

Graph Sampling for Signal and Covariance Estimation

Sundeep Prabhakar Chepuri

Thanks!

Collaborators at TU Delft

- Geert Leus
- Guillermo Ortiz-Jiménez
- Mario Coutino

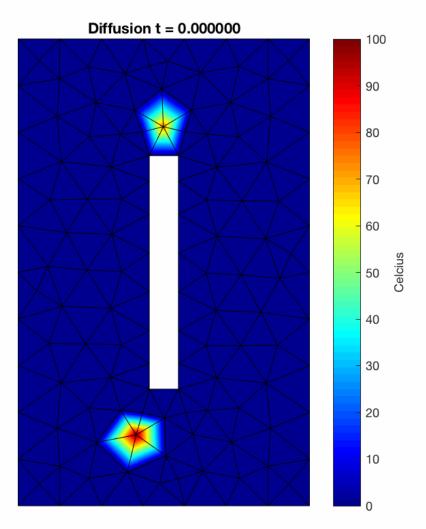
Collaborators outside TU Delft

- Alfred Hero (Uni. of Michigan)
- Sijia Liu (IBM Research)
- Yonina Eldar (Technion, Israel)

Roadmap

Introduction and context Signal processing on graphs Signal reconstruction Multi-domain (tensor) signal reconstruction Covariance estimation Sparse sampler design Graph learning

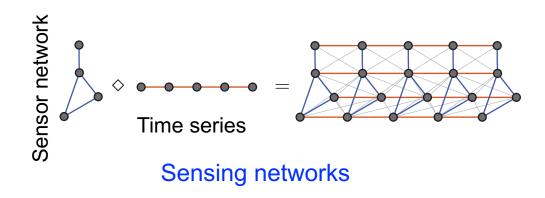
Conclusions, Q&A



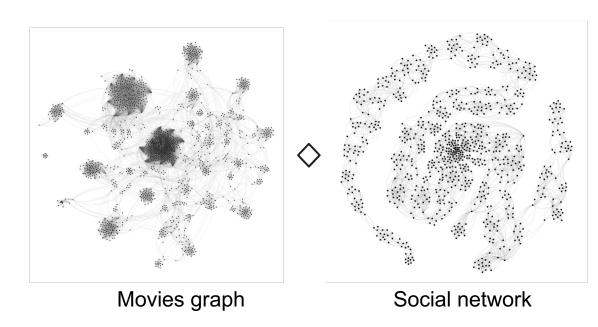
Frozen metal plate with cavity excited with two hotspots

How to optimally deploy sensors?

Temperature on Earth's surface



3D point clouds (Kinect, LiDAR)

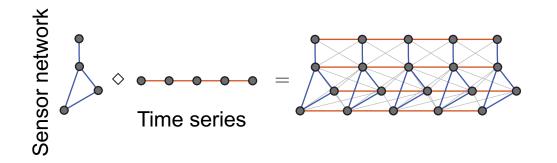


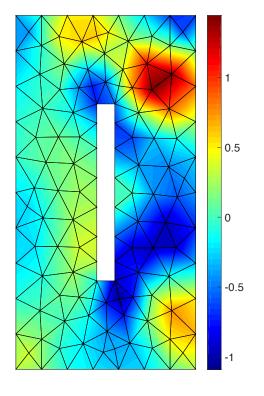
Recommender systems

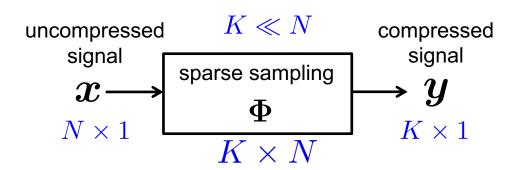
Design sparse samplers taking into account the underlying topology

5

Sparse sampling on irregular domains





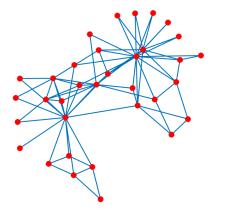


Given y estimate x

Time Preduency channel

Cognitive radio frequency spectrum

Radar
Doppler + angular spectra

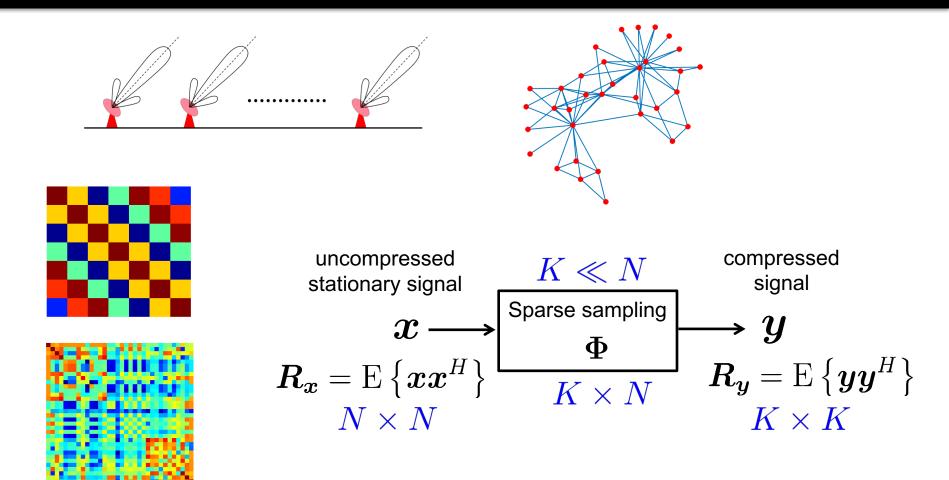


Graph-based inference graph spectrum

Radio astronomy spatial spectrum

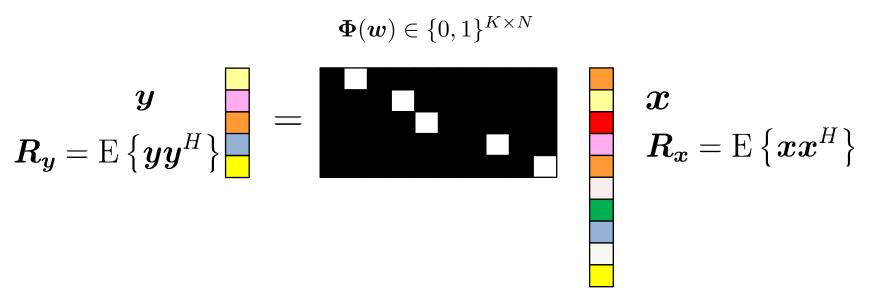
Design sparse samplers taking into account the data structure

Sparse sampling on irregular domains



Given R_y or several realizations of y estimate R_x

What is sparse sampling?



