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Roadmap

q Introduction and context

q Signal processing on graphs

q Signal reconstruction

q Multi-domain (tensor) signal reconstruction

q Covariance estimation

q Sparse sampler design

q Graph learning 

q Conclusions, Q&A
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How to optimally deploy sensors?

Frozen metal plate with cavity
excited with two hotspots
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3D point clouds (Kinect, LiDAR) Recommender systems

Temperature on Earth’s surface

Se
ns

or
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et
w

or
k

Time series

Sensing networks

Social networkMovies graph

Design sparse samplers taking into account the underlying topology
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uncompressed
signal

compressed
signal

sparse sampling yx

Given y estimate x

K ⌧ N

N ⇥ 1 K ⇥ 1

Sparse sampling on irregular domains
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Graph-based inference
graph spectrum

Cognitive radio
frequency spectrum

Radar
Doppler + angular spectra

Radio astronomy
spatial spectrum

Design sparse samplers taking into account the data structure
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Sparse sampling on irregular domains

uncompressed
stationary signal

Sparse sampling yx

Given Ry or several realizations of y estimate Rx

compressed
signal



Ø Sampling matrix is determined by the sampling vector/set

Ø Sparse sampling structure
Ø only one nonzero entry per row
Ø many zero columns

What is sparse sampling?

y x
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w = [w1, w2, . . . , wN ]T 2 {0, 1}N S = {n|wn = 1, n = 1, 2, . . . , N}

wm = (0)1 sample or vertex is (not) selected

or

�(w) 2 {0, 1}K⇥N



Why sparse sampling?

Ø Economical constraints (hardware cost)

Ø Limited physical space

Ø Limited data storage space

Ø Reduce communications bandwidth 

Ø Reduce processing overhead 
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Today’s plan

1. Reconstruction of signals and second-order statistics from subsampled 
measurements by taking into account the domain on which the data is 
defined as a prior information

2. Efficient near-optimal methods to design sparse samplers
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We will cover the following two aspects:
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Signal Processing on Graphs

• D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field
of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.

• A. Sandryhaila and J. M. Moura, “Big data analysis with signal processing on graphs:
Representation and processing of massive data sets with irregular structure,” IEEE Signal
Process. Mag., vol. 31, no. 5, pp. 80–90, 2014.



Sensing networks 
- temp., pressure, air quality monitoring

Signals and random processes on graphs

Transport networks 
- # vehicles crossing a junction

Brain networks 
- fMRI time series, EEG signals
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Graphs and graph signals
Ø Datasets with irregular support can be represented using a graph 

Graph signal
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Ø

Ø

Ø

Ø

G = (V, E)

• V is the set of nodes

• E is the set of edges

• x 2 RN represents the graph signal

Graph is represented using the matrix S 2 RN⇥N

S could be graph Laplacian, adjacency matrix, or ...

[S]i,j is nonzero only if i = j and/or (i, j) 2 E

N = 10

S is referred to as the graph-shift operator



Graph Laplacian
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4

2

13

0
L = D �A

=

2

66664

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 1

3

77775
�

2

66664

0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 1
0 0 0 1 0

3

77775

Ø

Ø

L = U⇤UH

= [u1, · · · ,uN ] diag(�1, · · · ,�N ) [u1, · · · ,uN ]H

0 = �1  �2  · · ·  �N

diagonal degree matrix adjacency matrix
For an undirected graph, L is symmetric

L1 = 0, so



Frequency interpretation of the eigenvectors (viewed as signals on graphs)

DC (no zero crossing)            two zero crossings five zero crossings

Sign transitions of eigenvectors increase with eigenvalues

Graph Laplacian - eigenmodes
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...

u1 u2
u5

U =

2

66664

�0.4472 �0.2560 0.7071 0.2422 �0.4193
�0.4472 �0.4375 0 �0.7031 0.3380
�0.4472 �0.2560 �0.7071 0.2422 �0.4193
�0.4472 0.1380 0 0.5362 0.7024
�0.4472 0.8115 0 �0.3175 �0.2018

3

77775

eigenvectorseigenvalues

� =

2

66664

0
0.8299

2
2.6889
4.4812

3

77775



Fourier-like orthogonal basis 
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L = U⇤UH

= [u1, · · · ,uN ] diag(�1, · · · ,�N ) [u1, · · · ,uN ]H

Fourier-like basis for the graph Spectrum of the graph

S

Ø Holds for graph Laplacians and adjacency matrices
Ø Frequency interpretation based on zero crossings or total variation

Ø For undirected graphs
Ø Eigenvalues are all real (graph-shift operator is symmetric)

Ø

Ø Eigenvalues occur in complex conjugate pairs
For directed graphs with normal S



Time-domain as a graph

Ø The DFT and the traditional frequency grid is obtained by the adjacency 
matrix of the cycle graph

Ø Any circulant graph in principle leads to the DFT as the graph Fourier 
transform

17



Fourier-like basis on meshes
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(Laplace’s) spherical harmonics

Fourier-like oscillating modes of the metal plate with cavity



Graph Fourier transform
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xf := UHx , x =: Uxf

Decomposition of the (graph) signal x 2 RN w.r.t. the orthonormal basis U
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Field distribution

x is the field values measured at mesh points

(analysis) (synthesis)



Ø Graph filters (polynomial of the graph-shift operator) can be used to   
modify the frequency content of graph signals

Ø Vertex-domain vs. frequency-domain implementation

Ø No fast GFT implementations

Ø Parametrized filter implementation in the vertex-domain is possible

Graph filters
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H =
P

L�1
l=0 hlS

l = U

⇣P
L�1
l=0 hl⇤

l

⌘
U

H = Udiag(hf )U
H

Vertex-domain implementation: y = Hx

Frequency-domain implementation: yf = diag(hf )xf

Shift invariant: HS = SH and distributable: xl = Sxl�1



Ø Graph filters (polynomial of the graph-shift operator) can be used to   
modify the frequency content of graph signals

Graph filters
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H =
P

L�1
l=0 hlS

l = U

⇣P
L�1
l=0 hl⇤

l

⌘
U

H = Udiag(hf )U
H

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Spectrum of noisy observations
Desired (noisefree) spectrum

-1

-0.5

0

0.5

1

Denoising example:

Laplacian eigenvalues

Sp
ec

tru
m



22

Graph Signal Sampling

• S.P. Chepuri, Y. Eldar and G. Leus. Graph Sampling With and Without Input Priors. In Proc. of 
the International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2018), 
Calgary, Canada, April 2018. 

• S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, “Discrete signal processing on graphs: 
Sampling theory,” IEEE TSP, vol. 63, no. 24, pp. 6510–6523, Dec. 2015.

• D. Romero, M. Ma, and G.B. Giannakis. Kernel-Based Reconstruction of Graph Signals, IEEE 
TSP, vol. 65, no. 3, pp. 764–778, Feb 2017. 

• A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph signals with 
successive local aggregations,” IEEE TSP, vol. 64, no. 7, pp. 1832–1834, Arp. 2016.



Sparse graph sampling
CHEPURI AND LEUS: SPARSE SENSING FOR DISTRIBUTED DETECTION 3

y

=

Φ(w) = diagr(w) x ∼ p(x| Hi)

Fig. 1: Discrete sparse sensing scheme for distributed detection. Here, a
white (black) and colored square represents a one (zero) and an arbitrary
value, respectively.

where the variable wm = (0)1 indicates whether the mth
sensor is (not) selected. More specifically, we define the
sensing matrix Φ(w) = diagr(w) ∈ {0, 1}K×M , to acquire
the data as

y = diagr(w)x = Φ(w)x,

where K is not assumed to be known. Note that we are
interested in cases where K ≪ M . The reduced dimension
data vector y ∈ RK is used instead of x ∈ RM to solve the
detection problem. In this paper, we seek a sparsest w, i.e., a
vector with many zeros and just a few non-zero entries, such
that a prescribed global detection performance is achieved.
Due to the construction of Φ(w), we label the resulting
deterministic and structured sensing scheme as sparse sensing;
see the illustration in Fig. 1. Such a sparse sensing matrix
enables a completely distributed compression and sampling,
which are instrumental to distributed detection. Furthermore,
it leads to possible reductions in the hardware costs, as well
as processing and communications overhead.
Sparse sensing differs from the broad research area of

compressive sensing —state of the art in the field of sensing
cost reduction [21]. In compressive sensing, the underlying
signal is always considered sparse in some domain and the
goal is sparse signal reconstruction. On the other hand for
sparse sensing, the underlying signal does not necessarily have
to be sparse and other signal processing tasks (including sparse
signal reconstruction [22]) can be considered. Furthermore,
in compressive sensing, the compression is generally random,
which introduces robustness, but might limit the maximum
amount of compression if a specific signal processing task
needs to be carried out. Sparse sensing, on the other hand, is
a deterministic type of data compression, where the sparse
vector inside the sensing function gives a handle on the
compression that can be used for optimally designing the
sensing process.
Let Ĥ denote an estimate of the state of nature H, based

on a certain decision rule. In the Neyman-Pearson setting, the
optimal detector minimizes the probability of miss detection
(type II error),

Pm = Pr(Ĥ ≠ H1|H1)

for a fixed probability of false alarm (type I error),

Pf = Pr(Ĥ = H1|H0).

This is the well-known Neyman-Pearson detector. In the
Bayesian setting, given the prior probabilities πi = Pr(Hi)
for i = 0, 1, the optimal detector minimizes the Bayesian error
probability,

Pe = Pr(Ĥ ≠ H) = π0Pf + π1Pm,

or more generally, the detector minimizes the Bayes’ risk.
Having introduced the data model, we now formally state the
design problem of interest.

Problem 1 (Sparse sampler design). Given the data model (1),
design a sparsest Boolean vectorw that results in a prescribed
(i) Bayesian probability of error, Pe, in the Bayesian

setting, or
(ii) probability of miss detection, Pm, for a fixed prob-

ability of false alarm, Pf , in the Neyman-Pearson
setting.

Mathematically, the sparse sensing problem for distributed
detection can be formulated as

P-B : argmin
w∈{0,1}M

∥w∥0

s.to Pe(w) ≤ e; (2a)

P-N : argmin
w∈{0,1}M

∥w∥0

s.to Pf (w) ≤ α, and Pm(w) ≤ β, (2b)

where e, α and β are, respectively, the desired Bayesian
probability of error, maximum false-alarm rate and miss-
detection rate. Here, Pe(w), Pf (w), and Pm(w) denote the
error probabilities due to the selected sensor subset indicated
by the non-zero entries of w. When prior probabilities are
available, we solve P-B (P denotes problem and B denotes
Bayesian), otherwise in the Neyman-Pearson setting we solve
P-N (N denotes Neyman-Pearson).
In order to ease the design, we next discuss some perfor-

mance measures that can substitute the error probabilities in
the above optimization problems.

