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Abstract—Data reduction for large-scale linear regression is
one of the most important tasks in this era of data deluge.
Exact model information is however not often available for big
data analytics. Therefore, we propose a framework for big data
sketching (i.e., a data reduction tool) that is robust to possible
model mismatch. Such a sketching task is cast as a Boolean
min-max optimization problem, and then equivalently reduced
to a Boolean minimization program. Capitalizing on the block
coordinate descent algorithm, a scalable solver is developed to
yield an efficient sampler and a good estimate of the unknown
regression coefficient.
Index Terms—Big data, model mismatch, data reduction, linear

regression, sketching.

I. INTRODUCTION

S ensor networks, Internet, power grids, biological networks,
and social media generate large volumes of data. Such

massive datasets have to be processed to extract meaningful
information, i.e., to solve an inference problem (e.g., learning
or anomaly detection). The shear volume of the data makes
this task challenging. Consequently, a significant portion of the
data has to be discarded to arrive at a quick rough solution with
reduced data processing costs. Instead of blindly discarding the
data samples, it is of paramount importance to extract only
the most informative data samples for further analysis while
keeping the inference task in mind. We will specifically focus
on regression in this paper.
Data reduction can be performed even before acquiring the

data by solving a sensor selection problem (i.e., an optimal
design of experiments) if the model information is known [1],
[2]. Here, the samplers (or selection variables) are optimally
designed to guarantee an average inference performance. In
other words, the samplers are fixed and can be designed
offline. On the other hand, if the data is already acquired
and available, the data reduction is performed by sketching
(or censoring) data samples to achieve a desired instantaneous
inference performance. Here, the design of samplers are data
driven, i.e., the samplers have to be designed for each data
realization, which is more appropriate for handling model
mismatch and outliers. Censoring is typically used to reduce
the communications overheads in a distributed setup, where
the data samples available at different locations have to be
shipped to a central location for data processing while cen-
sored samples are not transmitted to reduce the transmission
overheads [3], [4]. Censoring has also been proposed in the
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big data context to reduce the computational costs involved in
solving the inference problem [5], [6]. In both sensor selection
and censoring, the samplers are essentially deterministic and
structured in nature. Different from the deterministic and
structured sampler design, random sampling methods (e.g.,
random subset selection or random linear projection) have
been used for data reduction for least squares problems [7],
[8] and these are usually not tailored for a specific task at
hand.
Existing works on sketching or censoring are limited to

perfectly known data models. However, for massive datasets,
such an assumption is often too ideal. That is, the datasets
might not always follow the postulated model. For example,
the data might be contaminated with outliers or the model
information might not be completely known. Censoring with
outlier rejection has recently been addressed in [9].
In this work, we propose a framework for big data sketching

that is robust to a possible model mismatch. In particular, we
are interested in scenarios where the regressors are known only
up to a certain bounded perturbation. Without censoring, this
is the well-known robust least squares problem [10]–[12]. We
pose the problem of sketching that censors less informative
samples as well as provides an estimate that performs well
for any allowed perturbation. Mathematically, this is a Boolean
min-max problem. We provide elegant and scalable algorithms
to solve this problem, and apply the developed theory to
synthetic as well as real datasets.
Notation. Boldface lower case letters represent column

vectors; calligraphic letters stand for sets. The symbol Rd

represents the real space of d × 1 vectors; aT , ‖a‖0 and
‖a‖2 denote the transpose, !0 and !2 norm of a, respectively;
and sgn(x) extracts the sign of x; Finally, the expectation is
denoted by E[·].

II. PROBLEM STATEMENT

Consider a linear regression setup, where an unknown vector
θ ∈ Rp is to be estimated from the data collected in the vector
x = [x1, x2, . . . , xD]T ∈ RD. We assume that x contains
uninformative elements, where we interpret informative entries
as data having a large likelihood, i.e., samples having smaller
residuals for a linear regression problem with white Gaussian
noise. In order to reduce the data processing costs and to obtain
a quick rough solution (i.e., to reduce the inference time),
inevitably, a significant portion of the data has to be discarded.
The data reduction can be achieved either via random sampling
(e.g., choosing entries of x uniformly at random), where the
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y ∈ R
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diagr(w) x ∈ R
D

Fig. 1: Sparse sketching scheme for data reduction. Here, a white (black)
and colored square represents a one (zero) and an arbitrary value, respectively.