Sampling matrix is determined by the sampling vector/set

$$\mathbf{w} = [w_1, w_2, \dots, w_N]^T \in \{0, 1\}^N$$
 or $\mathcal{S} = \{n | w_n = 1, n = 1, 2, \dots, N\}$

 $w_m = (0)1$ sample or vertex is (not) selected

- Sparse sampling structure
 - only one nonzero entry per row
 - many zero columns

Why sparse sampling?

- Economical constraints (hardware cost)
- Limited physical space
- Limited data storage space
- Reduce communications bandwidth
- Reduce processing overhead

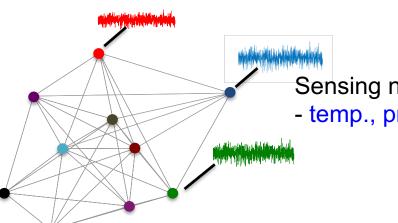
In this tutorial

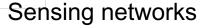
We will cover the following two aspects:

- Reconstruction of signals and second-order statistics from subsampled measurements by taking into account the domain on which the data is defined as a prior information
- 2. Efficient near-optimal methods to design sparse samplers

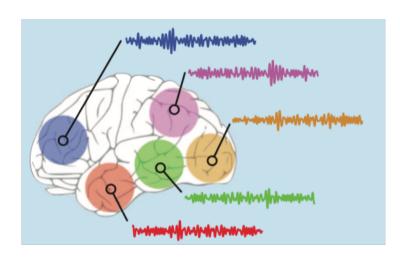
Signal Processing on Graphs

- D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.
- A. Sandryhaila and J. M. Moura, "Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure," IEEE Signal Process. Mag., vol. 31, no. 5, pp. 80–90, 2014.



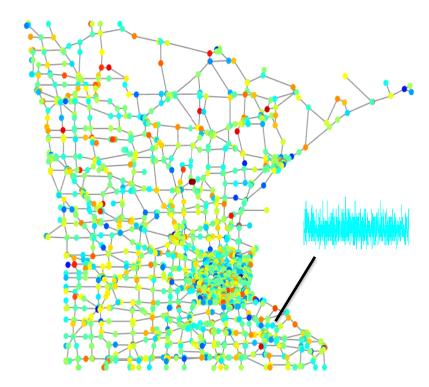


- temp., pressure, air quality monitoring



Brain networks

- fMRI time series, EEG signals



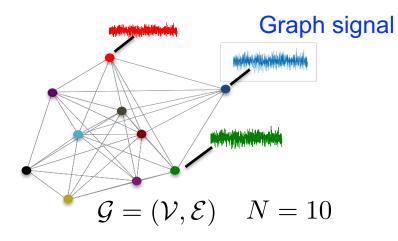
Transport networks

- # vehicles crossing a junction

Signals and random processes on graphs

Graphs and graph signals

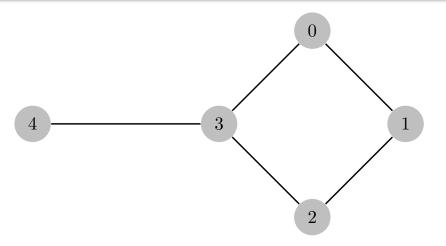
Datasets with irregular support can be represented using a graph



- \mathcal{V} is the set of nodes
- \mathcal{E} is the set of edges
- $oldsymbol{x} \in \mathbb{R}^N$ represents the graph signal

- m > Graph is represented using the matrix $m S \in \mathbb{R}^{N imes N}$
 - $ightharpoonup [S]_{i,j}$ is nonzero only if i=j and/or $(i,j)\in\mathcal{E}$
 - S could be graph Laplacian, adjacency matrix, or ...
 - > S is referred to as the graph-shift operator

Graph Laplacian



$$m{L} = m{D} - m{A}$$
 = $egin{bmatrix} 2 & 0 & 0 & 0 & 0 \ 0 & 2 & 0 & 0 & 0 \ 0 & 0 & 2 & 0 & 0 \ 0 & 0 & 0 & 3 & 0 \ 0 & 0 & 0 & 0 & 1 \ \end{bmatrix}$ - $egin{bmatrix} 0 & 1 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 \ \end{bmatrix}$

diagonal degree matrix adjacency matrix

For an undirected graph, L is symmetric

$$egin{aligned} oldsymbol{L} &= oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^H \ &= \left[oldsymbol{u}_1, \cdots, oldsymbol{u}_N
ight] \operatorname{diag}(\lambda_1, \cdots, \lambda_N) \left[oldsymbol{u}_1, \cdots, oldsymbol{u}_N
ight]^H \end{aligned}$$

ightharpoonup L1=0, so

$$0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_N$$

Graph Laplacian - eigenmodes

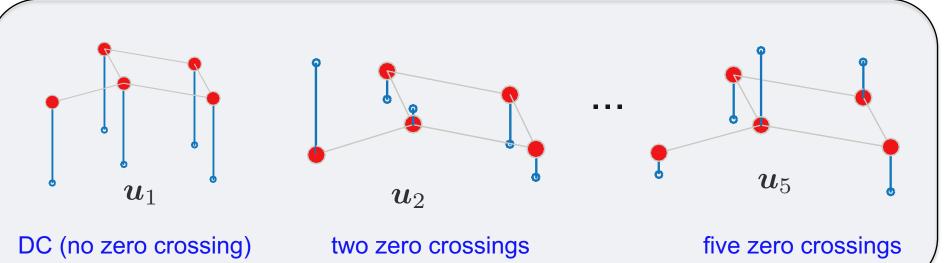
Frequency interpretation of the eigenvectors (viewed as signals on graphs)

eigenvalues

$$\lambda = \begin{bmatrix} 0 \\ 0.8299 \\ 2 \\ 2.6889 \\ 4.4812 \end{bmatrix}$$

eigenvectors

$$\boldsymbol{\lambda} = \begin{bmatrix} 0 \\ 0.8299 \\ 2 \\ 2.6889 \\ 4.4812 \end{bmatrix} \quad \boldsymbol{U} = \begin{bmatrix} -0.4472 & -0.2560 & 0.7071 & 0.2422 & -0.4193 \\ -0.4472 & -0.4375 & 0 & -0.7031 & 0.3380 \\ -0.4472 & -0.2560 & -0.7071 & 0.2422 & -0.4193 \\ -0.4472 & 0.1380 & 0 & 0.5362 & 0.7024 \\ -0.4472 & 0.8115 & 0 & -0.3175 & -0.2018 \end{bmatrix}$$

