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Abstract—We focus on discrete sparse sensing for non-linear
parameter estimation with colored Gaussian observations. In
particular, we design offline sparse samplers to reduce the
sensing cost as well as to reduce the storage and communications
requirements, yet achieving a desired estimation accuracy. We
optimize scalar functions of the Cramér-Rao boundmatrix, which
we use as the inference performance metric to design the sparse
samplers of interest via a convex program. The sampler design
does not require the actual measurements, however it needs the
model parameters to be perfectly known. The proposed approach
is illustrated with a sensor placement example.

Index Terms—Sparse sensing, sensor selection, sensor place-
ment, dependent observations, non-linear least squares.

I. INTRODUCTION

Sensor networks are widely used in a variety of applications
such as infrastructure (e.g., buildings, railway tracks, bridges)
monitoring, healthcare, environmental monitoring, and safety
and security, to name a few. Typically, sensors are deployed
spatially and the data gathered by them are transported to a
central location for data processing, i.e., for inference. If the
inference task is known beforehand, then the cost of sensing
as well as the resulting data storage and communications
costs can be seriously reduced. The sensing cost includes the
hardware cost due to the number of sensors and the physical
space they occupy when installed.
In this work, the focus is on the design of sparse sensing

structures to perform sensor selection or placement for non-
linear parameter estimation. Sensor selection (placement) is
the problem of choosing the best subset of sensors (locations)
out of a large pool of candidate sensors (locations) in order
to reach a desired estimation accuracy. In other words, we
are interested in designing optimal sparse spatial or temporal
samplers to reduce the data to be acquired. For example, for
indoor localization systems this means the number of access
points as well as their sampling rates can be significantly
reduced for a given target detection probability or positioning
accuracy.
In recent years, sensor selection and management has re-

ceived a significant amount of attention for various signal pro-
cessing problems such as control and estimation [1]–[10] and
detection [11]–[13]. In [1] and [2], the sensor selection prob-
lem for linear parameter estimation with uncorrelated Gaussian
noise was solved via greedy submodular maximization and
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convex optimization, respectively. In [3], this problem was
generalized to nonlinear measurement models with arbitrary
yet conditionally independent data distributions, where convex
optimization methods were employed to determine the best
subset of sensors such that a desired inference performance is
guaranteed (e.g., specified by the Cramér-Rao bound).
The assumption in [2], [3] is that the observations are

conditionally independent. This is reasonable if the sensors
are solely responsible for the noise in the observations, for
example, due to the internal thermal noise. If the observation
signal itself is stochastic in nature or if the observations are
subject to external noises or interference, then the indepen-
dence assumption will be too idealistic. As a consequence,
the additive property (this result was central to the solvers
developed in [3]) of the Fisher information matrix (FIM)
under sparse sensing is no more preserved. This makes the
sensor selection problem with correlated observations even
more challenging.
Existing works, e.g., [14], [15] focus on linear models in

colored Gaussian noise, but with an approximate performance
metric. That is, they rely on an approximate expression for the
mean squared error, where the noise from the sensors that are
not selected is spread across the selected sensors. However,
the noise from the sensors that are not selected should not
have any impact.
On the other hand, we consider an exact expression for the

inference performance metric in this work. More specifically,
we extend the framework of [3] to solve the sensor selection
problem for nonlinear estimation problems with colored Gaus-
sian observations. Similar to [3], we will use the Cramér-Rao
bound as an inference performance metric to design sparse
samplers. We propose a decomposition of the noise covariance
matrix that allows us to express the inference performance
metric as a convex function of the sampler. The sparse
samplers can be obtained by solving a semidefinite program.
The proposed approach is valid for arbitrary covariance matrix
(i.e., for high or low correlation values), and uses only model
information (and not actual measurements).
Notation: Upper (lower) bold face letters are used for

matrices (column vectors). (·)T denotes transposition. 1N

(0N ) denotes the N×1 vector of ones (zeros). IN is an identity
matrix of size N . E{·} denotes the expectation operation.
tr{·} is the matrix trace operator. det{·} is the matrix determi-
nant. λmin{A} (λmax{A}) denotes the minimum (maximum)
eigenvalue of a symmetric matrixA.A " B means thatA−B

is a positive semidefinite matrix. ‖w‖0 denotes the "0 norm of
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Φ(w) = diagr(w) x ∼ N (h(θ),Σ)