inference task is essentially ignored, or the samplers can be
systematically designed taking the inference task into account,
which is the approach we focus on in this paper. That is, we
design samplers for data reduction that are tailored for linear
regression problems with model uncertainties.
The dimensionality of the data is reduced from D to d,

where d $ D, and both d and D are assumed to be known.
We achieve this through a linear sketching operator denoted
by diagr(w) ∈ {0, 1}d×D to obtain

y = diagr(w)x

where diagr(·) represents a diagonal matrix with the argument
on its diagonal, but with the all-zero rows removed. Such
a sketching scheme is illustrated in Fig. 1. The sketching
operator is guided by a censoring vector denoted by w =
[w1, w2, . . . , wD]T ∈ {0, 1}D, where wm = 0 indicates that
xm is censored (or discarded). The reduced dimension data
vector y is subsequently used to solve the inference or learning
problem.
We consider a linear regression problem where the data

sample xm is related to the unknown regression coefficients
θ = [θ1, θ2, . . . , θp]T ∈ Rp through the following linear model

xm = āTmθ + nm, m = 1, 2, . . . , D (1)

where the noise nm is independent and identically distributed
Gaussian variable having (without loss of generality) zero
mean and unit variance. The regressors {ām}Dm=1 are assumed
to be known up to a certain bounded uncertainty. Specifically,
the assumption is that

ām = am + pm, m = 1, 2, . . . , D (2)

where {am}Dm=1 are assumed to be known a priori, and the
perturbations {pm}Dm=1 are unknown yet bounded by a known
value η, i.e., ‖pm‖2 ≤ η.
We pose the problem of finding a Boolean censoring vector

w that chooses d $ D data samples censoring less informative
samples as well as provides an estimate that performs well for
any allowed perturbation. More formally, we state the problem
as follows.

Problem statement. Given the data vector x ∈ RD that is
related to the unknown θ ∈ Rp through a known data model
but with bounded uncertainties (i.e., the regressors {am}
and the upper bound on the perturbation η, are perfectly

known): (a) design w to censor the less-informative D − d
data samples; and (b) estimate θ using d uncensored samples
that performs well for any allowed perturbation {pm}, where
‖pm‖2 ≤ η for m = 1, 2, . . . , D.

In other words, we seek a Boolean vector w and the
unknown parameter vector θ that minimizes the worst-case
squared residual. This can be cast as the following optimiza-
tion problem

min
w∈W,θ

max
{‖pm‖2≤η}D

m=1

D
∑

m=1

wm

(

xm − (am + pm)Tθ
)2 (3)

where we introduce the set W = {w ∈ {0, 1}D | ‖w‖0 =
d}. The optimization problem (3) is a Boolean optimization
problem, which is generally hard to solve.
For a fixed d, the approach proposed here yields a solution

to data censoring that is optimal in the maximum (worst-
case) likelihood sense. In other words, we deem the data with
smaller residual values as more informative as compared to
the ones with higher residual values, thus it is also robust to
possible outliers.
Note that for pm = 0, problem (3) simplifies to data

sketching for linear regression, which can be used to censor
less-informative data samples as well as to reject outliers, if
any [9].

III. PROPOSED SOLVERS

In this section, we will solve (3) suboptimally based on an
alternating minimization technique. To begin with, we refor-
mulate the min-max problem in (3) to a single minimization
problem.

A. Reducing the min-max problem to a minimization problem

Since the perturbations {pm}Dm=1 are independent across
the data samples, problem (3) can be equivalently expressed
as

min
w∈W,θ

D
∑

m=1

wm max
‖pm‖2≤η

(

xm − (am + pm)Tθ
)2

. (4)

Let us define bm := aTmθ − xm. Using the Cauchy-Schwarz
inequality, we can derive the tightest upper bound for the
objective of the inner maximization as

(

xm − (am + pm)Tθ
)2

= (pT
mθ)2 + 2bmpT

mθ + b2m
≤ η2‖θ‖22 + 2η|bm|‖θ‖2 + b2m

where the upper bound can be achieved by setting

p∗
m = η sgn(bm)

θ

‖θ‖2
.

Clearly, the worst case perturbation p∗
m aligns with the

regression coefficient θ, and has a length equal to the radius
of the uncertainty region η. Plugging the optimal solution p∗

m

back into (4), allows us to state the following lemma.
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Lemma 1. The optimization problem (4) is equivalent to the
following minimization problem

min
w∈W,θ

D
∑

m=1

wm

(

|xm − aTmθ|+ η‖θ‖2
)2 (5)

which determines the optimal (w, θ) with given {am}Dm=1, x,
and η.