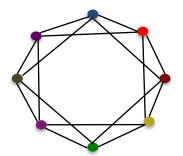


Time-domain as a graph

The DFT and the traditional frequency grid is obtained by the adjacency matrix of the cycle graph

$$m{S} = egin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Any circulant graph in principle leads to the DFT as the graph Fourier transform

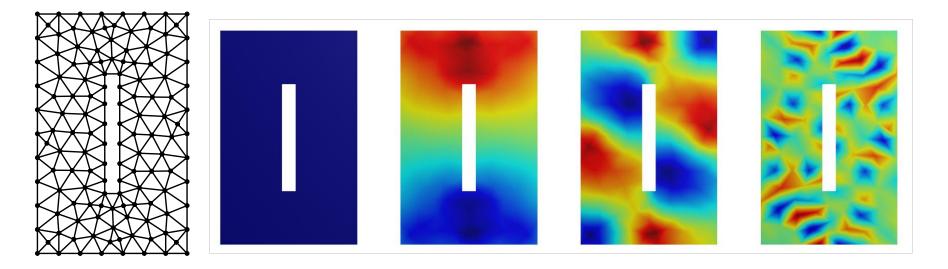


$$m{S} = egin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Fourier-like basis on meshes



(Laplace's) spherical harmonics



Fourier-like orthogonal basis

$$oldsymbol{S} = oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^H \ = oldsymbol{[u_1, \cdots, u_N]} \mathrm{diag}(\lambda_1, \cdots, \lambda_N) oldsymbol{[u_1, \cdots, u_N]}^H$$

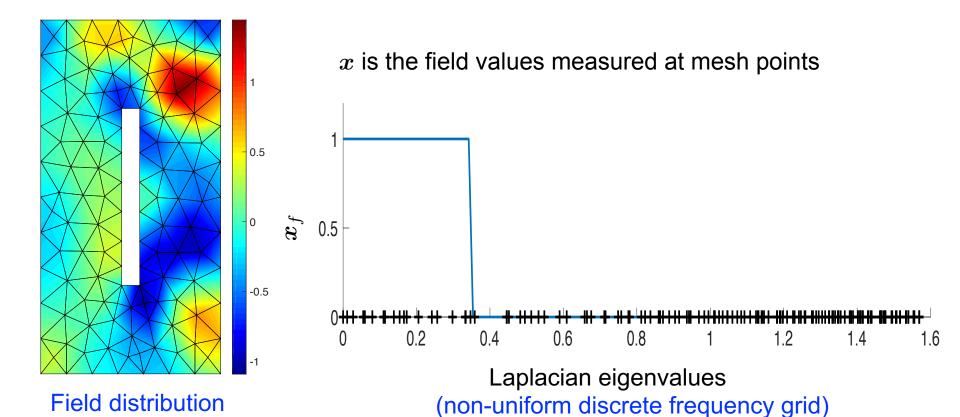
Fourier-like basis for the graph Spectrum of the graph

- Holds for graph Laplacians and adjacency matrices
 - Frequency interpretation based on zero crossings or total variation
- For undirected graphs
 - > Eigenvalues are all real (*graph-shift operator is symmetric*)
- For directed graphs with normal S
 - Eigenvalues occur in complex conjugate pairs

Graph Fourier transform

Decomposition of the (graph) signal $oldsymbol{x} \in \mathbb{R}^N$ w.r.t. the orthonormal basis $oldsymbol{U}$

$$oldsymbol{x}_f := oldsymbol{U}^H oldsymbol{x} \ \Leftrightarrow \ oldsymbol{x} =: oldsymbol{U} oldsymbol{x}_f$$



Graph filters

Graph filters (polynomial of the graph-shift operator) can be used to modify the frequency content of graph signals

$$m{H} = \sum_{l=0}^{L-1} h_l m{S}^l = m{U} \left(\sum_{l=0}^{L-1} h_l m{\Lambda}^l
ight) m{U}^H = m{U} \mathsf{diag}(m{h}_f) m{U}^H$$

Shift invariant: $m{HS} = m{SH}$ and distributable: $m{x}_l = m{Sx}_{l-1}$

Vertex-domain vs. frequency-domain implementation

Vertex-domain implementation: y = Hx

Frequency-domain implementation: $m{y}_f = \mathsf{diag}(m{h}_f) m{x}_f$

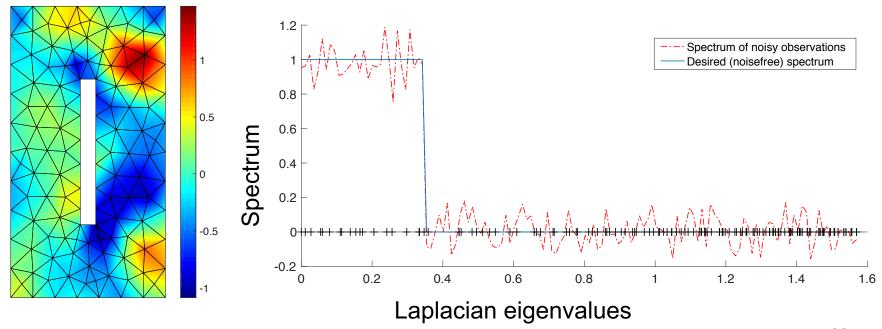
- No fast GFT implementations
- Parametrized filter implementation in the vertex-domain is possible

Graph filters

Graph filters (polynomial of the graph-shift operator) can be used to modify the frequency content of graph signals

$$m{H} = \sum_{l=0}^{L-1} h_l m{S}^l = m{U} \left(\sum_{l=0}^{L-1} h_l m{\Lambda}^l \right) m{U}^H = m{U} \mathsf{diag}(m{h}_f) m{U}^H$$

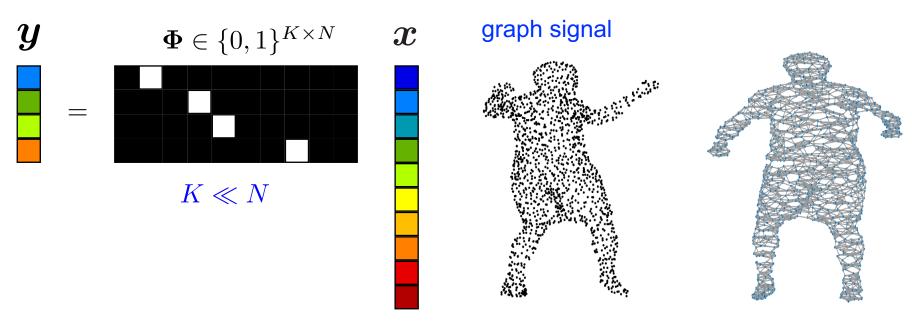
Denoising example:



