data

rate, etc.) in strategic locations while cheaper sensors (with

cheaper batteries, fewer bits, and so on) in less important

locations. In [3], [5] the sensing locations are selected based

only on the measurement accuracy at the sensor level. We

present in this work a solution for the sensor placement

problem considering practical aspects such as the quality of the

communication channel (between the sensors and the fusion

center) and the available harvested energy at the candidate

sensor location in addition to the measurement accuracy at

the sensing nodes. Furthermore, at each selected location, we

also select the type of sensor that needs to be placed based

on its battery capacity. This design problem is solved for the

parameter estimation task with estimation accuracy being the

inference performance metric. A similar derivation for the

error of the minimum mean squared error (MMSE) estimator

is formulated in [7]. Nevertheless, only one type of sensor

is considered in [7], which restricts the system flexibility.

Moreover, the problem statement in this work is novel and

accounts for a trade off between the system performance and
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the total budget. We further consider the changes of the amount

of harvested energy over different snapshots of the day.

II. SYSTEM MODEL

Consider a set of N geographically distributed candidate

sensing locations. It is assumed that a sensor can be placed

at any of these sensing locations, and the sensors record

data related to a physical phenomenon. Assuming a linear

measurement model, we denote the observation at the n-th

sensor by

xn = hT
nθ + vn, (1)

where hn ∈ R
m is the regressor, θ ∈ R

m is the unknown

parameter, which is assumed to be a Gaussian random vector,

i.e., θ ∼ N (μ,Σθ), and vn is the sensor noise. We further

assume that the sensor noise is Gaussian distributed with zero

mean and variance σ2
v , and that it is uncorrelated with the

unknown parameter vector θ. At each sensor location, one of

K sensor types can be installed. Each sensor type has the same

observation accuracy, however, it has a different EH capability

and battery capacity. Thus, its price and physical size are also

different.

All selected sensors send their observations to the fu-

sion center through orthogonal additive white Gaussian noise

(AWGN) channels. Figure 1 shows the system setup. Sensors

are assumed to harvest enough energy to charge a small

battery, which will be used for collecting measurements and

transmitting them to the fusion center. The transmission power

at the n-th sensing location is a function of the amount

of power available at that location at the t-th time interval,

t ∈ {1, . . . , T}, as well as the EH efficiency and battery

capacity of the k-th sensor type. To be more specific, the

transmission power will be p
(t)
n,k = f(ρ

(t)
n , ηk), where ρ

(t)
n

is the average power available at the n-th location and t-
th time instance, and ηk is the EH efficiency of the k-th

sensor type. For instance, the transmission power can be

formulated as, p
(t)
n,k = min(ρ

(t)
n ηk, bηk), where b is a positive

constant representing an upper limit for EH. Figure 2 shows

an illustration of the average EH intensity over the sensor

locations at some time of the day, ρ
(t)
n (more details are given

in Section 5).

At the fusion center, the received signal from the k-th sensor

type at the n-th location can be expressed as,

y
(t)
n,k = wn,k

(√p
(t)
n,kgnxn

σx(n)
+ φn

)
, (2)

where gn is the wireless fading channel gain between the n-

th sensor location and the fusion center, and φn is zero-mean

Gaussian receiver noise with variance σ2
φ. The φn values are

assumed to be uncorrelated with vn and θ. For simplicity,

we assume gn is deterministic. Further, wn,k is a selection

variable, where wn,k = 1 indicates the placement of the k-th

sensor type at the n-th sensing location and wn,k = 0 indicates

otherwise. To force the average transmitted power to p
(t)
n,k, the

Fig. 1. System setup.
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Fig. 2. Sensor placement and power map.

transmission signal is scaled by σx(n), where σ2
x(n) denotes

the average power of the measurement xn and is given by

σ2
x(n) = E{|xn|2} = E{|hT

nθ + vn|2} = hT
nΣθhn + σ2

v . (3)

It is assumed that Σθ , the AWGN channel gains and the

receiver noise statistics are known at the fusion center. Also,

the regressors hn are assumed to be known1. We finally

assume that the fusion center has the statistics of the average

EH over time at each sensor location and type.

Based on the observations received at the fusion center given

by (2), the unknown parameters can be reconstructed using

the MMSE estimator. Denoting the MMSE estimate of θ as

θ̂, the MMSE error covariance matrix at each time snapshot,

Σ
(t)
θ|y = E{(θ − θ̂)(θ − θ̂)T } is given by, [8]

Σ
(t)
θ|y =

(
Σ−1

θ +

N∑
n=1

K∑
k=1

wn,k

σ2
q(n,k,t)

{hnh
T
n}
)−1

. (4)

1Some known methods (e.g., RSS, TOA, etc) can be used to localize the
source provided some extra information is sent to the fusion center. These
methods are beyond the scope of this work.
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Observe how the selection elements {wn,k} in the numerator

affect the MMSE error. σ2
q(n,k,t) is the aggregate noise vari-

ance of the observation and receiver noises. From (1) and (2),

the aggregate noise can be modeled as q
(t)
n,k = vn +

σxnφn√
p
(t)
n,kgn

.