It can be seen that due to the worst-case model mismatch,
the considered problem (5) can be equivalently recast as the
following regularized least trimmed squares problem

min
θ

d
∑

m=1

r2[m](θ), (6)

with the regularized residuals rm(θ) defined as

rm(θ) = |xm − aTmθ|+ η‖θ‖2

and r2[m](θ) denoting the squared regularized residuals in
ascending order. The value d determines the breakdown point
of the regularized least trimmed squares estimator because
the D − d largest regularized residuals will not affect the
performance. The optimization problem (6) incurs combina-
torial complexity, where an exhaustive search would yield
choosing the optimal θ with the smallest cost among all
the

(

D
d

)

candidate regularized least squares estimators. Note
that solving (6) yields the well-known least trimmed squares
estimator when η = 0 [13].

B. Alternating descent minimization
The optimization problem (5) involves the binary variables

w, and hence is non-convex and generally hard to solve.
However, by exploiting the structure, we propose to use the
block coordinate descent (BCD) algorithm for updatingw and
θ alternatingly. That is, whenever the binary variable w is
fixed, (5) boils down to a reduced-ordered robust least squares
problem, which is a convex program [10], [11]. Given the
regression coefficient θ, the problem becomes a Boolean linear
program that admits a closed-form solution with respect to
w. Thus, the iterative BCD algorithm can be used to yield
successive estimates of θ with fixed w, and vice versa.
Specifically, the algorithm proceeds as follows. With θ[k]

available, w[k+1] is obtained as

w[k+1] = argmin
w∈W

D
∑

m=1

wmr2m(θ[k]) .

Although the above linear programming problem has Boolean
and cardinality constraints, there exists a simple analytical
solution for w[k+1] based on ordering the squared regular-
ized residuals {r2m(θ[k])}. In other words, the optimal w is
obtained by setting wm = 1 corresponding to the d smallest
regularized residuals, and setting wm = 0 otherwise.
Givenw[k] and by introducing the auxiliary variables {tm},

we solve for θ[k+1] using a reduced-ordered robust least
squares as [12]

θ[k+1] = argmin
θ,{tm}m∈Sk

∑

m∈Sk

t2m (7a)

s.t. |xm − aTmθ|+ η‖θ‖2 ≤ tm, ∀m ∈ Sk (7b)

where Sk := {m|wm[k] = 1,m = 1, 2, . . . , D} with |Sk| = d.
Problem (7) is a convex quadratic program which can be

further cast into a second-order cone program (SOCP) as

θ[k+1] =argmin
θ,t,u≥0

u (8a)

s.t.
∥

∥

∥

∥

[

2t
u− 1

]
∥

∥

∥

∥

2

≤ u+ 1 (8b)

|xm − aTmθ|+ η‖θ‖2 ≤ tm, ∀m ∈ Sk (8c)

where t ∈ Rd is a vector with elements {tm}m∈Sk
.

The iterations can be initialized at k = 0 by setting uni-
formly at random d entries ofw[0] to 1 such that ‖w[0]‖0 = d.
It is worth stressing here that in order to estimate θ[k+1] by
solving (7) or (8), we use only reduced-dimensional data of
length d $ D corresponding to the non-zero entries of w[k],
i.e., y[k] = diagr(w[k])x. Note that the aforementioned two
convex programs can be solved with interior-point methods
or first-order algorithms (e.g., projected gradient descent and
trust-region methods [14]) to further reduce the computational
complexity.

IV. SIMULATIONS
In this section, simulated tests are presented to verify the

merits of the robustified formulation and the proposed alter-
nating minimization approach. The Matlab function fminunc
along with the trust region solver [15] is used to solve
the optimization problem (5) when w[k] is fixed. All numer-
ical tests are implemented on a high-performance computing
cluster with 2 Intel Xeon E5-2690 2.9 GHz CPUs and a total
of 204 GB RAM.
The performance of the proposed approach is tested on three

different datasets: S1) a small synthetic dataset with D = 10
and p = 2; S2) a big synthetic dataset with D = 5, 000 and
p = 10; and S3) the protein structure dataset from the UCI
machine learning repository, where D = 45, 730 observations
and p = 9 attributes are used to predict the physicochemical
properties of the protein tertiary structure. The entries of
the regression vectors {ām}Dm=1 contain protein structure
revealing parameters obtained via clinical experiments. Hence,
the regressors are perturbed and noisy [16]. The true θ

is obtained by solving least squares on the entire dataset.
For datasets S1 and S2, 100 Monte-Carlo experiments have
been implemented to yield the average worst-case residuals.
Parameters {am,pm, nm}Dm=1 and θ are independent and
identically distributed Gaussian random variables with zero
mean, and ‖pm‖2 = η for m = 1, 2, . . . , D [cf. (1) and (2)].
We plot the objective value of (5) with w and θ obtained

from the algorithm described in Sec. III-B, i.e., the average
worst-case residual (averaged over a number of Monte-Carlo
experiments) in Figs. 2, 3, and 4. Specifically, the proposed
robust sampling approach is compared with two alternative
competitors: i) the exhaustive search serving as a benchmark
that simply finds the optimal θ with the smallest cost among
all