Graph Signal Sampling

- S.P. Chepuri, Y. Eldar and G. Leus. Graph Sampling With and Without Input Priors. In Proc. of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2018), Calgary, Canada, April 2018.
- S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, "Discrete signal processing on graphs: Sampling theory," IEEE TSP, vol. 63, no. 24, pp. 6510–6523, Dec. 2015.
- D. Romero, M. Ma, and G.B. Giannakis. Kernel-Based Reconstruction of Graph Signals, IEEE TSP, vol. 65, no. 3, pp. 764–778, Feb 2017.
- A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Sampling of graph signals with successive local aggregations," IEEE TSP, vol. 64, no. 7, pp. 1832–1834, Arp. 2016.

Sparse graph sampling



Given y estimate x

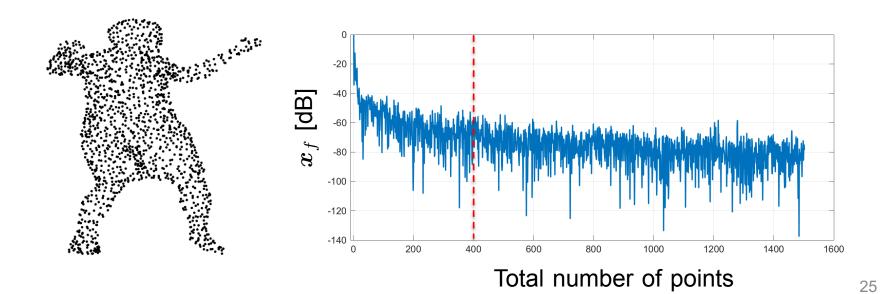
signal: 3D points, which are displacements of graph nodes

Bandlimited graph signals – subspace prior

Suppose the support of the sparse x_f is known L imes 1

$$oldsymbol{x} = oldsymbol{U} oldsymbol{x}_f = egin{bmatrix} oldsymbol{U}_{\mathsf{BL}} \mid \star \end{bmatrix} egin{bmatrix} ilde{x}_f \ \hline oldsymbol{0} \end{bmatrix} \Leftrightarrow oldsymbol{x} = oldsymbol{U}_{\mathsf{BL}} ilde{x}_f \ \hline oldsymbol{0} \end{bmatrix}$$

 $oldsymbol{x} \in \mathsf{range}(oldsymbol{U}_\mathsf{BL})$ —a known L-dimensional subspace



Bandlimited graph signals – subspace prior

With sparse sampling, we get K equations in L unknowns

$$oldsymbol{y} = oldsymbol{\Phi} oldsymbol{x} = oldsymbol{\Phi} oldsymbol{U}_{\mathsf{BL}} ilde{oldsymbol{x}}_f$$

If the matrix ΦU_{BL} has full column rank, i.e, range $(U_{BL}) \cap \text{null}(\Phi) = \{0\}$:

Least squares solution:
$$\hat{ ilde{m{x}}}_f = (m{\Phi}m{U}_{\mathsf{BL}})^\daggerm{y}$$

Design of Φ crucial for the least-squares solution to be unique

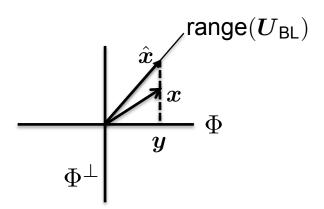
Bandlimited graph signals – subspace prior

 \blacktriangleright With sparse sampling, we get K equations in L unknowns

$$oldsymbol{y} = oldsymbol{\Phi} oldsymbol{x} = oldsymbol{\Phi} oldsymbol{U}_{\mathsf{BL}} ilde{oldsymbol{x}}_f$$

ightharpoonup Oblique projection of x onto the range($U_{\rm BL}$) and along the null(Φ)

$$\hat{m{x}} = m{U}_{\mathsf{BL}} (m{U}_{\mathsf{BL}}^H m{\Phi}^T m{\Phi} m{U}_{\mathsf{BL}})^{-1} m{U}_{\mathsf{BL}}^H m{\Phi}^T m{\Phi} m{x} = m{E}_{m{U}_{\mathsf{BL}} m{\Phi}^\perp} m{x}$$

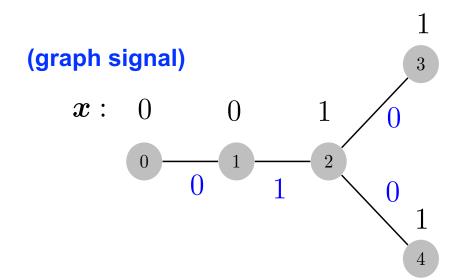


A more interesting case, perhaps is, when the support is not known!

Reconstruction with smoothness prior

Assume x is smooth with respect to the underlying graph or has small

$$\boldsymbol{x}^T \boldsymbol{L} \boldsymbol{x} = \sum_{(i,j) \in \mathcal{E}} (x_i - x_j)^2$$



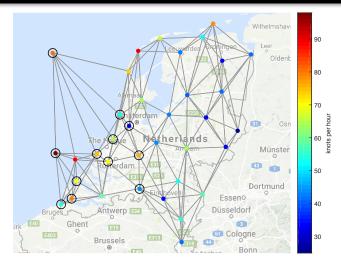
$$\boldsymbol{x}^T \boldsymbol{L} \boldsymbol{x} = \sum_{(i,j) \in \mathcal{E}} (x_i - x_j)^2$$
$$= 1$$

Sum of squares of differences across edges

Reconstruction with smoothness prior

When the prior subspace is not known, we can be consistent (cf. interpolation)

$$\Phi x = \Phi \hat{x}$$



- Assume x is smooth with respect to the underlying graph or has small
- > Equality constrained quadratic program

minimize
$$\frac{1}{2} {m x}^H {m L} {m x}$$
 subject to ${m \Phi} {m x} = {m y}$

Solution:
$$\left[egin{array}{ccc} m{L} + m{\Phi}^T m{\Phi} & m{\Phi}^T \ m{\Phi} & m{0} \end{array}
ight] \left[m{x} m{\lambda} \right] = \left[m{\Phi}^T m{y} \ m{y} \right]$$

