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Design sparse space/time samplers

2/17



Sparse sensing

Why sparse sensing?

- Economical constraints (hardware cost)

- Limited physical space

- Limited data storage space

- Reduce communications bandwidth

- Reduce processing overhead
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Sparse sensing

What is sparse sensing?

Select the “best” subset of sensors out of the candidate sensors
that guarantee a certain desired global detection probability.

Sensor selection – prior art:

Estimation
- convex optimization: design {0, 1}M selection vector

[Joshi-Boyd-09], [Chepuri-Leus-13]

Detection
- likely to lead to a local optimum
[Cambanis-Masry-83], [Yu-Varshney-97], [Bajovic-Sinopoli-Xavier-11]
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Distributed detection

Observations are related to

H0 : xm ∼ pm(x |H0), m = 1, 2, . . . ,M

H1 : xm ∼ pm(x |H1), m = 1, 2, . . . ,M

Φ =

{0,1}
︷ ︸︸ ︷

diagr(w) x

=

y
- Sensor placement

- Antenna selection

- Sample selection

- Data compression

diagr(·) - diagonal matrix with the argument on its diagonal but with the

zero rows removed.
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Sparse sensing for distributed detection

Classical setting

arg min
w∈{0,1}M

‖w‖0

s.to Pf (w) ≤ α,Pm(w) ≤ β

Pm = 1− P(Ĥ = H1|H1)

Pf = P(Ĥ = H1|H0)

Bayesian setting

arg min
w∈{0,1}M

‖w‖0

s.to Pe(w) ≤ e

π0, π1 prior probabilities

Pe = π0Pf + π1Pm

Error probabilities (in general) do not admit expressions
suitable for numerical optimization.
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Performance measures

Weaker measures can be used instead

Kullback-Liebler distance for the classical setting
→ D(H1‖H0) = E|H1

{log l(y)}
→ upper & lower bounds Pm for fixed Pf

Bhattacharyya distance (a special case of Chernoff inform.)
for the Bayesian setting

→ B(H1‖H0) = − logE|H0
{
√

l(y)}
→ upper & lower bounds Pe

These distances are suitable for offline designs
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Independent observations

Assuming conditionally independent observations

KL distance:

D(H1‖H0) = E|H1
{log l(y)}

=
M∑

m=1

wm E|H1
{log lm(x)}

︸ ︷︷ ︸

Dm

Bhattacharyya distance:

B(H1‖H0) = − logE|H0
{
√

l(y)}

=
M∑

m=1

wm

(

− logE|H0
{
√

lm(y)}
)

︸ ︷︷ ︸

Bm

lm(x) =
pm(x|H1)
pm(x|H0)

local likelihood ratio

8/17



Solver

Linear program with explicit solution

argmin
w

‖w‖0

s.to

M∑

m=1

wmdm ≥ λ,

wm ∈ {0, 1},m = 1, 2, . . . ,M,

Hint: sorting

Classical setting dm := {Dm}Mm=1

Bayesian setting dm := {Bm}Mm=1

The best subset of sensors:
sensors with largest average log/root local likelihood ratio.
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Gaussian detection

Suppose

H0 : x ∼ N (θ0, σ
2I) vs. H1 : x ∼ N (θ1, σ

2I)

Kullback-Leibler and Bhattacharyya distance measures are the
same up to a constant.

Distance measure

d(w) =
1

σ2
(θ1 − θ0)

Tdiag(w)(θ1 − θ0)

is simply the scaled signal-to-noise ratio
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Illustration – Gaussian detection

Sensor selection is optimal in terms of error probabilities
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Dependent (Gaussian) observations

Suppose

H0 : x ∼ N (θ0,Σ) vs. H1 : x ∼ N (θ1,Σ)

Distance measure

d(w) = (Φm)TΣ−1(w)(Φm)

is no more linear in w.

Φ = diagr(w)
m = θ1 − θ0

Σ−1(w) =
(
ΦΣΦT

)
−1
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Dependent (Gaussian) detection

Express

Σ = aI+ S for any a 6= 0 ∈ R such that S ≻ 0

Constraint
d(w) ≥ λ

is equivalent to





S−1 + a−1diag(w) S−1m

mTS−1 mTS−1m− λ



 � 0,

an LMI —linear/convex in w.

Hint: use matrix inversion lemma and ΦTΦ = diag(w)
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Solver – dependent case

SDP problem based on ℓ1-norm heuristics:

argmin
w

1Tw

s.to





S−1 + a−1diag(w) S−1m

mTS−1 mTS−1m− λ



 � 0,

0 ≤ wm ≤ 1, m = 1, . . . ,M .
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Is correlation good or bad?

Equicorrelated Gaussian observations
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Non-identical observations

Required # of sensors reduce significantly as they become
more coherent
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Conclusions

Design space/time sparse samplers
extend Nyquist-based classical sensing techniques

Fundamental statistical inference problems:
Estimation, filtering, and detection

Applications in networks:
environmental monitoring, location-aware
services, spectrum sensing,. . .
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Thank You!!

For more on sparse sensing for statistical inference, see:
http://cas.et.tudelft.nl/∼sundeep
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