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Abstract—Near-field source localization is a joint direction-of-
arrival (DOA) and range estimation problem. Leveraging the
sparsity of the spatial spectrum, and gridding along the DOA
and range domain, the near-field source localization problem
can be casted as a linear sparse regression problem. However,
this would result in a very large dictionary. Using the Fresnel-
approximation, the DOA and range naturally decouple in the
correlation domain. This allows us to solve two inverse prob-
lems of a smaller dimension instead of one higher dimensional
problem. Furthermore, the sources need not be exactly on the
predefined sampling grid. We use a mismatch model to cope with
such off-grid sources and present estimators for grid matching.
Index Terms—Near-field, sparse recovery, direction-of-arrival,

ranging, Fresnel approximation, grid matching.

I. INTRODUCTION
Source localization is important for location-aware services,

and has many applications in the field of seismology, acoustics,
radar, sonar, and oceanography. Source localization can be
categorized into two types, based on the distance between the
source and the antenna array: (a) far-field (when r ≥ 2D2/λ),
and (b) near-field source localization, where r is the range
between the source and the phase-reference of the array, D is
the array aperture, and λ is the wavelength of the source signal.
In far-field source localization, the wavefront of the signal
impinging on the array is assumed to be planar [1]. However,
the curvature of the wavefront is no longer planar when
sources are located close to the array, i.e., in the near field
(r ≤ 0.62

√

D3/λ) or Fresnel region (0.62
√

D3/λ < r <
2D2/λ). Therefore, the algorithms that depend on the planar-
wave assumption for direction-of-arrival (DOA) estimation are
no longer valid. In this work, we focus on near-field source
localization, which is achieved by a joint DOA and range
(distance between the source and the phase-reference of the
array) estimation.
Traditional approaches to near-field localization involve ex-

tending techniques like multiple signal classification (MUSIC)
to a two-dimensional field [2]. A quadratic approximation
(the so-called Fresnel approximation) of the wavefront is sug-
gested in [3]. Using the Fresnel approximation, the rotational
invariance property can be exploited between the symmetric
subarrays to estimate the DOA using ESPRIT [4], and based
on the estimated DOA, the range is subsequently estimated
using MUSIC. In [5], which is closely related to our work,
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Fig. 1: A linear array receiving a signal from a near-field source.

using the second-order statistics, the DOA and range are
jointly estimated by finding the roots of a polynomial related
to the correlations. However, they do not solve two one-
dimensional inverse problems as presented in this paper.
We localize multiple narrowband near-field sources by esti-

mating their DOA and range. Using the sparse representation
framework, we form an overcomplete basis constructed using
a sampling grid that is related to the possible source locations.
By doing so, the original non-linear parameter estimation
problem is transformed into a linear ill-posed problem. How-
ever, when the sources are not exactly on the predefined grid,
the performance of the estimator is significantly affected. We
account for such off-grid sources using a mismatch model,
and provide estimators for grid matching. Using the Fresnel
approximation and assuming that the sources are uncorrelated,
we can decouple the DOA and range in the correlation domain.
This allows us to significantly reduce the complexity, by
solving two inverse problems of smaller dimensions one by
one, instead of solving one inverse problem of a higher
dimension. More specifically, we first estimate the DOA and
then use the estimated DOA for range estimation. The error
due to Fresnel approximation is significant when the sources
are in near-field (i.e., r ≤ 0.62

√

D3/λ). We provide an
algorithm based on non-linear least-squares (NLS) to minimize
this approximation error.

II. SIGNAL MODEL
Consider K narrowband sources present in the near field

impinging on an array of M = 2p + 1 sensors as illustrated
in Fig. 1. Without loss of generality, it is assumed that the
phase reference of the array is at the origin, and the sensors
are placed at location indices in the range [−p, p]. Denoting
the spacing between two adjacent sensors as δ, the position
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of the m-th sensor will be mδ where m ∈ [−p, p]. The signal
received by the m-th sensor at time t can be expressed as

ym(t) =
K
∑

k=1

sk(t) exp(j
2π

λ
(rm,k − rk)) + wm(t), (1)

where
rm,k =

√

rk +m2δ2 − 2mδrk sin(θk) (2)

represents the distance between the mth sensor and the kth
source, rk is the range from the kth source to the phase
reference, sk(t) is the signal radiated by the kth source
characterized by the DOA-range pair (θk, rk), λ denotes the
wavelength, and wm(t) denotes i.i.d. Gaussian noise. We
model the signal power of the kth source as Et{sk(t)s∗k(t)} =
σ2
s,k, and the noise power as Et{wm(t)w∗

m(t)} = σ2
w. Stacking

the measurements in y(t) = [y−p(t), . . . , yp(t)]T ∈ CM×1,
we get

y(t) =
K
∑

k=1

a(θk, rk)sk(t)+w(t), for t = t1, . . . , tT , (3)