If
$$\operatorname{null}(\boldsymbol{L})\cap\operatorname{null}(\boldsymbol{\Phi})=\{0\}$$
, then $\hat{\boldsymbol{x}}=\tilde{\boldsymbol{L}}(\boldsymbol{\Phi}\tilde{\boldsymbol{L}})^{-1}\boldsymbol{y}$

$$\tilde{\boldsymbol{L}} = (\boldsymbol{L} + \boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T$$

Sampling via graph filtering

Sparse sampling in spectral domain:

- Suppose sampling operator collects the first K contiguous frequencies
- Sampling and interpolation operations can be implemented via graph filters

$$\hat{m{x}} = m{H}_{\mathsf{interp}} m{H}_{\mathsf{samp}} m{x}.$$

Subspace prior

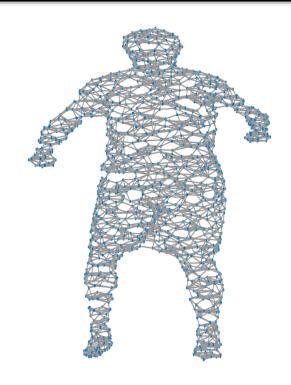
$$m{\Phi} = m{E}_K m{U}^H \Rightarrow m{H}_{\mathsf{Samp}} = m{\Phi}^H m{\Phi} = m{U} m{E}_K^T m{E}_K m{U}^H \qquad m{E}_K = [m{e}_1, \cdots, m{e}_K]$$
 $m{H}_{\mathsf{interp}} = m{U}_{\mathsf{BL}} m{H}_{f,\mathsf{interp}} m{U}_{\mathsf{BL}}^H \qquad m{H}_{f,\mathsf{interp}}^{-1} = m{U}_{\mathsf{BL}}^H m{H}_{\mathsf{samp}} m{U}_{\mathsf{BL}} \; ext{ (diagonal)}$

diagonal matrix

Smoothness prior

$$m{H}_{f,\mathsf{samp}} = m{E}_K^T [m{E}_K (m{\Lambda} + m{E}_K^T m{E}_K)^{-1} m{E}_K^T]^{-1} m{E}_K \quad ext{(diagonal)}$$
 $m{H}_{\mathsf{interp}} = m{U} (m{\Lambda} + m{E}_K^T m{E}_K)^{-1} m{U}^H$

Numerical experiments

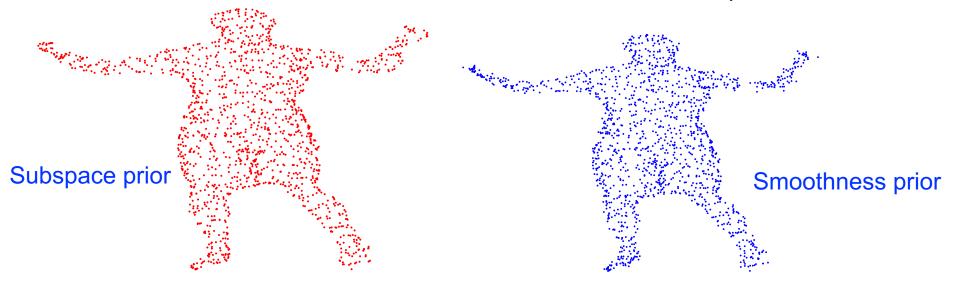


Graph (K-nearest neighbor)

Original signal (3D points)

$$N=1502$$
, $K=600$, $K/N\approx 40\%$ compression

Numerical experiments



Kernel-based reconstruction

- Popular within machine learning for nonlinear function estimation
- Kernel methods seek an estimation of a function in a reproducing kernel Hilbert space (RKHS)

$$\mathcal{H} = \left\{ x: x(v) = \sum_{n=1}^{N} \alpha_n k(v, v_n), \ \alpha_n \in \mathbb{R} \right\}$$
 basis functions

Kernel map $k: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$

 $k(v_n,v_m)$ measures similarity between signal values at v_n and v_m

Any graph signal can be assumed to be in RKHS

$$x = K\alpha$$

$$[\boldsymbol{K}]_{n,m} = k(v_n, v_m)$$

Kernel-based reconstruction

RKHS inner product of
$$x(v) = \sum_{n=1}^{N} \alpha_n k(v, v_n)$$
 and $x'(v) = \sum_{n=1}^{N} \alpha'_n k(v, v_n)$

$$\langle x, x' \rangle_{\mathcal{H}} = \sum_{n=1}^{N} \sum_{n=1}^{N} \alpha_n \alpha'_n k(v_n, v'_n) = \boldsymbol{\alpha}'^T \boldsymbol{K} \boldsymbol{\alpha}$$

RKHS-based function estimator can be used to reconstruct signals

$$\hat{x} = K\alpha$$

$$\hat{m{lpha}} = \mathop{\mathsf{arg\,min}}_{m{lpha} \in \mathbb{R}^N} \mathcal{L}(m{y}, m{\Phi} m{K} m{lpha}) + \mu m{lpha}^T m{K} m{lpha}$$

Or, equivalently

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x} \in \mathcal{H}} \mathcal{L}(\boldsymbol{y}, \boldsymbol{\Phi} \boldsymbol{x}) + \mu \boldsymbol{x}^T \boldsymbol{K}^\dagger \boldsymbol{x}$$

$$\mathcal{L}(\cdot)$$
 is a loss function

$$\alpha^T K \alpha = \alpha^T K K^{\dagger} K \alpha$$

promotes smoothness

Kernel-based reconstruction – ridge regression

Parameterization via representer theorem

$$\hat{m{x}} = m{K}m{lpha} = m{K}m{\Phi}^Tar{m{lpha}} \qquad \qquad ar{m{lpha}} \in \mathbb{R}^K$$

Terms corresponding to unobserved vertices play no role in kernel expansion

$$\hat{ar{lpha}} = \mathop{\mathrm{arg\,min}}_{ar{m{lpha}} \in \mathbb{R}^K} \mathcal{L}(m{y}, ar{m{K}}ar{m{lpha}}) + \mu ar{m{lpha}}^T ar{m{K}}ar{m{lpha}} \qquad ar{m{K}} = m{\Phi} m{K}m{\Phi}^T$$

Kernel ridge regression

$$egin{array}{lll} \hat{oldsymbol{lpha}} &=& rg \min_{ar{oldsymbol{lpha}} \in \mathbb{R}^K} rac{1}{K} \|oldsymbol{y} - ar{oldsymbol{K}} ar{oldsymbol{lpha}} \|^2 + \mu ar{oldsymbol{lpha}}^T ar{oldsymbol{K}} ar{oldsymbol{lpha}} \ &=& (ar{oldsymbol{K}} + \mu K oldsymbol{oldsymbol{I}})^{-1} oldsymbol{y} \ & \hat{oldsymbol{x}} &=& oldsymbol{K} oldsymbol{\Phi}^T (ar{oldsymbol{K}} + \mu K oldsymbol{oldsymbol{I}})^{-1} oldsymbol{y} \end{array}$$