III. OPTIMALITY CRITERIA

The error probabilities Pe, Pm or Pf might not admit a
known closed-form expression or their expressions might not
be favorable for numerical optimization. In this section, we
will discuss several weaker and simpler substitutes, which
can be optimized instead of the error probabilities. These
substitutes are based on the notion of distance (closeness or
divergence) between the two distributions of the observations
under test. They lead to tractable, if not always optimal (in
terms of the error probabilities) design procedures for sam-
pler design. Nevertheless, optimizing the distance measures
improves the performance of any practical system.
Let the likelihood ratio of the two hypotheses under test be

defined as

l(y) =
p(y| H1)

p(y| H0)
.

y graph signal

23

x

Given y estimate x signal: 3D points, which are displacements 
of graph nodes

� 2 {0, 1}K⇥N

K ⌧ N



Bandlimited graph signals – subspace prior
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N ⇥ L

L⇥ 1(N ⌧ L)
Suppose the support of the sparse xf is known

x
f
[d
B
]

Total number of points

x = Uxf =
⇥
UBL ?

⇤  x̃f

0

�
, x = UBLx̃f

x 2 range(UBL) —a known L-dimensional subspace



Bandlimited graph signals – subspace prior
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Least squares solution:

With sparse sampling, we get K equations in L unknowns

If the matrix �UBL has full column rank, i.e, range(UBL) \ null(�) = {0}:

b̃xf = (�UBL)
†y

y = �x = �UBLx̃f

Design of     crucial for the least-squares solution to be unique�



Ø

Ø

Ø A more interesting case, perhaps is, when the support is not known!

Bandlimited graph signals – subspace prior
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With sparse sampling, we get K equations in L unknowns

y

x

range(UBL)

Oblique projection of x onto the range(UBL) and along the null(�)

x̂ = UBL(U
H

BL�
T�UBL)

�1UH

BL�
T�x = EUBL�?x

�

�?

y = �x = �UBLx̃f

x̂



Reconstruction with smoothness prior
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Ø Assume x is smooth with respect to the underlying graph or has small

xTLx =
X

(i,j)2E

(xi � xj)
2

0 1 2

4

3

0

0

01

0 0 1

1

1

x :
xTLx =

X

(i,j)2E

(xi � xj)
2

= 1

Sum of squares of differences 
across edges

(graph signal)



Reconstruction with smoothness prior
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Ø When the prior subspace is not known, 
we can be consistent (cf. interpolation)

Ø

Ø Equality constrained quadratic program

Assume x is smooth with respect to the underlying graph or has small

�x = �x̂

minimize
x

1

2
xHLx subject to �x = y

Solution:


L+�T� �T

� 0

� 
x
�

�
=


�Ty
y

�

If null(L) \ null(�) = {0}, then x̂ = L̃(�L̃)�1y

L̃ = (L+�T�)�1�T
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Sampling via graph filtering

Ø

Ø Sampling and interpolation operations can be implemented via graph filters

Ø Subspace prior

Ø Smoothness prior

29

Suppose sampling operator collects the first K contiguous frequencies

x̂ = H interpHsampx.

H interp = UBLHf,interpU
H

BL H
�1
f,interp = U

H

BLHsampUBL (diagonal)

Sparse sampling in spectral domain:

diagonal matrix

� = EKU
H ) Hsamp = �H� = UE

T

K
EKU

H

H interp = U(⇤+E
T

K
EK)�1

U
H

Hf,samp = E
T
K [EK(⇤+E

T
KEK)�1

E
T
K ]�1

EK (diagonal)

EK = [eT1 , · · · , eTK ]T 2 {0, 1}K⇥N



Numerical experiments
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Graph (K-nearest neighbor) Original signal (3D points)

N = 1502, K = 600, K/N ⇡ 40% compression



Numerical experiments
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Original signal

Subspace prior Smoothness prior

N = 1502, K = 600, K/N ⇡ 40% compression



Kernel-based reconstruction
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Ø Popular within machine learning for nonlinear function estimation

Ø Kernel methods seek an estimation of a function in a reproducing kernel 
Hilbert space (RKHS)

Ø Any graph signal can be assumed to be in RKHS

Kernel map k : V ⇥ V ! R

H =

{
x : x(v) =

N∑

n=1

αnk(v, vn), αn ∈ R
}

k(vn, vm) measures similarity between signal values at vn and vm

x = K↵

[K]n,m = k(vn, vm)

basis functions



Kernel-based reconstruction
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RKHS inner product of

RKHS-based function estimator can be used to reconstruct signals

x(v) =
PN

n=1 ↵nk(v, vn) and x0(v) =
PN

n=1 ↵
0
nk(v, vn)

x̂ = K↵

↵̂ = argmin↵2RN L(y,�K↵) + µ↵TK↵

hx, x0iH =
PN

n=1

PN
n=1 ↵n↵0

nk(vn, v
0

n) = ↵0TK↵

Or, equivalently

x̂ = argminx2H L(y,�x) + µxTK†x

L(·) is a loss function

promotes smoothness

↵TK↵ = ↵TKK†K↵



Kernel-based reconstruction – ridge regression

Ø Parameterization via representer theorem

Terms corresponding to unobserved vertices play no role in kernel expansion

Ø Kernel ridge regression

34

x̂ = K↵ = K�T ↵̄ ↵̄ 2 RK

ˆ̄↵ = argmin↵̄2RK L(y, K̄↵̄) + µ↵̄T K̄↵̄ K̄ = �K�T

ˆ̄↵ = arg min
↵̄2RK

1

K
ky � K̄↵̄k2 + µ↵̄T K̄↵̄

= (K̄ + µKI)�1y

x̂ = K�T (K̄ + µKI)�1y

• D. Romero, M. Ma, and G.B. Giannakis. Kernel-Based Reconstruction of Graph Signals, IEEE 
TSP, vol. 65, no. 3, pp. 764–778, Feb 2017. 



Kernel-based reconstruction
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Choice of kernels

Ø Graph bandlimited kernels

Ø Other topology-based kernel (promotes smooth signal estimates)

x = Uxf =
⇥
UBL ?

⇤  x̃f

0

�
, x = UBLx̃f

K = r†(L) = Ur†(⇤)UT

Diffusion kernel: r(�) = exp{�2�/2}

p-step random walk kernel: r(�) = (a� �)�p, a � 2

Laplacian (regularization) kernel: r(�) = 1 + �2�

r : R ! R+

K�T = UBL



Numerical experiments
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Numerical Results

Static field example (0)
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Ø

Ø

Ø

Ø

Ø

• M. Coutino, S.P. Chepuri and G. Leus. Subset Selection for Kernel-based Reconstruction. In Proc. of the International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP 2018), Calgary, Canada, April 2018. 

[Coutino-Chepuri-Leus-2018]



Numerical Results

Static field example (1)
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Numerical Results

Static field example (1)
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Numerical Results
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No subsampling (N=97)

Measured 67 out of 97 mesh points



Diffusion processes on networks
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Diffusion on networks

Can we reconstruct a graph signal from
observations at a single node?



Linear dynamics on networks
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Linear network dynamics
Ø Information flow to a node from its neighbors

Ø

sample node i

ei is the ith column of the identity matrix

uk�1 = �[k] (Kronecker delta)

Given observations y = {y0, . . . , yK�1} estimate x

xk = Sxk�1 + xuk�1

yk = eTi xk

x�1 = 0 and x0 = x

K is the number of shifts applied



Linear dynamics on networks
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Ø At the observed node

y =

2

6664

eT
i

eT
i
S
...

eT
i
SK�1

3

7775
x =

2

6664

eT
i

eT
i
U⇤UH

...
eT
i
U⇤K�1UH

3

7775
x

= V diag[u]UHx = V diag[u]xf

u = eTi U and [V ]i,j = �i�1
j (Vandermonde)

Spectral response

• A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph signals with successive
local aggregations,” TSP 2016.

[Marques et al.-2016]



Linear dynamics on networks

41

Ø

Ø The observations at node i will then be 

Ø

Suppose the support of the sparse xf is known

If the matrix V BL has full column rank, which requires K � L:

b̃xf = V †
BLyLeast squares solution:

y = V diag[u]xf = V diag[u]ELx̃f = V BLx̃f

EL = [e1, · · · , eL]

x = Uxf =
⇥
UBL ?

⇤  x̃f

0

�
, x = UBLx̃f

Recall bandlimitedness: 

# of shifts

K equations in L unknowns



Numerical experiments
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Ø Although reconstruction possible by observing a single node, system gets 
quickly ill conditioned (very sensitive to noise).
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Product Graph Sampling

• G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus. Sampling and Reconstruction of 
Signals on Product Graphs. GlobalSIP 2018, Anaheim, USA. (available on arXiv:1807.00145).

• G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus. Sparse Sampling for Inverse 
Problems with Tensors. IEEE TSP (under review), June 2018. (available as arXiv:1806.10976).
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uncompressed
signal

compressed
signal

sparse sampling yx

Given y estimate x

K ⌧ N

N ⇥ 1 K ⇥ 1

Sparse sampling on multigraph domains
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w
or

k

Time series

Movie graph Social network

Dynamic 3D point cloud 



Product graphs
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G1 = (V1, E1)

G2 = (V2, E2)

G⇧ = (V1 ⇥ V2, E⇧)

N1 nodes

N2 nodes
§ Cartesian product (colored edges)

§ Kronecker product (gray edges)

§ Strong product (all edges)  

Ø

Ø

S1 = U1⇤1U
H

1 2 RN1⇥N1 S2 = U2⇤2U
H

2 2 RN2⇥N2

The product graph G⇧ has the graph-shift operator

S⇧ = (U1 ⌦U2)⇤⇧(U1 ⌦U2)
H 2 RN⇥N

⇤⇧ is a diagonal matrix that depends on G1 and G2, and the type of product

N = N1N2 nodes

Let us represent G1 and G2 with the graph-shift operators

and



Product graph signals: The sampling problem
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N1 nodes

N2 nodes

X 2 RN1⇥N2

product graph signal

uncompressed
signal

compressed
signal

sparse sampling
X Y = �1X�T

2

Given Y estimate X

�1 and �2
N1 ⇥N2 K1 ⇥K2



Product graph signal 
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N1 nodes

N2 nodes

X 2 RN1⇥N2

product graph signal

Product graph signal X may be decomposed w.r.t. U1 and U2 asØ

X = U1XfU
T
2 , x = (U1 ⌦U2)xf (synthesis)



Multilinear extension
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More generally, forRth-order product graph, we have a graph (tensor) signal

X = Xf •1 U1 •2 U2 · · · •UR , x = (U1 ⌦U2 · · ·⌦UR)xf

X 2 RN1⇥N2···⇥NR

• G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus. Sparse Sampling for Inverse Problems
with Tensors. IEEE TSP (under review), June 2018. (available as arXiv:1806.10976).