where T denotes the number of snapshots, a(θk, rk) ∈ CM×1

is the steering vector, and w(t) = [w−p(t), . . . , wp(t)]T ∈
CM×1 is the noise vector.
Assuming the source signals are mutually uncorrelated, we

can stack all the available spatial correlations into a vector
z = vec(E{y(t)y(t)H}) of length M2 × 1, i.e.,

z = Φ(θ, r)rs + σ2
we, (4)

where Φ(θ, r) = [a∗(θ1, r1) ⊗ a(θ1, r1), . . . , a∗(θK , rK) ⊗
a(θK , rK)] ∈ CM2

×K (the notation ⊗ denotes the Kronecker
product), rs = [σ2

s,1, . . . ,σ
2
s,K ]T ∈ CK×1, and e = vec(IM ).

In practice, the vector z containing the statistical correlations
is approximated using the measurements from (3).
The matrix Φ depends on the unknown variables (θ, r).

By discretizing the θ-interval and r-interval using a known
sampling grid, we can cast the joint DOA-range estimation
problem as a sparse reconstruction problem. However, such
a two-dimensional gridding results in a very huge dictionary
and increases the complexity. In this paper, we propose to
reduce the involved computational complexity by solving
two inverse problems of smaller dimension. We do this by
exploiting the spatial cross-correlation between the symmetric
sensors, and using the fact that the structure of the Fresnel
approximated model naturally decouples the DOA and range
in the correlation domain.

III. FRESNEL APPROXIMATION
Using the second order Taylor expansion of (2), we get the

so-called Fresnel approximation, which is given by

rm,k ≈ rk −mδ sin θk +m2δ2
cos2 θk
2rk

.

We can now approximate τm,k ≈ 2π
λ
(rm,k − rk) as

τm,k = −m
2πδ

λ
sin(θk) +m2πδ

2

λrk
cos2(θk)

= mωk +m2φk (5)

where we re-parameterize the DOA and range, respectively as
ωk = − 2πδ

λ
sin(θk) and φk = πδ2

λrk
cos2(θk). Substituting τm,k

in (1), we get

ym(t) ≈
K
∑

k=1

sk(t)e
j(mωk+m2φk) + wm(t).

This approximation is reasonable when the sources are in the
Fresnel region.

IV. TWO-STEP ESTIMATOR WITH GRID MATCHING

The spatial correlation between the mth and nth sensor
based on the Fresnel approximation can be written as
ry(m,n) = Et{ym(t)y∗n(t)}

=
K
∑

k=1

σ2
s,ke

j(m−n)ωk+j(m2
−n2)φk + σ2

wδ(m− n)

where δ(.) represents the Dirac function. Notice that when n =
−m the spatial correlation is independent of the parameter
φk [5], and we arrive at

ry(−m,m) = Et{y−m(t)y∗m(t)}

=
K
∑

k=1

σ2
s,ke

−2mωkj + σ2
wδ(−2m). (6)

This means that by exploiting the cross-correlation be-
tween the symmetric sensors, we can transform the original
two-dimensional (DOA and range) estimation into a one-
dimensional (DOA) estimation. Stacking (6) for all the sym-
metric sensors, we can build a virtual far-field model:

ry = Aω(θ)rs + σ2
we1, (7)

where ry = [ry(−p, p), . . . , ry(0, 0), . . . , ry(p,−p)]T ∈
CM×1, and e1 = [0T

p , 1,0
T
p ]

T ∈ CM×1, and the cor-
responding virtual array gain pattern for the kth source
denoted by aω(ωk) can be expressed as aω(ωk) =
[e−j2pωk , . . . , 1, . . . , ej2pωk ]T ∈ CM×1, with the array man-
ifold Aω(θ) = [aω(θ1), . . . , aω(θK)] ∈ CM×K . In practice,
the vector ry containing the statistical correlations is approx-
imated using the measurements from (3).

A. Step-1: DOA estimation
We can construct an overcomplete basis Aω with Nθ po-

tential source directions-of-arrival (DOAs) using the sampling
grid θ̄ = [θ̄1, θ̄2, . . . , θ̄Nθ

]T of resolution τθ , i.e.,

Aω(θ̄) = [aω(θ̄1), . . . , aω(θ̄Nθ
)] ∈ C

M×Nθ ,

where ω̄n = − 2πδ
λ sin(θ̄n) for all n ∈ {1, . . . , Nθ} as defined

earlier. The signal is represented by an Nθ×1 vector u, where
every source can be found as a non-zero weight un = σ2

s,k

if source k comes from direction θ̄n for some k and is zero
otherwise. The discrete grid-based model in the correlation
domain is then given by

ry = Aω(θ̄)u+ σ2
we1. (8)