Fig. 1: Discrete sparse sensing scheme. Here, a white (black) and colored
square represents a one (zero) and an arbitrary value, respectively.

w. SN (SN+ ) denotes the set of symmetric (symmetric positive
semi-definite) matrices of size N ×N .

II. SENSING MODEL

Suppose the unknown vector θ ∈ RN is related to the
observations according to the model

x ∼ N (h(θ),Σ) (1)

where h(·) : RN &−→ RM is a known nonlinear function
and Σ ∈ SN is the known noise covariance matrix. Here, the
covariance matrix might be non-diagonal, i.e., the observations
might be correlated across the sensors.
We acquire the data x using the sparse sensing function

Φ(w) ∈ {0, 1}K×M to obtain a reduced-dimensional (i.e,
K ( M ) observation vector

y = Φ(w)x. (2)

The sensing function Φ(w) is guided by a sparse vector (thus
the name sparse sensing)

w = [w1, w2, . . . , wM ]T ∈ {0, 1}M .

Specifically, Φ(w) is structured as

Φ(w) = diagr(w)

with diagr(·) representing a diagonal matrix with the argument
on its diagonal but with the all-zero rows removed. The sensing
scheme is illustrated in Fig. 1.
The main goal is to design a sparsestw in order to guarantee

a desired estimation accuracy, where the reduced-dimensional
vector y is used to solve the non-linear inverse problem.

III. INFERENCE PERFORMANCE METRIC
For parameter estimation, the estimation quality is essen-

tially determined by the error covariance matrix E = E{(θ−
θ̂)(θ − θ̂)T }. Here, θ̂ ∈ RN is an estimate of θ. Although
for linear estimation problems in Gaussian noise, E admits
a known expression that is independent of θ, for nonlinear
models such as (1), E can only be empirically evaluated.
Consequently, it is not suitable for numerical optimization.
Hence, in what follows we discuss a simpler performance
metric, which can be computed in closed form and is suitable
for numerical optimization. More specifically, we will consider
the Cramér-Rao bound (CRB) as the performance metric

because (a) the CRB ensures (local) solvability of the problem,
and (b) the subset of sensors that yields a lower CRB also
generally yields a lower estimation error as well.
The covariance of an unbiased estimate θ̂ satisfies the

following inequality [16]

E{(θ − θ̂)(θ − θ̂)T } ≥ C(w, θ) = F−1(w, θ),

where C(w, θ) is the CRB matrix and the inverse of the CRB
matrix, i.e.,

F (w, θ) = E

{(
∂ ln p(y; θ)

∂θ

)(
∂ ln p(y; θ)

∂θ

)T
}

∈ R
N×N

is the Fisher information matrix (FIM).
For the observations in (2), given (1), we can compute the

FIM as

F (w, θ) = [Φ(w)J(θ)]T Σ
−1(w) [Φ(w)J(θ)] (3)

where J(θ) = ∂h(θ)/∂θT ∈ RM×N is the Jacobian matrix
and

Σ(w) = Φ(w)ΣΦ
T (w) ∈ R

K×K

is the submatrix of Σ, which includes only the entries corre-
sponding to the selected measurements.
A scalar function of the matrix F (w, θ) is optimized over

all the possible samplers. In particular, some of the commonly
used (in the optimal design of experiments) scalar measures
are, respectively
1) f(w) := tr{F−1(w, θ)},
2) f(w) := λmin{F (w, θ)},
3) f(w) := ln det{F (w, θ)}