Bandlimited product graph signals
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Ø Suppose the support of the sparse xf is known

x = (U1 ⌦U2)xf =
⇥
(Ũ1 ⌦ Ũ2) ?

⇤  x̃f

0

�

X = U1XfU
T
2 =

⇥
Ũ1 ?

⇤  X̃f 0
0 0

� "
Ũ

T
2

?

#

or

L2 ⇥N2
N1 ⇥ L1

L1L2



Bandlimited product graph signals
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Ø

Ø We can reconstruct the product graph signal from subsampled observations
since

Suppose the support of the sparse xf is known

x = (U1 ⌦U2)xf =
⇥
(Ũ1 ⌦ Ũ2) ?

⇤  x̃f

0

�

X = U1XfU
T
2 =

⇥
Ũ1 ?

⇤  X̃f 0
0 0

� "
Ũ

T
2

?

#

or

L2 ⇥N2
N1 ⇥ L1

N1N2 � L1L2 and rank(Ũ1 ⌦ Ũ2) = rank(Ũ1)rank(Ũ2)



Reconstruction with subspace prior
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ˆ̃xf = [(�1U1)† ⌦ (�2U2)†]yLeast squares solution:

With sparse sampling, we get K1K2 equations in L1L2 unknowns

For unique reconstruction, we require K1 � L1 and K2 � L2

Design of �1 and �2 is crucial for the least-squares solution to be unique

y x̃fŨ1 Ũ2�1(w1) �2(w2)

K2 ⇥N2K1 ⇥N1



Numerical experiments – dynamic 3D point cloud
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Ø 1502 markers, 573 frames. Product graph has 850000 vertices

Ø We sample 500 spatial points, and 70 time frames

True Reconstructed True Reconstructed

K-nearest neighbor              cycle graph 

=



Numerical experiments – recommender system
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Movie graph (1682 movies) User graph (942 users)

Ø Product graph has about 1.6 million nodes

Ø Features used to build both the graphs (available with the dataset)

Ø Standard problem: Complete rating matrix using graph prior.

Ø Active learning: Which users to probe for which movies?

MovieLens 100k dataset



Numerical experiments – recommender system
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Movie graph 
75 movies sampled out of 1682 movies

User graph 
25 users sampled out of 942 users

MovieLens 100k dataset
L1 = L2 = 20

(a) User graph (b) Movie graph

Fig. 3: User and movie graphs. The red (black) dots represent the
observed (unobserved) vertices. Gephi visualization [28].

neighbors graphs for the user and movie relations. This way, we can
regard X as a signal living on the product of these two graphs.

The bandlimitidness of X 2 RN1⇥N2 has already been ex-
ploited to impute its missing entries [25, 26]. In our experiments we
use K1 = K2 = 20. Using this representation, we run our greedy
algorithm with L = 100, resulting in a selection of L1 = 25 user
and L2 = 75 movie vertices, i.e., 1875 vertices in the product graph.
We reconstruct our signals using (5) and (3) and compute the RMSE
of the estimation using the test mask provided by the dataset. Nev-
ertheless, since our active query method requires access to ground
truth data which is not provided in the dataset, we use GRALS [27]
to complete the matrix, and use its estimates when required.

Fig. 3, shows the proposed active query sample resulting from
the application of Algorithm 1 to solve (7). The user graph [cf.
Fig. 3a] is made out of small clusters connected in a chain-like struc-
ture, resulting in a uniformly spread distribution of observed ver-
tices. On the other hand, the movie graph [cf. Fig. 3b] is made out
of a few big and small clusters. Hence, the proposed active query
sample assigns more observations to the bigger clusters and fewer
observations to the smaller ones. We also compare the performance
of the state-of-the-art methods to that of our algorithm [cf. Table 1].
In light of these results, it is clear that a proper design of the sampling
set allows to obtain the best performance with significantly fewer ob-
served values, and using a much simpler non-iterative estimator.

5. CONCLUSIONS

In this paper, we have investigated the design of sparse samplers
for the estimation of signals that reside on the vertices of a product
graph. We have shown that by designing the sampling set using a
combination of vertices from the graph factors we can overcome the
curse of dimensionality, and design efficient subsampling schemes
that guarantee a good performance for the reconstruction of graph
signals. We have also proposed, a low-complexity greedy algorithm
to select which vertices to sample, and provided a bound for its near-
optimality with respect to the optimal subsampling set.

A. PROOF OF THEOREM 1

Proof. In order to simplify the derivations, let us introduce the no-
tation

F̄i(Si) = Fi(Vi \ Si) i = 1, 2

so that f(S) can also be written

f(S) := F1(V1)F2(V2)� F̄1(S1)F̄2(S2).

Method Number of samples RMSE

GMC [26] 80,000 0.996

GRALS [27] 80,000 0.945

sRGCNN [29] 80,000 0.929

GC-MC [30] 80,000 0.905

Our method 1,875 0.9347

Table 1: Performance on MovieLens 100k. Baseline scores are
taken from [30].

We start by proving normalization, i.e.,

f(?) = F1(V1)F2(V2)� F1(V1 \?)F2(V2 \?) = 0.

Now, recall that in [20] they proved that the frame potential set
function Fi(Li) is a monotone non-decreasing supermodular func-
tion. The complementary function F̄i(Li) = Fi(Vi \ Li) preserves
the supermodular property, but changes the monotonicity to non-
increasing. Thus, when we invert its sign to obtain �F̄i(Li) we
obtain a monotone non-decreasing submdoular function.

Furthermore, since the multiplication of two monotone non-
decreasing functions results in a monotone non-decreasing function,
and the addition of a constant preserves monotonicity, f is a mono-
tone non-decreasing set function.

Let {A1,A2} be a partition of S, with Ai ✓ Vi for i = 1, 2. To
prove submodularity of f(S) we use Definition 1. However, since
the ground set V⇧ is now partitioned into the sets V1 and V2, there
are two possible ways the elements x and y can be selected: either
they both belong to the same set, or they belong to different sets. We
prove that (8) is satisfied for both cases.

1. If x, y 2 V1, then (8) can be developed as

F̄1(A1)F̄2(A2)� F̄1(A1 [ {x})F̄2(A2)

� F̄1(A1 [ {y})F̄2(A2)� F̄1(A1 [ {x, y})F̄2(A2),

and simplifying

F̄1(A1)� F̄1(A1 [ {x}) � F̄1(A1 [ {y})� F̄1(A1 [ {x, y}).

Multiplying both sides of the inequality by �1 we get

F̄1(A1 [ {x})� F̄1(A1)  F̄1(A1 [ {x, y})� F̄1(A1 [ {y}),

which is always satisfied since F̄1 is supermodular. The same proof
holds if x, y 2 V2.

2. If x 2 V1 and y 2 V2, then (8) can be developed as

F̄1(A1)F̄2(A2)� F̄1(A1 [ {x})F̄2(A2)

� F̄1(A1)F̄2(A2 [ {y})� F̄1(A1 [ {x})F̄2(A2 [ {y}).

Extracting the common factors, we obtain
⇥
F̄1(A1)� F̄1(A1 [ {x})

⇤ ⇥
F̄2(A2)� F̄2(A2 [ {y})

⇤
� 0. (9)

Since F̄1 and F̄2 are non-increasing, we have

F̄1(A1)� F̄1(A1 [ {x}) � 0

F̄2(A2)� F̄2(A2 [ {y}) � 0.

Thus, (9) is always satisfied. The same procedure would hold for
x 2 V2 and y 2 V1, thus proving that (8) is satisfied for any S ✓ V
and x, y 2 V \ S. Therefore, f is submodular.

State-of-the-art 
matrix completion methods
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Graph Covariance Sampling

• S.P. Chepuri and G. Leus. Graph Sampling for Covariance Estimation. IEEE Journ. on Sel. 
Topics in Sig. Proc. and IEEE Trans. on Sig. and Info. Proc. over Networks, joint special issue 
on Graph Signal Processing, July 2017.



uncompressed
stationary signal

compressed
signal

compression yx

Given Ry or several realizations of y estimate Rx

spatial spectrum frequency spectrum graph spectrum

structured (Toeplitz) no apparent structure
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compression

Ø

Ø If                     : 

Compressive covariance sensing

Rx(✓) =
PQ

i=1 ✓iQi Ry(✓) =
PQ

i=1 ✓i�Qi�
T

least squares
ry = (�⌦�) ✓ ✓ = [(�⌦�) ]†ryK2 > Q

Design of     crucial for the solution to be unique�

CirculantToeplitz Banded

57

Suppose the covariance matrix Rx has a linear structure



Second-order stationarity in time

Filtering white noise:
Ø Signal is the output of an LTI filter excited with white noise

Ø The covariance matrix is diagonalized by the Fourier matrix

The process has power spectral density

58

white noise

H
n � N (0, I)

LTI  filter
second-order stationary signal

p = diag(FHRxF )



Stationary graph signals
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Filtering white noise:

Ø

Ø

LSI filter
White noise Stationary graph signal

H
n � N (0, I) x with Rx = HHH = Udiag(p)UH

The filter should be shift invariant H(Sx) = S(Hx) , H = Udiag(hf )U
H

A random graph signal x 2 RN is second-order stationary:

• N. Perraudin and P. Vandergheynst, “Stationary signal processing on graphs,” IEEE TSP, Jul. 2017. 
• A. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph  processes and spectral estimation,” IEEE TSP, Nov. 2017. 