Therefore, q
(t)
n,k is a zero mean Gaussian noise with variance

formulated as,

σ2
q(n,k,t) = σ2

v +
(hT

nΣθhn + σ2
v)σ

2
φ

g2np
(t)
n,k

. (5)

III. PROBLEM STATEMENT

Given N candidate sensing locations and K sensor types

with different EH capabilities, battery capacities and prices,

we would like to jointly choose the optimal sensor locations

and types that minimize the total cost of the sensor network

subject to a prescribed reconstruction error at any time. Or

equivalently, we want to minimize the maximum error at any

time subject to a threshold on the cost. The reconstruction

error is caused by the noisy measurements and the noisy

communication channels between the sensors and the fusion

center.

The reconstruction error is a function of the error covariance

matrix. To guarantee a small reconstruction error, one might,

for example, minimize the sum of the eigenvalues of the error

covariance matrix (which is called the A-optimality criterion),

denoted by E(t)(W) = tr{Σ(t)
θ|y} =

E(t)(W) = tr

(
Σθ

−1 +

N∑
n=1

K∑
k=1

wn,k

σ2
q(n,k,t)

{hnh
T
n}
)−1

,

(6)

where W is the selection matrix as defined later and tr(.) is

the trace of the matrix. Recall that the element wn,k is equal to

one if the sensor at location n and type k is selected, otherwise,

wn,k = 0. We assume that no more than one sensor can be

selected at any location. Therefore, the �0 norm of the vector of

all sensor types at the n-th location, wT
n = [wn,1, ..., wn,K ],

is either equal to 1 or 0 based on whether a sensor at the

n-th location is selected or not. To simplify this constraint,

an auxiliary sensor type that represents no sensor selection,

k = 0, is introduced such that its cost and EH efficiency

are c0 = η0 = 0. This means that we will redefine wn as

wT
n = [wn,0, . . . , wn,K ]. Hence, ||wT

n ||0 = 1 always holds,

where wn,0 = 1, if no sensor is selected at the n-location.

The selection matrix W is then defined as the matrix with

n-th row given by wT
n = [wn,0, ..., wn,K ], ∀n ∈ {1, ..., N}.

Finally, we define a cost vector c = [c0 c1 ... cK ]T and an

EH efficiency vector η = [η0 η1 ... ηK ]T such that ck and

ηk, ∀k ∈ {0, ...,K} correspond to the given price and EH

efficiency of sensor type k, respectively.

IV. JOINT SENSOR PLACEMENT AND TYPE SELECTION

We start the analysis considering only one snapshot of the

average EH at each candidate sensing location, i.e., t = 1. The

optimization problem can then be formulated as,

argmin
{wn,k}

N∑
n=1

wT
nc (7)

subject to E(t)(W) ≤ λ (7a)

wn,k ∈ {0, 1}, ∀n, k (7b)

||wn||0 = 1, ∀n, (7c)

where λ is the maximum allowed error at any time. The

optimization problem (7) is not convex because of the non-

convex Boolean constraints in (7b) and the �0 norm constraints

in (7c). To obtain a convex problem which can be solved

using well established tools, the constraints (7b) are relaxed

to wn,k ∈ [0, 1], ∀n, k and the constraints (7c) are relaxed to

wT
n1 = 1, ∀n. The convex problem is then written as,

argmin
{wn,k}

N∑
n=1

wT
nc (8)

subject to E(t)(W) ≤ λ (8a)

wn,k ∈ [0, 1], ∀n, k (8b)

wT
n1 = 1, ∀n. (8c)

Equivalently, the reconstruction error can be minimized subject

to a prescribed system cost, ξ, which may be beneficial for the

applications in which the goal is to minimize the error, i.e.,

argmin
{wn,k}

E(t)(W) (9)

subject to

N∑
n=1

wT
nc ≤ ξ (9a)

wn,k ∈ [0, 1], ∀n, k (9b)

wT
n1 = 1, ∀n. (9c)

In general, the solution of (8) and (9) can be 0 ≤ wn,k ≤
1, ∀n, k. Hence, some rounding algorithm should be used to

obtain a Boolean solution [5], [3].