related to the A-, E-, and D-optimal designs. In what follows,
we will derive samplers based on the E-optimal criterion due to
complexity and performance reasons [3]. Nevertheless, sparse
samplers can be obtained (along similar lines) by optimizing
any one of the above performance metrics.
Due to the nonlinear measurement model, the FIM depends

on the unknown true parameter vector θ. In practice, the
unknown vector θ has a physical meaning and takes values
within a certain domain denoted by a set U . Therefore, f(w)
has to be optimized over w and for all θ ∈ U . In contrast,
for linear measurement models in Gaussian noise, the FIM
does not depend on the unknown parameter vector θ. Having
described the inference performance metric, we now formally
state the problem.

Problem statement. Given the model parameters h(·) :
RN &−→ RM and Σ ∈ RM×M in (1), and a desired inference
performance λ, design a sparsest w ∈ {0, 1}M that satisfies
the performance constraint λmin{F (w, θ)} ≥ λ, ∀θ ∈ U .

Mathematically, this can be cast as the following optimiza-
tion problem

w! =argmin
w

‖w‖0

s.t.λmin{F (w, θ)} ≥ λ, ∀θ ∈ U ,
w ∈ {0, 1}M .

(4)

This is a Boolean constrained cardinality minimization prob-
lem (thus nonconvex). In the next section, we will derive a
solution to (4) based on some convex approximations.
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IV. PROPOSED SOLVER

To begin with, we relax the Boolean constraint to its best
convex approximation, i.e., a box constraint w ∈ [0, 1]M .
The constraint λmin{F (w, θ)} ≥ λ in its current form is not
convex on w ∈ [0, 1]M . This is also true for the trace and
determinant constraints.
Next, we will provide some steps to express the minimum

eigenvalue constraint as a convex constraint on w ∈ [0, 1]M .
Firstly, we express the noise covariance matrix Σ as

Σ = aI + S, (5)

where a nonzero a ∈ R is chosen such that S ∈ RM×M is
invertible and well-conditioned. Using (5) in (3), we obtain

F (w, θ) =JT (θ)ΦT (w)
(
aI +Φ(w)SΦ

T (w)
)−1

×Φ(w)J(θ).

Using the fact that ΦT (w)Φ(w) = diag(w) and applying
the matrix inversion lemma [16]

C(B−1+CTA−1C)−1CT = A−A(A+CBCT )−1A,

with C = Φ
T (w), B−1 = aI , and A = S−1, it is easy to

verify that

Φ
T (w)

(
aI +Φ(w)SΦ

T (w)
)−1

Φ(w) = S−1

− S−1
[
S−1 + a−1diag(w)

]−1
S−1.

(6)

Therefore, we can simplify F (w, θ) to

F (w, θ) = JT (θ)S−1J(θ)

− JT (θ)S−1
[
S−1 + a−1diag(w)

]−1
S−1JT (θ).

(7)

In contrast to (3), the design parameter w appears only once
in (7), which makes the problem much easier. Using the Schur
complement, the constraint λmin{F (w, θ)} ≥ λ can now be
equivalently expressed under a > 0 as an LMI of sizeM+N :
[

S−1 + a−1diag(w) S−1J(θ)
JT (θ)S−1 JT (θ)S−1J(θ)− λIN

]
" 0M+N ,

(8)
which is linear (thus convex) in w. Due to (8), the matrix
S−1 + a−1diag(w) should be positive definite.
Note that the constraint (8) also depends on the unknown pa-

rameter vector θ. We remark here that for linear measurement
models, the above constraint is independent of the unknown
parameter vector θ. In other words, in that case, J(θ) will
be independent of θ and will simply be the regression matrix
itself. To arrive at (8) from the FIM in (3), is an important con-
tribution of this work, and it is valid for arbitrary (invertible)
covariance matrix Σ.
Finally, the "0-norm cost function has to be replaced with

a good convex approximation. Traditionally, the "1-norm has
been used as the best convex relaxation for the "0-norm, how-
ever, it might not always yield a sparse solution (or a sparse
sampler) [3]. Alternatively, a nonconvex surrogate function,
namely, the sum-of-logarithms given by