Stationary graph signals
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Filtering white noise:

Ø

Simultaneous diagonalization:

Ø The process has power spectral density 

Remark (second-order stationarity in time):

LSI filter
White noise Stationary graph signal

H
n � N (0, I) x with Rx = HHH = Udiag(p)UH

S = U⇤UH Rx = Udiag(p)UH

A random graph signal x 2 RN is second-order stationary:

• N. Perraudin and P. Vandergheynst, “Stationary signal processing on graphs,” IEEE TSP, Jul. 2017. 
• A. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph  processes and spectral estimation,” IEEE TSP, Nov. 2017. 

Rx is a circulant matrix, which can be diagonalized by the DFT matrix



Stationary graph signals
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Ø Stationary process                   on a graph shiftx 2 RN S

Adjacency matrix
(Karate club network)

Covariance matrix Spectral domain 

Power spectrum estimation is crucial for statistical inference                      
smoothing, prediction, deconvolution



Power spectrum estimation

Estimate the power spectrum 
a. by observing a reduced subset of nodes/sensors (i.e., subsample)
b. without using spectral priors (e.g., sparsity, bandlimited with known 

support)

62

Sample 4 out of 34 nodes

structured (Toeplitz) no apparent structure



Non-parametric method
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Ø The covariance again admits a linear structure 

Ø After compression:

Ø We have       equations in      unknowns

Ø If the matrix                         has full column rank, which requires 

compression

K2 vec(Adiag(d)B) = (BT �A)d

Rx = Udiag(p)UH

Ry =
PN

i=1 pi�Qi�
T



Parametric method (moving average)

Ø Graph signal is a moving average graph process of order

with covariance matrix    

Ø We can express        as a matrix polynomial of the graph-shift operator

Covariance matching (basis expansion): 

For,           ,

Rx

degree of minimal polynomial of the graph-shift

64

x = H(h)n =
P

L�1
l=0 hlS

l
n = U

⇣P
L�1
l=0 hl⇤

l

⌘
U

H
n

L� 1

Q = min{2L� 1, N}

L = 2 Rx = h2
0I+ 2h0h1S + h2

1S
2

Rx = H(h)HH(h) = U

⇣P
L�1
l=0 hl⇤

l

⌘2
U

H



Parametric method (moving average)

Ø For a moving average graph process on an undirected graph we have 

Ø After compression:

Ø We have       equations in      unknowns

Ø If the matrix                         has full column rank, which requires 

65

Ry =
PQ�1

k=0 bk�Sk�T
compression

Rx =
PQ�1

k=0 bkS
k

Q = min{2L� 1, N}

QK2



Parametric approach (AR)
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compression

Ø For an autoregressive graph process we have (cf. Yule-Walker)

Ø After compression:

Ø We have       equations in      unknowns

Ø If the matrix                         has full column rank, which requires 

QK2



Parametric Approach (AR)

Ø The system matrix           depends on        and not only on 
Ø Solution is to devise a new type of compression scheme

ü We sample       nodes using    
ü We then sample a     -hop neighborhood of this set of nodes

Ø In the time domain, this means we observe series of      consecutive samples

67

compression
�0

compression

compression

�1

�P

x
y0

y1

yP

y0 =
PX

k=1

ak�0S
kx+�0n

=
PX

k=1

ak�0S
k�T

k yk +�0n



Illustration – Karate club network
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Sample 20 out of 34 nodes

0 5 10 15 20 25 30 35
0

0.5

1

1.5
PSD estimation from subset of nodes

True PSD
Least squares (Ns=100), K=20

Non-parametric approach

0 5 10 15 20 25 30 35
0

0.5

1

1.5
MA parametric PSD estimation from subset of nodes

True PSD
Least squares (Ns=100), K=4

Parametric approach
Sample 4 out of 34 nodes

Q = 7



Wind speed dataset 
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Autoregressive approach

11 out of 36 stations
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non-parametric approach 18 nodes
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L=6  =>  Q = 11 P = 1 



Temperature dataset 
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Generate digits
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15
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(a)
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Laplacian eigenvalues

0

0.2
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Empirical PSD
Estimated PSD moving average model 256 nodes
Estimated PSD moving average model 15 nodes

(b) (c)

Fig. 6: Sampling nearest neighbor graph built using digit 3 (16⇥ 16 pixels) from the USPS dataset. (a) Spectral covariance
matrix (only the upper left part is shown for better visibility, rest of the entries are zeroes). (b) Graph power spectrum based
on Ns = 50 image snapshots. Markers along the x-axis indicate the eigenvalues of the Laplacian matrix. (c) 25 realizations of
the generated images, which are obtained by graph filtering white noise. Here, the Q = 7 G-MA filter coefficients are obtained
by observing K = 15 pixels.

without processing the entire training set. Next, based on the
reconstructed graph power spectrum obtained by sampling
K = 15 pixels, we generate 25 graph signal realizations by
graph filtering white noise, where the frequency response of
the graph filter is simply computed as hf,n = |pn|1/2 for
n = 1, . . . , N (here, we use the absolute value because we
do not solve (31) with a nonnegativity constraint). These 25
realizations are shown in Figure 6c, where we can see that
the resulting signals have the shape of digit 3 corroborating
that the signal is (nearly) stationary on the nearest neighbor
graph, and more importantly these signals can be generated
from fewer parameters, which are estimated by observing only
a small subset of pixels.

IX. CONCLUDING REMARKS

In this paper we have focused on sampling and reconstruct-
ing the second-order statistics of stationary graph signals. The
main contribution of the paper is that by observing a signifi-
cantly smaller subset of vertices and using simple least squares
estimators, we can reconstruct the second-order statistics of
the graph signal from the subsampled observations, and more
importantly, without any spectral priors. The results provided
here generalize the compressive covariance sensing framework
to the graph setting. Both a nonparametric approach as well as
parametric approaches including moving average and autore-
gressive models for the graph power spectrum are discussed.
A near-optimal low-complexity greedy algorithm is developed
to design a sparse sampling matrix that selects the subset of
graph nodes.

APPENDIX A
LEMMA 1: RANK OF SELF KHATRI-RAO PRODUCTS

By the definition in (1), U forms an orthogonal basis and
hence has full rank. As a result, the sum a1u1+a2u2+ · · ·+
aNuN equals zero only when a1 = a2 = · · · = aN = 0.

The remainder of the proof is based on contradiction.
Assume that the matrix Ū � U = [ū1 ⌦ u1, · · · , ūN ⌦ uN ]

does not have full column rank. This means that the sum
b1(ū1 ⌦ u1) + · · ·+ bN (ūN ⌦ uN )

= b1

2

64
ū1,1u1

...
ū1,Nu1

3

75+ · · ·+ bN

2

64
ūN,1uN

...
ūN,NuN

3

75 = 0
(39)

when one or more biūi,j are nonzero. This is possible only if
U is singular. Hence a contradiction, implying that rank(Ū �

U) = N .
APPENDIX B

THEOREM 1: CONDITIONS FOR A VALID SAMPLER

The rank of the product of two matrices A and B is given
by [44] rank(AB)  min{rank(A), rank(B)}, and equality
holds if and only if null(A) \ ran(B) = {0}.

We know from Lemma 2 that rank(� ⌦ �) is K2 if
rank(�) = K and from Lemma 1 that  s has full column
rank. This implies that if K2

� N , then (�⌦�) s has full
column rank provided that the null space of �⌦� (which is
generated by the basis vectors in the null space of �) does
not intersect with the space spanned by the columns of  s.
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Fig. 6: Sampling nearest neighbor graph built using digit 3 (16⇥ 16 pixels) from the USPS dataset. (a) Spectral covariance
matrix (only the upper left part is shown for better visibility, rest of the entries are zeroes). (b) Graph power spectrum based
on Ns = 50 image snapshots. Markers along the x-axis indicate the eigenvalues of the Laplacian matrix. (c) 25 realizations of
the generated images, which are obtained by graph filtering white noise. Here, the Q = 7 G-MA filter coefficients are obtained
by observing K = 15 pixels.

without processing the entire training set. Next, based on the
reconstructed graph power spectrum obtained by sampling
K = 15 pixels, we generate 25 graph signal realizations by
graph filtering white noise, where the frequency response of
the graph filter is simply computed as hf,n = |pn|1/2 for
n = 1, . . . , N (here, we use the absolute value because we
do not solve (31) with a nonnegativity constraint). These 25
realizations are shown in Figure 6c, where we can see that
the resulting signals have the shape of digit 3 corroborating
that the signal is (nearly) stationary on the nearest neighbor
graph, and more importantly these signals can be generated
from fewer parameters, which are estimated by observing only
a small subset of pixels.

IX. CONCLUDING REMARKS

In this paper we have focused on sampling and reconstruct-
ing the second-order statistics of stationary graph signals. The
main contribution of the paper is that by observing a signifi-
cantly smaller subset of vertices and using simple least squares
estimators, we can reconstruct the second-order statistics of
the graph signal from the subsampled observations, and more
importantly, without any spectral priors. The results provided
here generalize the compressive covariance sensing framework
to the graph setting. Both a nonparametric approach as well as
parametric approaches including moving average and autore-
gressive models for the graph power spectrum are discussed.
A near-optimal low-complexity greedy algorithm is developed
to design a sparse sampling matrix that selects the subset of
graph nodes.

APPENDIX A
LEMMA 1: RANK OF SELF KHATRI-RAO PRODUCTS

By the definition in (1), U forms an orthogonal basis and
hence has full rank. As a result, the sum a1u1+a2u2+ · · ·+
aNuN equals zero only when a1 = a2 = · · · = aN = 0.

The remainder of the proof is based on contradiction.
Assume that the matrix Ū � U = [ū1 ⌦ u1, · · · , ūN ⌦ uN ]

does not have full column rank. This means that the sum
b1(ū1 ⌦ u1) + · · ·+ bN (ūN ⌦ uN )

= b1

2
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...
ū1,Nu1
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75+ · · ·+ bN
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75 = 0
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when one or more biūi,j are nonzero. This is possible only if
U is singular. Hence a contradiction, implying that rank(Ū �

U) = N .
APPENDIX B

THEOREM 1: CONDITIONS FOR A VALID SAMPLER

The rank of the product of two matrices A and B is given
by [44] rank(AB)  min{rank(A), rank(B)}, and equality
holds if and only if null(A) \ ran(B) = {0}.

We know from Lemma 2 that rank(� ⌦ �) is K2 if
rank(�) = K and from Lemma 1 that  s has full column
rank. This implies that if K2

� N , then (�⌦�) s has full
column rank provided that the null space of �⌦� (which is
generated by the basis vectors in the null space of �) does
not intersect with the space spanned by the columns of  s.