Kernel-based reconstruction

Choice of kernels

Graph bandlimited kernels

$$oldsymbol{x} = oldsymbol{U}_{\mathsf{BL}} ilde{oldsymbol{x}}_f$$

Other topology-based kernel (promotes smooth signal estimates)

$$oldsymbol{K} = r^\dagger(oldsymbol{L}) = oldsymbol{U} r^\dagger(oldsymbol{\Lambda}) oldsymbol{U}^T$$

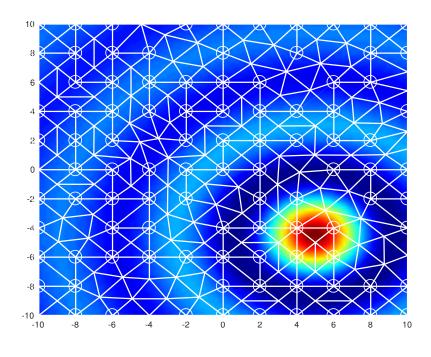
$$r: \mathbb{R} \to \mathbb{R}_+$$

Diffusion kernel: $r(\lambda) = exp\{\sigma^2\lambda/2\}$

p-step random walk kernel: $r(\lambda) = (a - \lambda)^{-p}, a \ge 2$

Laplacian (regularization) kernel: $r(\lambda) = 1 + \sigma^2 \lambda$

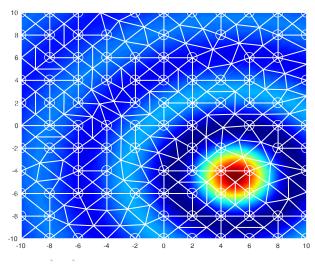
Numerical experiments



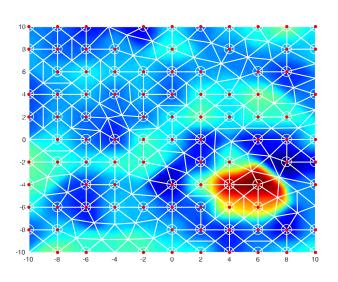
Wave field

- > 2-D field estimation
- \triangleright Rectangular domain of 10×10 m
- > Source located at coordinates (x, y) = (5, -4.5)
- > Noise covariance $\Sigma = \text{Toeplitz}\{1, \rho, \dots, \rho^{N-1}\}.$
- > Gaussian radial basis kernel with $\sigma = 0.8$.

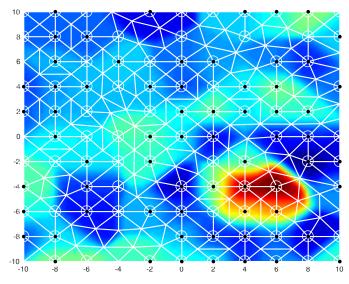
Numerical experiments



Ground truth

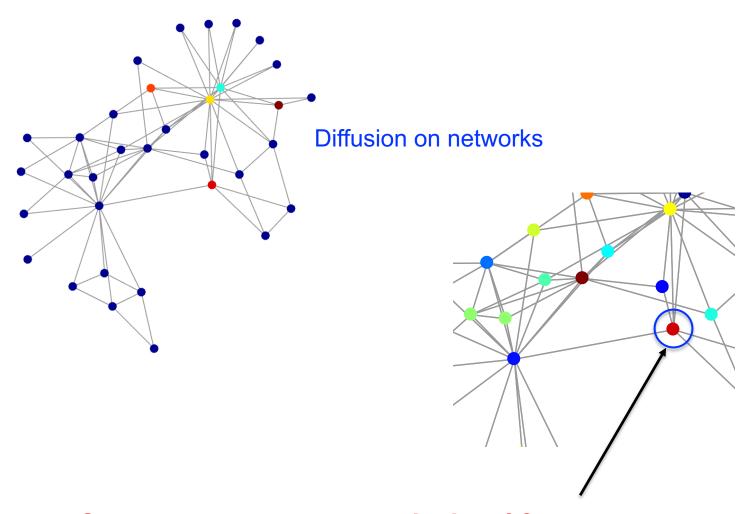


No subsampling (N=97)



Measured 67 out of 97 mesh points

Diffusion processes on networks



Can we reconstruct a graph signal from observations at a single node?

Linear dynamics on networks

Information flow to a node from its neighbors

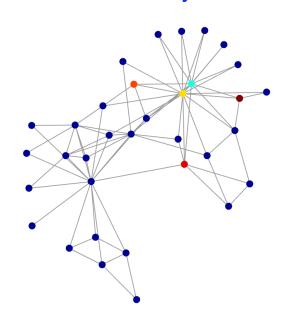
$$egin{array}{lll} oldsymbol{x}_k &=& oldsymbol{S} oldsymbol{x}_{k-1} + oldsymbol{x} u_{k-1} \ y_k &=& oldsymbol{e}_i^T oldsymbol{x}_k \ &=& oldsymbol{e}_i^T oldsymbol{x}_k \ &=& oldsymbol{sample} node i \end{array}$$

$$oldsymbol{x}_{-1} = 0$$
 and $oldsymbol{x}_0 = oldsymbol{x}$ $u_{k-1} = \delta[k]$ (Kronecker delta)

 e_i is the *i*th column of the identity matrix

ightharpoonup Given observations $oldsymbol{y} = \{y_0, \dots, y_{K-1}\}$ estimate $oldsymbol{x}$ K is the number of shifts applied

Linear network dynamics



Linear dynamics on networks

> At the observed node

$$egin{aligned} oldsymbol{y} &= egin{bmatrix} oldsymbol{e}_i^T oldsymbol{S} \ e_i^T oldsymbol{S} \ e_i^T oldsymbol{V} oldsymbol{\Lambda} oldsymbol{U}^H \ e_i^T oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^H \ e_i^T oldsymbol{U} oldsymbol{\Lambda}^{K-1} oldsymbol{U}^H \ \end{bmatrix} oldsymbol{x} \ &= oldsymbol{V} ext{diag}[oldsymbol{\underline{u}}] oldsymbol{U}^H oldsymbol{x} = oldsymbol{V} ext{diag}[oldsymbol{\underline{u}}] oldsymbol{x}_f \ &= oldsymbol{v} ext{diag}[oldsymbol{u}] oldsymbol{x}_f \ &= oldsymbol{v} ext{diag}[oldsymbol{v}]_{i,j} = \lambda_i^{i-1} \ (ext{Vandermonde}) \ &= oldsymbol{v} ext{diag}[oldsymbol{v}]_{i,j} = oldsymbol{v} ext{diag}[oldsymbol{v}]_{i,j} = \lambda_j^{i-1} \ (ext{Vandermonde}) \ &= oldsymbol{v} ext{diag}[oldsymbol{v}]_{i,j} = olds$$