∑M

m=1 ln (wm + δ),
can yield a sparser solution due to a better approximation of
the "0 norm. Although the sum-of-logarithms is concave onw,

since it is smooth with respect to w, an iterative linearization
can be performed to obtain a local minimum [3]. Specifically,
we solve a re-weighted "1-norm optimization problem of the
form

ŵ[i] = argmin
w∈RM

M∑

m=1

wm

ŵm[i− 1] + δ

s.t.

[
S−1 + a−1diag(w) S−1J(θ)
JT (θ)S−1 JT (θ)S−1J(θ)− λIN

]
" 0M+N ,

∀θ ∈ U ,

0 ≤ wm ≤ 1, m = 1, . . . ,M.
(9)

Here, i denotes the iteration index and δ > 0 is a small
constant that prevents the cost from tending to −∞. Finally,
the sparse sampler is given by ŵ = ŵ[imax], where imax is the
specified maximum number of iterations. In each iteration, we
solve a convex program (9), more specifically, a semidefinite
program. This can be solved using any of the off-the-shelf
solvers like SeDuMi [17] or YALMIP [18].

V. NUMERICAL EXAMPLE
We apply the developed theory to sensor placement for the

source localization setup illustrated in Fig. 2(a). In applications
related to field estimation, (active/passive) radar, and sonar, it
is important to estimate the location of a point source that
emits or reflects energy. Suppose that there are M candidate
sensors that can be placed at locations {am ∈ R2}Mm=1, and
that measure the energy generated by a point source at location
θ ∈ R2. The measurements are given as

ym = hm(θ) + nm, m = 1, 2, . . . ,M, (10)

where hm(·) is an isotropic exponential attenuation function
given by hm(θ) =

√
eβ/(β + d2m) with dm = ‖θ − am‖2.

Here, e is the known field intensity emitted or reflected by the
point source, β ≥ 0 is the gain, and nm is the noise. In this
case, we have

h(θ) = [h1(θ), h2(θ), . . . , hM (θ)]T

and n = [n1, n2, . . . , nM ]T with n ∼ N (0,Σ). The noise
covariance matrix Σ might not be diagonal due to the multi-
path effects, for example. Using the above model parameters,
we have to choose the best subset of sensor locations out of
M available locations such that a desired estimation accuracy
for estimating θ is achieved.
Consider a scenario with M = 80 sensors and a noise

covariance matrix of the form

Σ =

[
Σhorz 0

0 Σvert

]
∈ R

M×M ,

where Σhorz is the noise covariance matrix corresponding to
the horizontally located candidate sensors denoted by (♦) in
Fig. 2(a) and Σvert is the noise covariance matrix correspond-
ing to the vertically located candidate sensors indicated by (")
in Fig. 2(a). We further assume that

Σhorz = σ2
[
(1 − ρ)I + ρ11T

]
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Fig. 2: Sensor placement for source localization (ρ = 0.5). Here, the uncorrelated and correlated sensors are denoted by squares (") and
diamonds (♦), respectively. The source domain is indicated by circles (◦), while the selected sensors are indicated by (∗). (a) Illustration
of a field generated by a unit amplitude point source at location θ = [25, 25]T m according to (10). Out of M = 80 available sensors 14
sensors are selected. (b) Sensor selection is solved solved using (9) with λ = 0.02 and imax = 10.
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Fig. 3: Sensor placement for source localization — uncorrelated case (ρ = 0). Here, the candidate sensors are denoted by squares (").
The source domain is indicated by circles (◦), while the selected sensors are indicated by (∗). (a) Illustration of a field generated by a unit
amplitude point source at location θ = [25, 25]T m according to (10). Out of M = 80 available sensors 28 sensors are selected. (b) Sensor
selection is solved using (9) with λ = 0.02 and imax = 10.