REFERENCES

[1] S. P. Chepuri and G. Leus, “Subsampling for graph power spectrum
estimation,” in IEEE Sensor Array and Multichannel Signal Processing
Workshop (SAM), Rio de Janeiro, Brazil, July 2016.

[2] A.-L. Barabasi and Z. N. Oltvai, “Network biology: understanding the
cell’s functional organization,” Nature reviews genetics, vol. 5, no. 2,
pp. 101–113, 2004.

[3] E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical
analysis of structural and functional systems,” Nature Reviews Neuro-
science, vol. 10, no. 3, pp. 186–198, 2009.

[4] R. Guimera, S. Mossa, A. Turtschi, and L. N. Amaral, “The worldwide
air transportation network: Anomalous centrality, community structure,
and cities’ global roles,” Proc. of the National Acad. of Sciences, vol.
102, no. 22, pp. 7794–7799, 2005.

[5] M. O. Jackson, Social and economic networks. Princeton university
press, 2010.

[6] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.

[7] A. Sandryhaila and J. M. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure,” IEEE Signal Process. Mag., vol. 31, no. 5,
pp. 80–90, 2014.

Ø Nearest neighbor graph built using digit 3 (16 x 16 pixels) from the USPS dataset.

Ø Graph signal (pixel intensity) is of length 256

25 realizations

H
n � N (0, I)

LSI  filter
x



72

Sparse Sampler Design

S.P. Chepuri and G. Leus. Sparse Sensing for Statistical Inference. Foundations and Trends in 
Signal Processing, Vol. 9: No. 3–4, pp 233-368, Dec. 2016.

-15 dB 

Sparse Sensing 

0 dB 

antenna 
beam pattern 
specifications 



Sparse sensing models

73

CHEPURI AND LEUS: SPARSE SENSING FOR DISTRIBUTED DETECTION 3

y

=

Φ(w) = diagr(w) x ∼ p(x| Hi)

Fig. 1: Discrete sparse sensing scheme for distributed detection. Here, a
white (black) and colored square represents a one (zero) and an arbitrary
value, respectively.

where the variable wm = (0)1 indicates whether the mth
sensor is (not) selected. More specifically, we define the
sensing matrix Φ(w) = diagr(w) ∈ {0, 1}K×M , to acquire
the data as

y = diagr(w)x = Φ(w)x,

where K is not assumed to be known. Note that we are
interested in cases where K ≪ M . The reduced dimension
data vector y ∈ RK is used instead of x ∈ RM to solve the
detection problem. In this paper, we seek a sparsest w, i.e., a
vector with many zeros and just a few non-zero entries, such
that a prescribed global detection performance is achieved.
Due to the construction of Φ(w), we label the resulting
deterministic and structured sensing scheme as sparse sensing;
see the illustration in Fig. 1. Such a sparse sensing matrix
enables a completely distributed compression and sampling,
which are instrumental to distributed detection. Furthermore,
it leads to possible reductions in the hardware costs, as well
as processing and communications overhead.
Sparse sensing differs from the broad research area of

compressive sensing —state of the art in the field of sensing
cost reduction [21]. In compressive sensing, the underlying
signal is always considered sparse in some domain and the
goal is sparse signal reconstruction. On the other hand for
sparse sensing, the underlying signal does not necessarily have
to be sparse and other signal processing tasks (including sparse
signal reconstruction [22]) can be considered. Furthermore,
in compressive sensing, the compression is generally random,
which introduces robustness, but might limit the maximum
amount of compression if a specific signal processing task
needs to be carried out. Sparse sensing, on the other hand, is
a deterministic type of data compression, where the sparse
vector inside the sensing function gives a handle on the
compression that can be used for optimally designing the
sensing process.
Let Ĥ denote an estimate of the state of nature H, based

on a certain decision rule. In the Neyman-Pearson setting, the
optimal detector minimizes the probability of miss detection
(type II error),

Pm = Pr(Ĥ ≠ H1|H1)

for a fixed probability of false alarm (type I error),

Pf = Pr(Ĥ = H1|H0).

This is the well-known Neyman-Pearson detector. In the
Bayesian setting, given the prior probabilities πi = Pr(Hi)
for i = 0, 1, the optimal detector minimizes the Bayesian error
probability,

Pe = Pr(Ĥ ≠ H) = π0Pf + π1Pm,

or more generally, the detector minimizes the Bayes’ risk.
Having introduced the data model, we now formally state the
design problem of interest.

Problem 1 (Sparse sampler design). Given the data model (1),
design a sparsest Boolean vectorw that results in a prescribed
(i) Bayesian probability of error, Pe, in the Bayesian

setting, or
(ii) probability of miss detection, Pm, for a fixed prob-

ability of false alarm, Pf , in the Neyman-Pearson
setting.

Mathematically, the sparse sensing problem for distributed
detection can be formulated as

P-B : argmin
w∈{0,1}M

∥w∥0

s.to Pe(w) ≤ e; (2a)

P-N : argmin
w∈{0,1}M

∥w∥0

s.to Pf (w) ≤ α, and Pm(w) ≤ β, (2b)

where e, α and β are, respectively, the desired Bayesian
probability of error, maximum false-alarm rate and miss-
detection rate. Here, Pe(w), Pf (w), and Pm(w) denote the
error probabilities due to the selected sensor subset indicated
by the non-zero entries of w. When prior probabilities are
available, we solve P-B (P denotes problem and B denotes
Bayesian), otherwise in the Neyman-Pearson setting we solve
P-N (N denotes Neyman-Pearson).
In order to ease the design, we next discuss some perfor-

mance measures that can substitute the error probabilities in
the above optimization problems.

III. OPTIMALITY CRITERIA

The error probabilities Pe, Pm or Pf might not admit a
known closed-form expression or their expressions might not
be favorable for numerical optimization. In this section, we
will discuss several weaker and simpler substitutes, which
can be optimized instead of the error probabilities. These
substitutes are based on the notion of distance (closeness or
divergence) between the two distributions of the observations
under test. They lead to tractable, if not always optimal (in
terms of the error probabilities) design procedures for sam-
pler design. Nevertheless, optimizing the distance measures
improves the performance of any practical system.
Let the likelihood ratio of the two hypotheses under test be

defined as

l(y) =
p(y| H1)

p(y| H0)
.

y

�(w)

x

K ⌧ N

Sparsely sensed signals

Least squares solution: [�UBL]†y
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where the variable wm = (0)1 indicates whether the mth
sensor is (not) selected. More specifically, we define the
sensing matrix Φ(w) = diagr(w) ∈ {0, 1}K×M , to acquire
the data as

y = diagr(w)x = Φ(w)x,

where K is not assumed to be known. Note that we are
interested in cases where K ≪ M . The reduced dimension
data vector y ∈ RK is used instead of x ∈ RM to solve the
detection problem. In this paper, we seek a sparsest w, i.e., a
vector with many zeros and just a few non-zero entries, such
that a prescribed global detection performance is achieved.
Due to the construction of Φ(w), we label the resulting
deterministic and structured sensing scheme as sparse sensing;
see the illustration in Fig. 1. Such a sparse sensing matrix
enables a completely distributed compression and sampling,
which are instrumental to distributed detection. Furthermore,
it leads to possible reductions in the hardware costs, as well
as processing and communications overhead.
Sparse sensing differs from the broad research area of

compressive sensing —state of the art in the field of sensing
cost reduction [21]. In compressive sensing, the underlying
signal is always considered sparse in some domain and the
goal is sparse signal reconstruction. On the other hand for
sparse sensing, the underlying signal does not necessarily have
to be sparse and other signal processing tasks (including sparse
signal reconstruction [22]) can be considered. Furthermore,
in compressive sensing, the compression is generally random,
which introduces robustness, but might limit the maximum
amount of compression if a specific signal processing task
needs to be carried out. Sparse sensing, on the other hand, is
a deterministic type of data compression, where the sparse
vector inside the sensing function gives a handle on the
compression that can be used for optimally designing the
sensing process.
Let Ĥ denote an estimate of the state of nature H, based

on a certain decision rule. In the Neyman-Pearson setting, the
optimal detector minimizes the probability of miss detection
(type II error),

Pm = Pr(Ĥ ≠ H1|H1)

for a fixed probability of false alarm (type I error),

Pf = Pr(Ĥ = H1|H0).

This is the well-known Neyman-Pearson detector. In the
Bayesian setting, given the prior probabilities πi = Pr(Hi)
for i = 0, 1, the optimal detector minimizes the Bayesian error
probability,

Pe = Pr(Ĥ ≠ H) = π0Pf + π1Pm,

or more generally, the detector minimizes the Bayes’ risk.
Having introduced the data model, we now formally state the
design problem of interest.

Problem 1 (Sparse sampler design). Given the data model (1),
design a sparsest Boolean vectorw that results in a prescribed
(i) Bayesian probability of error, Pe, in the Bayesian

setting, or
(ii) probability of miss detection, Pm, for a fixed prob-

ability of false alarm, Pf , in the Neyman-Pearson
setting.

Mathematically, the sparse sensing problem for distributed
detection can be formulated as

P-B : argmin
w∈{0,1}M

∥w∥0

s.to Pe(w) ≤ e; (2a)

P-N : argmin
w∈{0,1}M

∥w∥0

s.to Pf (w) ≤ α, and Pm(w) ≤ β, (2b)

where e, α and β are, respectively, the desired Bayesian
probability of error, maximum false-alarm rate and miss-
detection rate. Here, Pe(w), Pf (w), and Pm(w) denote the
error probabilities due to the selected sensor subset indicated
by the non-zero entries of w. When prior probabilities are
available, we solve P-B (P denotes problem and B denotes
Bayesian), otherwise in the Neyman-Pearson setting we solve
P-N (N denotes Neyman-Pearson).
In order to ease the design, we next discuss some perfor-

mance measures that can substitute the error probabilities in
the above optimization problems.