Aggregation sampling is natural while observing time domain signals

Linear dynamics on networks

Recall bandlimitedness:

 \triangleright Suppose the support of the sparse x_f is known

$$oldsymbol{x} = oldsymbol{U} oldsymbol{x}_f = \left[egin{array}{c} oldsymbol{U}_\mathsf{BL} \mid m{\star} \end{array}
ight] \left[egin{array}{c} ilde{oldsymbol{x}}_f \ \hline oldsymbol{0} \end{array}
ight] \quad \Leftrightarrow \quad oldsymbol{x} = oldsymbol{U}_\mathsf{BL} ilde{oldsymbol{x}}_f \ \hline oldsymbol{0} \end{array}$$

> The observations at *node i* will then be

$$m{y} = m{V} \mathsf{diag}[m{u}] m{x}_f = m{V} \mathsf{diag}[m{u}] m{E}_L ilde{m{x}}_f = m{V}_\mathsf{BL} ilde{m{x}}_f$$

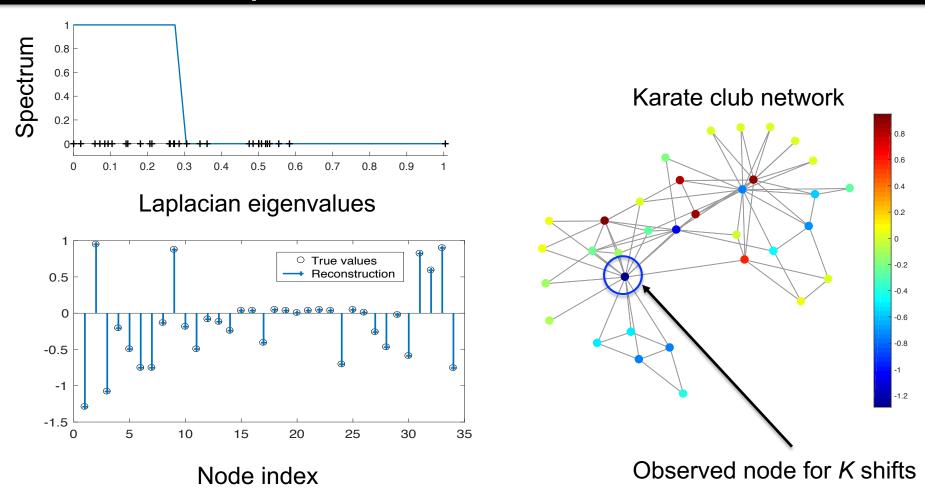
$$\boldsymbol{E}_L = [\boldsymbol{e}_1, \cdots, \boldsymbol{e}_L]$$

of shifts

▶ If the matrix V_{BL} has full column rank, which requires $K \ge L$:

Least squares solution:
$$\widehat{ ilde{x}}_f = oldsymbol{V}_{\mathsf{BL}}^\dagger oldsymbol{y}$$

Numerical experiments

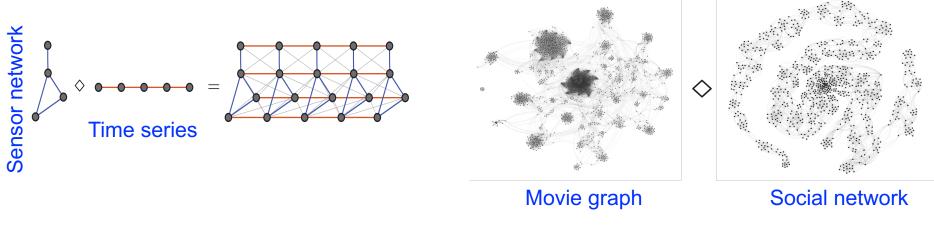


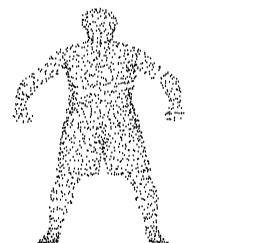
- Although reconstruction possible by observing a single node, system gets quickly ill conditioned (very sensitive to noise).
- Combining observations from a few more nodes might improve conditioning

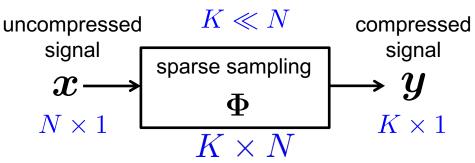
Product Graph Sampling

- G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus. Sampling and Reconstruction of Signals on Product Graphs. *GlobalSIP 2018*, Anaheim, USA. (available on arXiv:1807.00145).
- G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus. Sparse Sampling for Inverse Problems with Tensors. *IEEE TSP (under review)*, June 2018. (available as arXiv:1806.10976).

Sparse sampling on multigraph domains



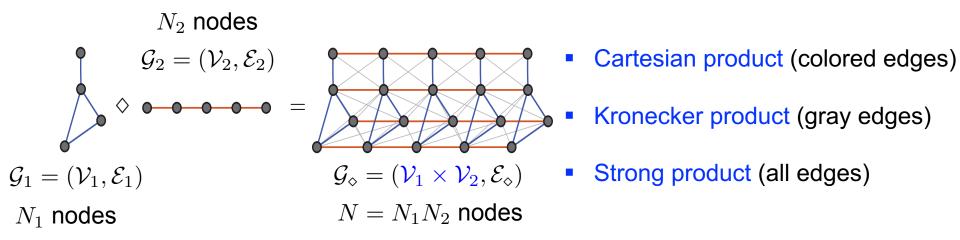




Given y estimate x

Dynamic 3D point cloud

Product graphs



 \blacktriangleright Let us represent \mathcal{G}_1 and \mathcal{G}_2 with the graph-shift operators