(

D
d

)

possible regularized least squares estimators. Since
this brute-force method incurs combinatorial complexity, it is
only computationally tractable for small values of D; i.e., for
the dataset S1 in our simulation setup; and ii) the random
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Fig. 2: Small synthetic dataset S1. The average objective value of (5) for: (a) different values of compression ratio fixing
η = 0.5, and (b) different values of η fixing d/D = 0.5.
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Fig. 3: Big synthetic dataset S2. The average objective value of (5) for: (a) different values of compression ratio fixing η = 0.01,
and (b) different values of η fixing d/D = 0.1.

sampler, which randomly chooses d observations, and solves
the reduced-dimension robust least squares problem [cf. (5)]
to obtain the robust estimator θ̂. Note that the random sampler
can be regarded as an initial step of our proposed approach,
which updates the sampler w[k] and the regression coefficient
θ[k] in an alternating descent manner until convergence.
In Fig. 2(a), the worst-case residuals of the three sampling

approaches are compared for different compression ratios
d/D = 0.2, 0.3, . . . , 1, while the perturbation size is fixed
to η = 0.5. Clearly, for all the samplers, the worst-case
residual of d samples increases with the increase of d (also the
compression ratio). When d = D, all schemes solve the same
robust least squares problem (5) with w = 1, and hence yield
the same worst-case residual. Since the proposed approach
converges to find the best d measurements while the random
sampler uniformly chooses d ones, the former edges over the
latter across the entire range of the compression ratio, and
the performance gain increases with decreasing d/D values.
Note that the performance gap between the proposed sampler
and the exhaustive search is relatively small, and diminishes
with the increase of the compression ratio. For d/D ≥ 0.7,

the proposed one has the same performance as the one of the
exhaustive search.
In Fig. 2(b), the worst-case residuals are shown with various

perturbation size η ∈ [0, 1] while fixing d/D = 0.5. As
expected, the worst-case residual increases with an increasing
perturbation size. Note that all three curves coincide at the
point when η = 0. In this case, the objective value (5) boils
down to the estimate of the noise variance. Hence, there is
no difference among the three sampling approaches without
model uncertainty. The worst-case residual of our proposed
approach is very close to the exhaustive search for different
values of η, which also offers a superior performance over the
random sampler, especially in the range of large uncertainties.
The worst-case residuals of the proposed approach vis-

à-vis the random one for different values of d/D and η
are also tested on the big synthetic dataset S2 and the real
dataset S3 related to protein structure modeling, as shown
in Figs. 3 and 4. Our novel solver achieves good scalability
for these large datasets. In all cases, we consistently observe
performance gains of the proposed sampler, with a similar
trend as the one exhibited in Fig. 2. Note that for the curves
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Fig. 4: Real dataset S3. The average objective value of (5) for: (a) different values of compression ratio fixing η = 0.01, and
(b) different values of η fixing d/D = 0.01.

in Fig. 4 there are no Monte-Carlo experiments, and hence no
smoothing effect for the real dataset S3. Moreover, the mean
squared error (MSE) of the estimator θ̂, namely E

[

‖θ̂ − θ‖22

]

yielded by the proposed approach is not necessarily better than
the one given by the random sampler. The reason is that the
goal of problem (5) is to minimize the worst case residual
rather than the MSE of the estimator.

V. CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we have discussed data sketching (i.e., a data

reduction tool) for large-scale inverse problems with model
mismatch. This is relevant as the model information might
not be completely available for massive datasets. Specifically,
we have considered cases where the regressors are known only
up to a certain bounded perturbation. We pose the problem of
sketching that censors less informative samples (i.e., samples
with large residual values) as well as provides an estimate that
performs well for any allowed perturbation. Mathematically,
this design of sparse sketching is a Boolean min-max problem.
We develop an efficient and scalable solver leveraging the
BCD algorithm, whose performance is corroborated by the
numerical results with both synthetic and real datasets.
The assumption throughout this paper was that the obser-

vation noise is independent across the data samples and the
dataset is available as a batch. As a topic for future research,
it is interesting to investigate the same problem, but with
dependent observations. Further, sketching for streaming big
data with model mismatch is certainly an interesting topic for
future work.
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