III. OPTIMALITY CRITERIA

The error probabilities Pe, Pm or Pf might not admit a
known closed-form expression or their expressions might not
be favorable for numerical optimization. In this section, we
will discuss several weaker and simpler substitutes, which
can be optimized instead of the error probabilities. These
substitutes are based on the notion of distance (closeness or
divergence) between the two distributions of the observations
under test. They lead to tractable, if not always optimal (in
terms of the error probabilities) design procedures for sam-
pler design. Nevertheless, optimizing the distance measures
improves the performance of any practical system.
Let the likelihood ratio of the two hypotheses under test be

defined as

l(y) =
p(y| H1)

p(y| H0)
.
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ˆ̃xf = [(�1U1)† ⌦ (�2U2)†]yLeast squares solution:

Sparsely sensed multidomain signals

y x̃fŨ1 Ũ2�1(w1) �2(w2)

K2 ⇥N2K1 ⇥N1



Ø Sampling matrix is determined by the sampling vector/set

Ø Sparse sampling structure
Ø only one nonzero entry per row
Ø many zero columns

What is sparse sampling?

y x
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w = [w1, w2, . . . , wN ]T 2 {0, 1}N S = {n|wn = 1, n = 1, 2, . . . , N}

wm = (0)1 sample or vertex is (not) selected

or

�(w) 2 {0, 1}K⇥N



reconstruction performance metric 

Design problem

Select the “best” subset of vertices out of the candidate vertices that 
guarantee a certain desired reconstruction accuracy.

f(w) sample sizeK
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w = [w1, w2, . . . , wN ]T 2 {0, 1}N S = {n|wn = 1, n = 1, 2, . . . , N}

wm = (0)1 sample or vertex is (not) selected

or

optimize
w

f(w)

s.to card(w) = K

w 2 {0, 1}N

optimize
S⇢N

f(S)

s.to |S| = K



Design problem

Select the “best” subset of vertices out of the candidate vertices that 
guarantee a certain desired reconstruction accuracy.

78

Nonconvex Boolean problem

or

optimize
w

f(w)

s.to card(w) = K

w 2 {0, 1}N

optimize
S⇢N

f(S)

s.to |S| = K



Solutions to the combinatorial problem

Ø Exhaustive search over

q possible candidates

Ø Branch-and-bound methods
[Lawler-Wood-1966], [Nguyen-Miller-1992]

q long runtimes even for a modest sized problem

• E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Oper. Res., vol. 14, pp. 699–719, 1966.
• N. Nguyen and A. Miller, “A review of some exchange algorithms for constructing discrete D-optimal designs,” Comput. Statist. 

Data Anal., vol. 14, pp. 489–498, 1992

Exact solutions:
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�N
K

�



Solutions to the combinatorial problem

Ø Convex optimization (polynomial time)

[Joshi-Boyd-2009], [Chepuri-Leus-2015]

q convex relaxation for

q thresholding, randomization to get back a Boolean solution

q Semidefinite program (typically)

• S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 451–462, Feb. 
2009

• S.P. Chepuri and G. Leus. “Sparsity-Promoting Sensor Selection for Non-linear Measurement Models,” IEEE Trans. on Signal 
Processing, vol. 63, no. 3, pp. 684-698, Feb. 2015. 

Suboptimal solutions:

{0, 1}, f(w)
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Solutions to the combinatorial problem

Ø Submodular optimization (linear search time)
[Krause-Singh-Guestrin-2008], [Ranieri-Chebira-Vetteri-2014]

q Submodularity of
q greedy search
q solution is near optimal

• A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and 
empirical studies,” J. Machine Learn. Res., vol. 9, pp. 235–284, Feb. 2008.

• J. Ranieri, A. Chebira, and M. Vetterli, “Near-optimal sensor placement for linear inverse problems,” IEEE Trans. Signal Process., 
vol. 62, no. 5, pp. 1135–1146, Mar. 2014

Suboptimal solutions:

81

f(S)
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Compressive covariance sensing

uncompressed
stationary signal

Sparse sampling yx

compressed
signal

CirculantToeplitz Banded
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compression

Ø Minimal sparse rulers ensure identifiability and best compression rate (Toeplitz)

[Redei-Renyi-1949], [Romero-Ariananda-Tian-Leus-2016]

• L. Redei and A. Renyi, “On the representation of the numbers 1,2,. . . ,n by means of differences (Russian),” Matematicheskii
sbornik, vol. 66, no. 3, pp. 385–389, 1949.

• D. Romero, D.D. Ariananda, Z. Tian, and G. Leus. “Compressive covariance sensing: Structure-based compressive sensing 
beyond sparsity,” IEEE Signal Processing Magazine, vol. 33, no. 1, pp.78-93, Jan. 2016.

Sparse covariance sensing (Toeplitz structure)
Rx(✓) =

PQ
i=1 ✓iQi Ry(✓) =

PQ
i=1 ✓i�Qi�

T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

0.5

1

N = 21 :

Difference set: �I = {|i1 � i2|, 8i1, i2 2 I}ü

ü Length-(N � 1) sparse ruler has �I = {0, 1, . . . , N � 1}



Ø Minimal sparse rulers are precomputed

Ø Suboptimal designs for DOA estimation: co-prime, nested samplers

84

https://en.wikipedia.org/wiki/Sparse_ruler

• P.P. Vaidyanathan and P. Pal. "Sparse sensing with co-prime samplers and arrays." IEEE Transactions on Signal Processing, vol. 
59, no. 2, pp.  573-586, Feb. 2011.

[Vaidyanathan-Pal-2011]

Sparse covariance sensing (Toeplitz structure)



Submodular optimization

Ø Define the sampling set:

Ø

Ø

f(X � {s}) � f(X ) � f(Y � {s}) � f(Y)

85

f(X [ {s}) � f(X )

X := S = {n|wn = 1, n = 1, 2, . . . , N}

Requires f(·) to be submodular function of its arguments

Set function f(X ) is submodular, if 8X ✓ Y ⇢ N , s 2 N \ Y

Set function f(X ) is monotone non-decreasing, if

X := N \ S = {n|wn = 0, n = 1, 2, . . . , N}
or
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Nonconvex Boolean problem

Select the “best” subset of vertices out of the candidate vertices that 
guarantee a certain desired reconstruction accuracy.

maximize
X

f(X )

s.to |X | = L

L = K or L = N �K



Submodular optimization
If        is submodular and monotonicf(·) Linear sweep 

time

Then, greedy algorithm is near-optimal

63%
• G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions— I,” 

Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

[Nemhauser-Wolsey-Fisher-1978]
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Algorithm 1 Greedy algorithm
1. Require X = ;, L.
2. for k = 1 to L
3. s⇤ = argmax

s/2X
f(X [ {s})

4. X  X [ {s⇤}
5. end
6. Return X

f(X ) � (1� 1/e) max
|Y|=L

f(Y)

L = K or L = N �K



Design problem
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Select the “best” subset of vertices out of the candidate vertices that 
guarantee a certain desired reconstruction accuracy.

maximize
X

f(X )

s.to |X | = L

L = K or L = N �K

What is a suitable submodular function f(X ) for sparse sampling?
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Fig. 1: Discrete sparse sensing scheme for distributed detection. Here, a
white (black) and colored square represents a one (zero) and an arbitrary
value, respectively.

where the variable wm = (0)1 indicates whether the mth
sensor is (not) selected. More specifically, we define the
sensing matrix Φ(w) = diagr(w) ∈ {0, 1}K×M , to acquire
the data as

y = diagr(w)x = Φ(w)x,

where K is not assumed to be known. Note that we are
interested in cases where K ≪ M . The reduced dimension
data vector y ∈ RK is used instead of x ∈ RM to solve the
detection problem. In this paper, we seek a sparsest w, i.e., a
vector with many zeros and just a few non-zero entries, such
that a prescribed global detection performance is achieved.
Due to the construction of Φ(w), we label the resulting
deterministic and structured sensing scheme as sparse sensing;
see the illustration in Fig. 1. Such a sparse sensing matrix
enables a completely distributed compression and sampling,
which are instrumental to distributed detection. Furthermore,
it leads to possible reductions in the hardware costs, as well
as processing and communications overhead.
Sparse sensing differs from the broad research area of

compressive sensing —state of the art in the field of sensing
cost reduction [21]. In compressive sensing, the underlying
signal is always considered sparse in some domain and the
goal is sparse signal reconstruction. On the other hand for
sparse sensing, the underlying signal does not necessarily have
to be sparse and other signal processing tasks (including sparse
signal reconstruction [22]) can be considered. Furthermore,
in compressive sensing, the compression is generally random,
which introduces robustness, but might limit the maximum
amount of compression if a specific signal processing task
needs to be carried out. Sparse sensing, on the other hand, is
a deterministic type of data compression, where the sparse
vector inside the sensing function gives a handle on the
compression that can be used for optimally designing the
sensing process.
Let Ĥ denote an estimate of the state of nature H, based

on a certain decision rule. In the Neyman-Pearson setting, the
optimal detector minimizes the probability of miss detection
(type II error),

Pm = Pr(Ĥ ≠ H1|H1)

for a fixed probability of false alarm (type I error),

Pf = Pr(Ĥ = H1|H0).

This is the well-known Neyman-Pearson detector. In the
Bayesian setting, given the prior probabilities πi = Pr(Hi)
for i = 0, 1, the optimal detector minimizes the Bayesian error
probability,

Pe = Pr(Ĥ ≠ H) = π0Pf + π1Pm,

or more generally, the detector minimizes the Bayes’ risk.
Having introduced the data model, we now formally state the
design problem of interest.

Problem 1 (Sparse sampler design). Given the data model (1),
design a sparsest Boolean vectorw that results in a prescribed
(i) Bayesian probability of error, Pe, in the Bayesian

setting, or
(ii) probability of miss detection, Pm, for a fixed prob-

ability of false alarm, Pf , in the Neyman-Pearson
setting.

Mathematically, the sparse sensing problem for distributed
detection can be formulated as

P-B : argmin
w∈{0,1}M

∥w∥0

s.to Pe(w) ≤ e; (2a)

P-N : argmin
w∈{0,1}M

∥w∥0

s.to Pf (w) ≤ α, and Pm(w) ≤ β, (2b)

where e, α and β are, respectively, the desired Bayesian
probability of error, maximum false-alarm rate and miss-
detection rate. Here, Pe(w), Pf (w), and Pm(w) denote the
error probabilities due to the selected sensor subset indicated
by the non-zero entries of w. When prior probabilities are
available, we solve P-B (P denotes problem and B denotes
Bayesian), otherwise in the Neyman-Pearson setting we solve
P-N (N denotes Neyman-Pearson).
In order to ease the design, we next discuss some perfor-

mance measures that can substitute the error probabilities in
the above optimization problems.