Note that the number of potential source DOAs Nθ will
typically be much greater than the number of sensors M ,
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and the model in (8) is ill-posed. However, assuming that the
spatial spectrum is sparse, we can solve for the unknown vec-
tor u using an )1-regularized least-squares (LS) minimization
problem which is given by

û = arg min
u

‖ry −Aω(θ̄)u‖
2
2 + µ‖u‖1, (9)

where µ is the sparsity regulating parameter. However, the
model in (8) is exact, only when the targets are located
exactly on the sampling grid, which otherwise significantly
deteriorates the performance of the estimator.
The accurate model is expressed using an unknown pertur-

bation α = [α1, . . . ,αNθ
]T around the sampling grid as

ry = Aω(θ̄ +α)u+ σ2
we1, (10)

with −0.5τθ ≤ αn ≤ 0.5τθ for n = 1, . . . , Nθ. Using the
first-order Taylor expansion around the sampling grid θ̄, we
arrive at

Aω(θ̄ +α) = Aω(θ̄) +Dω∆α, (11)

where Dω = [∂aω(θ̄1)
∂θ̄1

, . . . ,
∂aω(θ̄Nθ

)

∂θ̄Nθ

], and ∆α = diag(α).
Using the approximation (11) in (10) we have

ry = (Aω(θ̄) +Dω∆α)u+ σ2
we1. (12)

As earlier, assuming that the spatial spectrum is sparse, the
unknown u and α can be solved using

arg min
u,α

‖ry − (Aω(θ̄) +Dω∆α)u‖
2
2 + µ2‖u‖1,

s.t. ∆α = diag(α),u ≥ 0,

− 0.5τθ ≤ αn ≤ 0.5τθ, n = 1, . . . , Nθ.

(13)

The optimization problem in (13) is non-convex, however,
can be solved using alternating minimization [6] using the
following iterations

u[i+ 1] = arg min
u

‖ry − (Aω(θ̄) +Dω∆α[i])u‖
2

2
+ µ2‖u‖1,

s.t. ∆α[i] = diag(α[i]),u ≥ 0, (14a)
α[i+ 1] = arg min

α

‖ry − (Aω(θ̄) +Dω∆α)u[i+ 1]‖
2

2
,

s.t. ∆α = diag(α),

− 0.5τθ ≤ αn ≤ 0.5τθ , n = 1, . . . , Nθ , (14b)

where we initialize α[0] = 0Nθ
.

Alternatively, by letting uθ = u)α (the notation ) denotes
the elementwise Hadamard product), we can formulate a joint
sparse recovery problem [7], [8] to solve the inverse problem
in (12), and the resulting convex optimization problem is given
as

arg min
x

‖ry −Aω(θ̄)u −Dωuθ||
2
2 + µ3‖x‖2,1,

s.t. x = [uT ,uT
θ ]

T ,u ≥ 0,

− 0.5τθ ≤ αn ≤ 0.5τθ, n = 1, . . . , Nθ,

(15)

where ‖x‖2,1 =
Nθ
∑

n=1

√

u2
n + u2

n,θ with u = [u1, . . . , uNθ
]T ,

and uθ = [u1,θ, . . . , uNθ,θ]
T .

B. DOA correction
Let θ̂ collect the estimated DOAs from step-1, and K̂

denote the number of detected DOAs. Every estimated DOA
suffers from the Fresnel approximation error along with the
estimation error. We next refine the estimated DOA from
step-1 by solving an NLS problem to minimize the Fresnel
approximation error.
Using the DOA estimates in the Fresnel approximated delay

in (5), we have,

τm,k = −m
2πδ

λ
sin(θ̂k) +m2πδ

2

λrk
cos2(θ̂k), k ∈ {1, . . . , K̂}.

We eliminate the unknown rk by considering the difference
delay between the mth and −mth sensor, i.e.,

bm(θ̂k) = τ−m,k − τm,k = 2m
2πδ

λ
sin(θ̂k).

Let the corresponding true difference delay be fm(θk, rk) =
2π
λ (r−m,k − rm,k). Collecting fm(θk, rk) for all m ∈ [−p, p]
we get the following non-linear equations

f(θk, rk) = b(θ̂k), (16)

where f(θk, rk) = [f−p(θk, rk), . . . , fp(θk, rk)]T ∈ RM , and
b(θ̂k) = [b−p(θ̂k), . . . , bp(θ̂k)]T ∈ RM .
By discretizing the range into Nr bins of resolution τr we

have a range grid r̄ = [r̄1, . . . , r̄Nr
]T ∈ RNr . For a fixed point

in the range grid and for every detected DOA from step-1, we
can solve (16) using an NLS estimator, i.e.,

θ̌k,n = argmin
θk

‖f(θk, r̄n)− b(θ̂k)‖
2

2, (17)

for k ∈ {1, . . . , K̂}, and n ∈ {1, . . . , Nr}. The non-linear
optimization problem in (17) can be solved using Gauss-
Newton’s method initialized with the estimate from step-1.
For estimating the range, we use the sampling grid (θ̌, r̄) =
{(θ̌1,1, r̄1), (θ̌2,1, r̄1), . . . , (θ̌K̂,1, r̄1), . . . , (θ̌K̂,Nr

, r̄Nr
)}.