with correlation coefficient ρ and nominal noise variance σ2,
and Σvert = σ2I . That is, the vertically located candidate sen-
sors are uncorrelated while the horizontally located candidate
sensors are equally correlated. We use the following simulation
parameters: e = 1, β = 1, σ2 = 2 × 10−5, λ = 0.02, and
ρ = {0, 0.5}.

For the correlated case with ρ = 0.5, the sensor placement
is shown in Fig. 2(a). Here, the placement and related solution
shown in Fig. 2(b) is obtained by solving (9) using SeDuMi
with imax = 10 and δ = 10−6. Clearly, the obtained solution
is not Boolean, and deterministic or randomized rounding [3]
can be used to obtain an approximate Boolean solution. Here,
we use deterministic rounding.

As a benchmark, Fig. 3(a) shows the sensor placement for
the uncorrelated case, i.e., for ρ = 0, where the placement is
again obtained by solving (9) using SeDuMi with imax = 10
and δ = 10−6, and then using deterministic rounding. Fig. 3(b)
shows the solution of (9).

We underline the following observations. Firstly, the sensors
from the same region are selected for both the uncorrelated
and correlated case as the structure of the FIM in both these
cases is similar. Secondly, to achieve the desired performance
requirement we see that fewer correlated sensors are selected
as compared to the number of selected uncorrelated sensors.
Finally, as we observed in the simulations (not shown here),
for this particular numerical example, the "1-norm (i.e., with
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imax = 1) based solution does not result in a sparse solution.

VI. CORRELATION VS. NUMBER OF SENSORS
We will now study in more detail the impact of correlation

on the number of sensors required to reach a desired inference
performance. In particular, we will focus on a linear measure-
ment model in equicorrelated Gaussian noise, i.e.,

x ∼ N (Hθ,Σ)

where
Σ =

[
(1− ρ)I + ρ11T

]

and the regressors {hm}Mm=1 form the rows of H . This is a
special case of the data model (1) for which we can compute
the error covariance matrix in closed form given by

E(w) =
(
[Φ(w)H]T Σ

−1(w) [Φ(w)H ]
)
−1

,

and it is equal to the Cramér-Rao bound matrix.
For independent and identically distributed Gaussian re-

gressors {hm}Mm=1 with M = 10 and N = 2, we show
the impact of the correlation coefficient on the worst case
error, i.e., λmax{E(w)}, in Fig. 4. To ensure identifiability,
we need K ≥ 2. Here, the threshold λ is selected to choose
the best subset of K = {2, 5,M} sensors by solving (9). It
can be observed that as the sensors become more coherent,
i.e., as ρ → 1, the worst case error drops significantly. In
other words, it implies that the number of sensors required to
reach a desired estimation accuracy reduces significantly as
the sensors become more coherent. This result also holds for
the mean squared error (i.e., A-optimal design), however it is
not show here.

VII. CONCLUSIONS
In this paper, we have discussed discrete sparse sensing for

non-linear parameter estimation problems. In particular, we
design a sparse sensing function that is guided by a sparse

vector to acquire colored Gaussian observations such that a
desired estimation accuracy is guaranteed. We optimize scalar
functions of the Cramér-Rao bound matrix, which we use
as the inference performance metric to design the samplers.
The sampler design does not require actual measurements,
however it needs the model parameters to be known perfectly
(thus can be designed offline). We derive a convex program to
compute the sparse sampler of interest. To do so, we propose
a decomposition of the noise covariance matrix, which is valid
for arbitrary correlation values. The developed theory can be
applied to sensor selection and sensor placement problems.
The proposed approach is illustrated with a sensor placement
example.
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