III. OPTIMALITY CRITERIA

The error probabilities Pe, Pm or Pf might not admit a
known closed-form expression or their expressions might not
be favorable for numerical optimization. In this section, we
will discuss several weaker and simpler substitutes, which
can be optimized instead of the error probabilities. These
substitutes are based on the notion of distance (closeness or
divergence) between the two distributions of the observations
under test. They lead to tractable, if not always optimal (in
terms of the error probabilities) design procedures for sam-
pler design. Nevertheless, optimizing the distance measures
improves the performance of any practical system.
Let the likelihood ratio of the two hypotheses under test be

defined as

l(y) =
p(y| H1)

p(y| H0)
.

y
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Fig. 1: Discrete sparse sensing scheme for distributed detection. Here, a
white (black) and colored square represents a one (zero) and an arbitrary
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where the variable wm = (0)1 indicates whether the mth
sensor is (not) selected. More specifically, we define the
sensing matrix Φ(w) = diagr(w) ∈ {0, 1}K×M , to acquire
the data as

y = diagr(w)x = Φ(w)x,

where K is not assumed to be known. Note that we are
interested in cases where K ≪ M . The reduced dimension
data vector y ∈ RK is used instead of x ∈ RM to solve the
detection problem. In this paper, we seek a sparsest w, i.e., a
vector with many zeros and just a few non-zero entries, such
that a prescribed global detection performance is achieved.
Due to the construction of Φ(w), we label the resulting
deterministic and structured sensing scheme as sparse sensing;
see the illustration in Fig. 1. Such a sparse sensing matrix
enables a completely distributed compression and sampling,
which are instrumental to distributed detection. Furthermore,
it leads to possible reductions in the hardware costs, as well
as processing and communications overhead.
Sparse sensing differs from the broad research area of

compressive sensing —state of the art in the field of sensing
cost reduction [21]. In compressive sensing, the underlying
signal is always considered sparse in some domain and the
goal is sparse signal reconstruction. On the other hand for
sparse sensing, the underlying signal does not necessarily have
to be sparse and other signal processing tasks (including sparse
signal reconstruction [22]) can be considered. Furthermore,
in compressive sensing, the compression is generally random,
which introduces robustness, but might limit the maximum
amount of compression if a specific signal processing task
needs to be carried out. Sparse sensing, on the other hand, is
a deterministic type of data compression, where the sparse
vector inside the sensing function gives a handle on the
compression that can be used for optimally designing the
sensing process.
Let Ĥ denote an estimate of the state of nature H, based

on a certain decision rule. In the Neyman-Pearson setting, the
optimal detector minimizes the probability of miss detection
(type II error),

Pm = Pr(Ĥ ≠ H1|H1)

for a fixed probability of false alarm (type I error),

Pf = Pr(Ĥ = H1|H0).

This is the well-known Neyman-Pearson detector. In the
Bayesian setting, given the prior probabilities πi = Pr(Hi)
for i = 0, 1, the optimal detector minimizes the Bayesian error
probability,

Pe = Pr(Ĥ ≠ H) = π0Pf + π1Pm,

or more generally, the detector minimizes the Bayes’ risk.
Having introduced the data model, we now formally state the
design problem of interest.

Problem 1 (Sparse sampler design). Given the data model (1),
design a sparsest Boolean vectorw that results in a prescribed
(i) Bayesian probability of error, Pe, in the Bayesian

setting, or
(ii) probability of miss detection, Pm, for a fixed prob-

ability of false alarm, Pf , in the Neyman-Pearson
setting.

Mathematically, the sparse sensing problem for distributed
detection can be formulated as

P-B : argmin
w∈{0,1}M

∥w∥0

s.to Pe(w) ≤ e; (2a)

P-N : argmin
w∈{0,1}M

∥w∥0

s.to Pf (w) ≤ α, and Pm(w) ≤ β, (2b)

where e, α and β are, respectively, the desired Bayesian
probability of error, maximum false-alarm rate and miss-
detection rate. Here, Pe(w), Pf (w), and Pm(w) denote the
error probabilities due to the selected sensor subset indicated
by the non-zero entries of w. When prior probabilities are
available, we solve P-B (P denotes problem and B denotes
Bayesian), otherwise in the Neyman-Pearson setting we solve
P-N (N denotes Neyman-Pearson).
In order to ease the design, we next discuss some perfor-

mance measures that can substitute the error probabilities in
the above optimization problems.

III. OPTIMALITY CRITERIA

The error probabilities Pe, Pm or Pf might not admit a
known closed-form expression or their expressions might not
be favorable for numerical optimization. In this section, we
will discuss several weaker and simpler substitutes, which
can be optimized instead of the error probabilities. These
substitutes are based on the notion of distance (closeness or
divergence) between the two distributions of the observations
under test. They lead to tractable, if not always optimal (in
terms of the error probabilities) design procedures for sam-
pler design. Nevertheless, optimizing the distance measures
improves the performance of any practical system.
Let the likelihood ratio of the two hypotheses under test be

defined as

l(y) =
p(y| H1)

p(y| H0)
.

y

�(w)

x

K ⌧ N

Sparsely sensed signals Sparsely sensed statistics

Least squares solution: [(�⌦�) ]†ryLeast squares solution: [�UBL]†y



How do design the subsampler?

Ø Quality of the least squares solution

depends on the spectrum (eigenvalues) of

or

Ø We try to balance the spectrum:

Scalar measure of the error covariance matrix 90

arg max
w2{0,1}N

log det{T (w)} s.to kwk0 = K

T (w) = [(�⌦�) ]H [(�⌦�) ] =  H [diag(w)⌦ diag(w)] 

[�UBL]†y or [(�⌦�) ]†rb

T (w) = [�UBL]H [�UBL] = UH

BLdiag(w)UBL



How to design the subsampler?

Ø Using set notation

Ø Set function 

X = {m|wm = 1, m = 1, 2, . . . , M}

Set function is submodular and monotone non-decreasing

91

arg max
w2{0,1}N

log det{T (w)} s.to kwk0 = K

f(X ) = log det

⇢X
(i,j)2X⇥X

 
i,j
 H

i,j

�

 = [ 1,1, 1,2, · · · , N,N
]H

or

UBL = [uBL,1, · · · ,uBL,N ]T

f(X ) = log det
nX

i2X
uBL,iu

H

BL,i

o



How to design the subsampler?

Ø This combinatorial optimization can be near optimally solved using a 
low-complexity greedy algorithm

1. Require X = �, K.
2. for k = 1 to K
3. s� = argmax

s/�X
f(X � {s})

4. X � X � {s�}
5. end
6. Return X

ü Leverages submodularity
ü Linear sweep time

arg max
w2{0,1}N

log det{T (w)} s.to kwk0 = K

63% [Nemhauser-Wolsey-Fisher-1978]

• G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions— I,” 
Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978. 92

f(X ) � (1� 1/e) max
|Y|=K

f(Y)



Toeplitz matrix – array processing
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sparse ruler (best compression rate, but not easy to compute)

submodular design

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

0.5

1

x = A(✓)s+ n ) Rx = A(✓)diag(�2
s
)AH(✓) + �2I

compression

[(�⌦�) ]H [(�⌦�) ]

N = 21 K = 8

Localize more sources than sensors!



Circulant matrix
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Fig. 2: Sampling random graphs with N = 100 nodes (synthetic data). The sampled graph nodes are highlighted by the circles
around the nodes and the node coloring simply denotes a realization of the graph signal. (a) Non-parametric model with
K = 50. (b) Moving average model with K = 26. (c) Autoregressive model with K0 = 1, where the P -hop neighborhood
around the node indicated with the red circle is observed.
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(a) Graph power spectrum based on Ns = 1000 snap-
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(c) Moving average model.
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(d) Autoregressive model

Fig. 3: Performance analysis on the synthetic dataset. In (a), markers indicate the non-uniformly distributed eigenvalues of the
graph Laplacian matrix along the x-axis.
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Fig. 4: Sampling Möbius ladder —a circulant graph with N = 80 nodes. The sampled graph nodes are highlighted by the circles
around the nodes and the node coloring simply denotes a realization of the graph signal. (a) Minimal sparse ruler based sampling
with K = 15. (b) Sampling based on submodular design with K = 15. (c) Spectrum of T (w) =  T

s (diag[w]⌦ diag[w]) s

with w being the minimal sparse ruler and for w computed using the greedy submodular design.

Minimum sparse ruler

12

(a) (b)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(c)

Fig. 2: Sampling random graphs with N = 100 nodes (synthetic data). The sampled graph nodes are highlighted by the circles
around the nodes and the node coloring simply denotes a realization of the graph signal. (a) Non-parametric model with
K = 50. (b) Moving average model with K = 26. (c) Autoregressive model with K0 = 1, where the P -hop neighborhood
around the node indicated with the red circle is observed.
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(c) Moving average model.
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Fig. 3: Performance analysis on the synthetic dataset. In (a), markers indicate the non-uniformly distributed eigenvalues of the
graph Laplacian matrix along the x-axis.
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Fig. 4: Sampling Möbius ladder —a circulant graph with N = 80 nodes. The sampled graph nodes are highlighted by the circles
around the nodes and the node coloring simply denotes a realization of the graph signal. (a) Minimal sparse ruler based sampling
with K = 15. (b) Sampling based on submodular design with K = 15. (c) Spectrum of T (w) =  T

s (diag[w]⌦ diag[w]) s

with w being the minimal sparse ruler and for w computed using the greedy submodular design.

Submodular design
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Fig. 2: Sampling random graphs with N = 100 nodes (synthetic data). The sampled graph nodes are highlighted by the circles
around the nodes and the node coloring simply denotes a realization of the graph signal. (a) Non-parametric model with
K = 50. (b) Moving average model with K = 26. (c) Autoregressive model with K0 = 1, where the P -hop neighborhood
around the node indicated with the red circle is observed.
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(c) Moving average model.
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Fig. 3: Performance analysis on the synthetic dataset. In (a), markers indicate the non-uniformly distributed eigenvalues of the
graph Laplacian matrix along the x-axis.
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Fig. 4: Sampling Möbius ladder —a circulant graph with N = 80 nodes. The sampled graph nodes are highlighted by the circles
around the nodes and the node coloring simply denotes a realization of the graph signal. (a) Minimal sparse ruler based sampling
with K = 15. (b) Sampling based on submodular design with K = 15. (c) Spectrum of T (w) =  T

s (diag[w]⌦ diag[w]) s

with w being the minimal sparse ruler and for w computed using the greedy submodular design.