Multiple snapshots: The amount of harvested energy is

generally not fixed over time, therefore, it is useful to choose

the optimal sensors based on the average amount of harvested

energy over many time intervals, i.e., t ∈ {1, 2, . . . , T}. In this

case, the sensors are selected such that the maximum error

for any snapshot is minimized. The optimization problem is

written as,

argmin
{wn,k}

max
t

E(t)(W) (10)

subject to

N∑
n=1

wT
nc ≤ ξ (10a)

wn,k ∈ [0, 1], ∀n, k (10b)

wT
n1 = 1, ∀n. (10c)

Note that (10) is a convex function because the maximum of

a non-decreasing convex function is also convex [4].
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V. NUMERICAL EXPERIMENTS

Figure 2 shows part of the KAUST campus map with 100

candidate sensor locations. This work serves an envisioned

project to measure the gasoline leakage in the atmosphere.

Note that the provided data in this section are not real data

and only serve the purpose of validating the obtained selection

solutions presented in Section IV. Although the gasoline

observations might be non-linear, a linearization process is

necessary in order to make the MSE independent of the

unknowns and hence make offline selection possible [5], [6].

The selected sensors communicate directly with the fusion

center (also shown in Figure 2) via wireless channels. The

number of unknowns is M = 2 with a covariance matrix Σθ

modeled as [Σθ]1,1 = [Σθ]2,2 = 1 and [Σθ]2,1 = [Σθ]1,2 =
0.5, i.e., 2 unknowns to be estimated with 0.5 correlation. The

unknown parameters could for instance represent the intensity

of two gases at a specific location. Two cases are considered:

(1) fixed source location and (2) random source location. The
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Fig. 5. selected sensors for a source location uniformly distributed over the
green area

gains hn are modeled as decaying signals with the distance

from the gas source, i.e., hn = [hn,1 hn,2 ... hn,M ]T with

hn,m = αmexp(
dn
βm

), (11)

where dn is the distance between the gas source and the n-th

sensor and αm and βm are the sources diffusion parameters.

We set αm = [10 20]T and βm = [1/3 1/6]T . All measure-

ments are affected by independent zero-mean Gaussian noise

with equal variance, σ2
v = 1.

The maximum amount of average EH at any location in the

map at one snapshot is shown in Figure 2. Such maps for the

average EH can be obtained every half an hour over a whole

day period, i.e., t ∈ {1, . . . , 48}. The transmission power is

modeled as, p
(t)
n,k = min(ρ

(t)
n ηk, 10ηk).

The wireless channel gain is modeled as gn = r−γ
n , where

rn is the distance between the n-th sensor and the fusion center

and γ = 2 is the path loss exponent, i.e., we assume radio

propagation in free space. The receiver AWGN is modeled

such that φn ∼ N (0, 1). Perfect channel state information

(CSI) is assumed to be available at the fusion center. We

assume K = 3 sensor types with the cost and EH efficiency

vectors c = [0 3 5 8]T and η = [0 .3 .5 .8]T . As mentioned

before, two scenarios are studied:

1. Fixed source location: In this case, the measurements

gains hn are fixed. Hence, to minimize the reconstruction error

subject to a prescribed system cost (ξ = 150), the optimization

problem in (10) is solved. The selected set of sensors is shown

in Figure 3.

2. Random source location: In this scenario, the average

error is minimized considering a uniformly distributed source

location over a known area. We replace the objective function

in (10) with
∑

i[ max
t

E(t)(W) ]i, where i is the source

location index, and solve for a total system price of ξ = 150.

Figures 4 and 5 show the selected set of sensors for a source

location uniformly distributed over the green area in Figure
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5. An application example for this case is a sensor network

that measures the gas leakage from gas pipes in an industrial

plant. The sensor selection is optimized based on the a priori

expectation of a leakage from the pipes.

Interestingly, the achieved solutions for the described sys-

tems above and for other tested systems with adjusted pa-

rameters are either 0 or 1, as shown in Figure 4. Hence, the

achieved solutions are already Boolean and there is no need

for rounding. This being said, the solution is not Boolean in

general. Therefore, a rounding algorithm must be utilized to

decide the selection of sensors with non binary solution.

Finally, to highlight the importance of having more than

one sensor type, we show in Figure 6 the obtained error by

solving (10) versus the prescribed system costs, with the option

of selecting from a pool of one, two or three sensor types.

VI. CONCLUSIONS

A sensor selection optimization problem was derived and

solved in order to jointly select optimal sensor locations and

types from a pool of candidate locations and available sensor

types. The sensors are selected such that the reconstruction

error at the fusion center is minimized taking into account the

observation accuracy, the amount of harvested energy and the

communication link costs.

We show that indeed having the option to choose different

sensor types with different power ratings at optimal locations

might reduce the reconstruction error.
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