C. Step-2: range estimation
Using the sampling grid (θ̌, r̄) in (4), we form an overcom-

plete basis Φ(θ̌, r̄) ∈ CM2
×K̂Nr to arrive at

z = Φ(θ̌, r̄)p+ σ2
we, (18)

where the signal is represented by a K̂Nr × 1 vector p. The
source DOA-range pair can be found as a non-zero weight of
p, by solving the optimization problem

p̂ = arg min
p

‖z−Φ(θ̌, r̄)p‖
2

2 + µ4‖p‖1. (19)

However, there is no reason to believe that the targets are
located exactly on the assumed range grid r̄. The accurate
model is expressed using an unknown perturbation β =
[β1, . . . ,βNr

]T around the sampling grid as

z = Φ(θ̌, r̄+ β)p+ σ2
we,

with −0.5τr ≤ βn ≤ 0.5τr for n = 1, . . . , Nr. We can now
use the Taylor expansion as earlier to arrive at

z = (Φ(θ̌, r̄) +D∆β)p+ σ2
we, (20)
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Fig. 2: Ignoring the grid mismatch: Sources located in the near-field
at (50.4◦, 2.4λ) and Fresnel region at (−20.6◦, 6.2λ).

where D = [∂Φ(θ̌1,r̄1)
∂r̄1

, . . . ,
∂Φ(θ̌

K̂
,r̄1)

∂r̄1
, . . . ,

∂Φ(θ̌
K̂
,r̄Nr )

∂r̄Nr

] ∈

CM2
×K̂Nr , and ∆β = diag(β ⊗ 1K̂). Assuming that the

spatial spectrum is sparse as earlier, the unknown p and β
can be solved using the alternating minimization technique as
in (14) or the joint sparse recovery technique as in (15).

V. SIMULATIONS
We consider a ULA with M = 15 sensors placed such

that the inter-sensor spacing is δ = λ/4, where λ represents
the wavelength of the narrowband source signals. For such
an array with D = 3.5λ, the near-field region is within 4.1λ,
the Fresnel region is between 4.1λ and 24.5λ, and the far-field
distance is beyond 24.5λ. We consider two sources, one in the
near-field region at (50.4◦, 2.4λ) and the other in the Fresnel
region at (−20.6◦, 6.2λ). The SNR is 0 dB with T = 500
snapshots. The sampling grid has a resolution of τθ = 1◦ and
τr = λ. The chosen sampling grid does not include the two
sources. The optimization problems in the proposed algorithms
are solved using CVX [9]. The regularization parameters are
chosen via cross-validation.
In Fig. 2, we ignore the mismatch effect, and estimate the

DOA and range as if the targets are on the assumed grid.
Source localization using the two-dimensional MUSIC [2] is
based on the true model in (3) with T = 500 (without the
Fresnel approximation). We solve (9) to estimate the DOA
in step-1, and this is used directly without any correction
to estimate the range. More specifically, we solve (19) with
Φ(θ̂, r̄). Alternatively, the estimated DOA obtained from step-
1 is corrected by solving (17), and then the range is estimated
by solving (19). This alleviates the Fresnel approximation error
resulting in localization with a higher resolution compared to
the MUSIC algorithm even at low SNRs. The energy leakage
due to the grid mismatch can also be seen in Fig. 2.
In Fig. 3 and Fig. 4, we account for the off-grid sources. In

Fig. 3, we use θ̂ directly from step-1 to estimate the range in
step-2 without any correction, i.e., the dictionary in (20) will
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Fig. 3: Grid matching: sources located at (50.4◦, 2.4λ) and
(−20.6◦, 6.2λ). The estimated DOA from step-1 is used for range
estimation without any correction.
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Fig. 4: Grid matching: sources located at (50.4◦, 2.4λ) and
(−20.6◦, 6.2λ). The estimated DOA from step-1 is refined, and it
is then used for range estimation.

be Φ(θ̂, r̄). In Fig. 4, we correct the DOA by solving (17),
which is then used for range estimation. The effect of the DOA
correction is more significant when the sources are in the near-
field rather than in the Fresnel region. The estimators based
on alternating minimization have typically slow convergence
as compared to the convex joint sparse estimators.
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