Möbius ladder (N=80)



Sparse sensing models
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ˆ̃xf = [(�1U1)† ⌦ (�2U2)†]yLeast squares solution:

Sparsely sensed multidomain signals

y x̃fŨ1 Ũ2�1(w1) �2(w2)

K2 ⇥N2K1 ⇥N1

Design of �1 and �2 is crucial for the least-squares solution to be unique



How to design the subsampler?

Ø Quality of the least squares solution

depends on the error covariance matrix

Ø

96

ˆ̃xf = [(�1U1)† ⌦ (�2U2)†]y

T (X ) =
⇣
�1Ũ1 ⌦�2Ũ2

⌘H ⇣
�1Ũ1 ⌦�2Ũ2

⌘

= (�1Ũ1)
H(�1Ũ1)⌦ (�2Ũ2)

H(�2Ũ2)

= T 1(X1)⌦ T 2(X2)

X = X1 ∪ X2

Since rank(A⌦B) = rank(A)rank(B), we require (additional constraints)

|X1| � L1 and |X2| � L2



How to design the subsampler?

Ø As before, we optimize a scalar function of the error covariance matrix

Ø In particular, we minimize the so-called frame potential (related to the mean 
squared error)

Ø Or, maximize the set function with change of variable 
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F (X ) := trace{THT } = trace{TH

1 T 1 ⌦ TH

2 T 2} := F1(X1)F2(X2)

G(S) = F (N )� F (N \ S)

Set function is submodular and monotone non-decreasing

N = N1 [N2

S = N \ X

maximize
X

f(T (X ))

s.to |X | = K, X = X1 [ X2

|X | � L1 |X2| � L2



Ø Therefore, we have to solve

How to design the subsampler?
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Truncated partition matroid

Ø Near optimality guarantees

Ø Linear sweep time

[Nemhauser-Wolsey-Fisher-1978]

• G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus. Sparse Sampling for Inverse Problems with Tensors. IEEE TSP (under 
review), June 2018. (available as arXiv:1806.10976).

• G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions— I,” 
Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

G(Sgreedy) � 1
2G(S?)

1. Require X = ;,K, Iu, Ip.
2. for k = 1 to N �K
3. s⇤ = argmax

s/2X
{f(X [ {s}) : X 2 Iu \ Ip}

4. X  X [ {s⇤}
5. end
6. Return X

[Ortiz-Jiménez et al.-2018]

maximize
S✓N

G(S)

s.to S 2 Iu \ Ip,
Iu = {S ✓ N : S  N �K}
Ip = {S ✓ N : |S \Ni|  Ni � Li, i = 1, 2}



Sparse tensor sampling – diagonal core
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Sampler design
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Illustration – multiuser source separation
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Numerical Results

Static field example (1)
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Sampler design for kernel-based method
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Numerical Results

Static field example (1)
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Ground truth Measured 67 out of 97 mesh points

Design of sampling sets for kernel methods

Ø Submodular optimization 

Ø Convex optimization

• M. Coutino, S.P. Chepuri and G. Leus. Subset Selection for Kernel-based Reconstruction. In Proc. of the International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP 2018), Calgary, Canada, April 2018. 

[Coutino-Chepuri-Leus-2018]
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Sparse Graph Learning

• S.P. Chepuri, S. Liu, G. Leus, and A. Hero. Learning Sparse Graphs Under Smoothness Prior.
ICASSP 2017, New Orleans, USA.

• V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. of the 19th International
Conference on Artificial Intelligence and Statistics, 2016.

• X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning laplacian matrix in smooth
graph signal representations,” IEEE TSP, vol. 64, no. 23, Dec. 2016.
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Wind speed data from 30 stations  
[Source: KNMI, Netherlands]

“Learn a sparse graph that sufficiently explains the data”  
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Sparse graph learning problem
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Learn a “sparse graph” (or the graph Laplacian) from data:   
ü with “ K ” edges
ü data varies “smoothly” on the resulting graph

1st smooth signal
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1
4th smooth signal
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Learnt graph with K = 175 edges using 4 snapshots



Ø Quantifies smoothness of with respect to the underlying graph

Graph Laplacian – quadratic form

106
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0 0 1

1

1

x :
xTLx =

X

(i,j)2E

(xi � xj)
2

= 1

Sum of squares of differences 
across edges

x

(graph signal)



Ø Laplacian matrix can be written as a outer product of “incidence” vectors

Graph Laplacian – quadratic form
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x :
xTLx =

X

(i,j)2E

(xi � xj)
2

= 1

Sum of squares of differences 
across edges

L = AAT =
MX

m=1

amaT
m

(quadratic form)

[am]j = �1

[am]i = 1

zeros elsewhere
For an edge “m” connecting node “i ” and “j ”

(graph signal)



Graph learning as a sampling problem

Ø Denote the subgraph of                         or K-sparse graph

with the edge set                such that   

Ø Introduce an “edge sampling” vector 

if an edge belongs to the edge subset 

Ø Graph Laplacian of the K-sparse graph

(Recall the outer product decomposition of the Laplacian)

108

Gs(V, Es) Es ⇢ E |Es| = K ⌧ M

w = [w1, w2, · · · , wM ]T 2 {0, 1}M

wm = 1 Es

Ls(w) =
MX

m=1

wmamaT
m

No. of edges of:
- Complete graph
- Given  graph

G = (V, E)



Sparse edge selection
Ø Given L “noiseless” graph signals 

Ø K-sparse graph learning will be 

Non-convex (Boolean optimization problem)

109

arg min
w2W

1

L

LX

k=1

xT
kLs(w)xk =

1

L
tr{XTLs(w)X}

W = {w 2 {0, 1}M | kwk0 = K}

X = [x1,x2, . . . ,xL]



Sparse edge selection
Ø Given L “noiseless” graph signals 

Ø K-sparse graph learning will be 

Ø Cost function (modular):

Ø Solution: rank ordering!

ü Computational complexity O(K log K), or O(K) with parallel 
implementation

110

arg min
w2W

1

L

LX

k=1

xT
kLs(w)xk =

1

L
tr{XTLs(w)X}

W = {w 2 {0, 1}M | kwk0 = K}

1

L
tr
n
XTLs(w)X

o
=

MX

m=1

wmtr
n
XT (amam

T )X
o

X = [x1,x2, . . . ,xL]



Sparse edge selection
Ø Given L “noiseless” graph signals, K-sparse graph learning

111

arg min
w2W

1

L

LX

k=1

xT
kLs(w)xk =

1

L
tr{XTLs(w)X}

W = {w 2 {0, 1}M | kwk0 = K}

Example: Suppose covariance matrix of      is       , then

Solution: select  K edges between those nodes having highest cross-correlation as         

(Special case: GMRF model with                          )

x Rx

L�1tr{XTLs(w)X} =
MX

m=1

wm(am
T bRxam)

am
T bRxam = [bRx]i,i + [bRx]j,j � 2[bRx]i,j

Rx := L† + �2I
108



Numerical experiments – windspeed data
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K=125

Wind speed data of year 2002 from 30 stations  
[Source: KNMI, Netherlands]
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Numerical experiments – French temp. data
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Thanks to N. Perraudin and  P. Vandergheynst for the dataset.

Temperature data of Brittany, France from 32 stations



Numerical experiments - performance
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100 120 140 160 180 200
0.2

0.3
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0.6
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0.8

0.9

tr
{X

T
L

s
(w

)X
}

proposed (sorting)
primal-dual: Kalofolias et. al

No. of edges

Kalofolias:

• V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. of the 19th International Conference on Artificial Intelligence 
and Statistics, 2016, pp. 920–929.

minimizeL2L

LX

k=1

xT
kLxk + �card(L)

L = {L ⌫ 0, Li,j = Lj,i  0,L1 = 0}



Sparse edge selection with “denoising”
Ø Given “L” noisy signals:                      ,  

Ø Solution 1: (alternating minimization) 

Fixed                                                             (denoising)                                                            

Fixed                         sorting, as before         (edge selection)

ü Converges to a stationary point
ü Suffers from the choice of the initial estimate
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yk = xk + nk

argmin{xk}L
k=1,w2W

1

L

LX

k=1

(kyk � xkk22 + � xT
kLs(w)xk)

w : Xmin(w) = [I+ �Ls(w)]�1Y

X : wmin(X)



Sparse edge selection and “denoising”
Ø Given “L” noisy signals:                      ,  

Ø Solution 2: (convex optimization – one step)

Hint: Solution to optimal “X” as a function of “w” can be computed in closed form

Ø Convex program:

116

yk = xk + nk

argmin{xk}L
k=1,w2W

1

L

LX

k=1

(kyk � xkk22 + � xT
kLs(w)xk)

bw = argminw2W r(w); cX = Xmin(bw)

r(w) = kY �Xmin(w)k2F + � tr{XT
min(w)Ls(w)Xmin(w)}

argminZ,w tr{Z}

s.to


Z � �Y TLs(w)Y Y T

Y I + �Ls(w)

�
⌫ 0L+N ,

1Tw = K, 0  wm  1,m = 1, 2, . . . ,M,

(1)

with



Summary
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Ø Reconstructing bandlimited/smooth graph signals via sparse sampling

Ø Relation to kernel-based signal reconstruction 

Ø Reconstructing product graph signals via sparse tensor sampling

Ø Reconstructing second-order statistics by subsampling without priors

Ø Sparse graph learning as a sampling problem



Thank You! 
Questions? 



Matroids
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A finite matroid M is a pair (N , I), where N is a finite set (also called the
ground set) and I is a family of subsets of N (called the independent sets) that
satisfies the following properties:

1. The empty set is independent, i.e., ? 2 I.

2. For every X ✓ Y ✓ N , if Y 2 I, then X 2 I.

3. For every X ,Y ✓ N such that |Y| > |X | and X ,Y 2 I there exists one
x 2 Y \ X such that X [ {x} 2 I.

Matroids

Definition
A matroid on N is a system of independent sets I ⇢ 2N , satisfying

1 8B 2 I,A ⇢ B ) A 2 I.
2 8A,B 2 I, |A| < |B| ) 9x 2 B \ A; A [ {x} 2 I.

Q1 Q2 Q3 Q4 Q5

Example: partition matroid

S is independent, if
|S \ Qi |  1 for each Qi .

Jan Vondrák (IBM Almaden) Submodular Optimization Tutorial 23 / 31