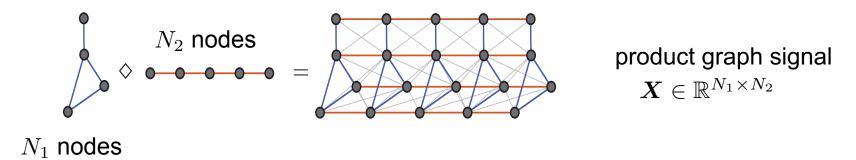
$$m{S}_1 = m{U}_1m{\Lambda}_1m{U}_1^H \in \mathbb{R}^{N_1 imes N_1} \qquad ext{and} \qquad m{S}_2 = m{U}_2m{\Lambda}_2m{U}_2^H \in \mathbb{R}^{N_2 imes N_2}$$

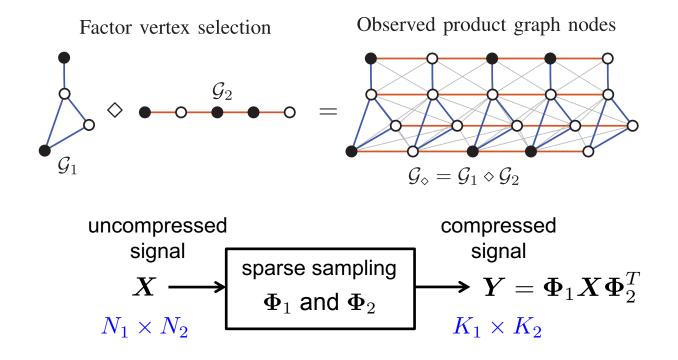
 \triangleright The product graph \mathcal{G}_{\diamond} has the graph-shift operator

$$oldsymbol{S}_{\diamond} = (oldsymbol{U}_1 \otimes oldsymbol{U}_2) oldsymbol{\Lambda}_{\diamond} (oldsymbol{U}_1 \otimes oldsymbol{U}_2)^H \in \mathbb{R}^{N imes N}$$

 Λ_{\diamond} is a diagonal matrix that depends on \mathcal{G}_1 and \mathcal{G}_2 , and the type of product

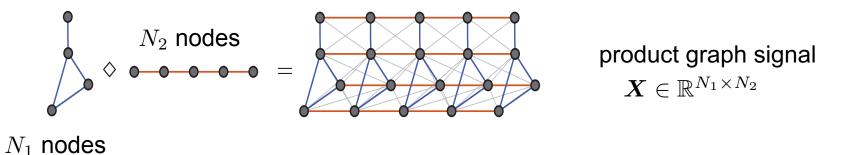
Product graph signals: The sampling problem





Given Y estimate X

Product graph signal



ightharpoonup Product graph signal $oldsymbol{X}$ may be decomposed w.r.t. $oldsymbol{U}_1$ and $oldsymbol{U}_2$ as

$$oldsymbol{X} = oldsymbol{U}_1 oldsymbol{X}_f oldsymbol{U}_1^T \quad \Leftrightarrow \quad oldsymbol{x} = (oldsymbol{U}_1 \otimes oldsymbol{U}_2) oldsymbol{x}_f$$

 \triangleright More generally, for Rth-order product graph, we have a graph (tensor) signal

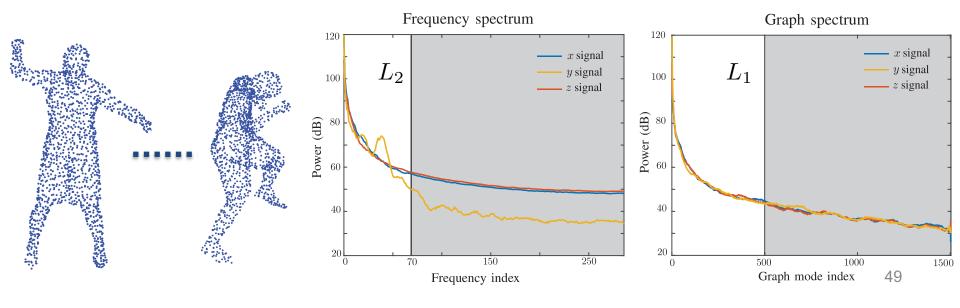
$$\mathcal{X} = \mathcal{X}_f \bullet_1 \mathbf{U}_1 \bullet_2 \mathbf{U}_2 \cdots \bullet \mathbf{U}_R \quad \Leftrightarrow \quad \mathbf{x} = (\mathbf{U}_1 \otimes \mathbf{U}_2 \cdots \otimes \mathbf{U}_R) \mathbf{x}_f$$

$$\mathcal{X} \in \mathbb{R}^{N_1 \times N_2 \cdots \times N_R}$$

Bandlimited product graph signals

> Suppose the support of the sparse $m{x}_f$ is known $m{N}_1 imes m{L}_1 imes m{N}_1 imes m{L}_1$ $m{X}_f m{U}_2^T = egin{bmatrix} \tilde{m{U}}_1 & \star \end{bmatrix} m{X}_f m{V}_2^T & \star \end{bmatrix}$ or

$$oldsymbol{x} = (oldsymbol{U}_1 \otimes oldsymbol{U}_2) oldsymbol{x}_f = \left[egin{array}{c} (ilde{oldsymbol{U}}_1 \otimes ilde{oldsymbol{U}}_2) & \star \end{array}
ight] \left[egin{array}{c} ilde{oldsymbol{x}}_f \ \hline oldsymbol{0} \end{array}
ight]$$



Bandlimited product graph signals

 \triangleright Suppose the support of the sparse x_f is known

se the support of the sparse
$$m{x}_f$$
 is known $m{L}_2 imes N_2$ $m{X}_1 imes L_1$ $m{X}_1 imes L_1$ $m{X}_1 imes L_2 imes N_2$ $m{X}_2 imes L_3 imes L_4 imes N_2$ $m{X}_3 imes L_4 imes N_2$ $m{X}_4 imes L_5 imes L_6 imes N_2$ $m{X}_4 imes L_6 imes N_2$

or

$$oldsymbol{x} = (oldsymbol{U}_1 \otimes oldsymbol{U}_2) oldsymbol{x}_f = \left[egin{array}{c} (ilde{oldsymbol{U}}_1 \otimes ilde{oldsymbol{U}}_2) & \star \end{array}
ight] \left[egin{array}{c} ilde{oldsymbol{x}}_f \ \hline oldsymbol{0} \end{array}
ight]$$

We can reconstruct the product graph signal from subsampled observations since

$$N_1N_2\gg L_1L_2$$
 and $\mathrm{rank}(ilde{m{U}}_1\otimes ilde{m{U}}_2)=\mathrm{rank}(ilde{m{U}}_1)\mathrm{rank}(ilde{m{U}}_2)$

Reconstruction with subspace prior

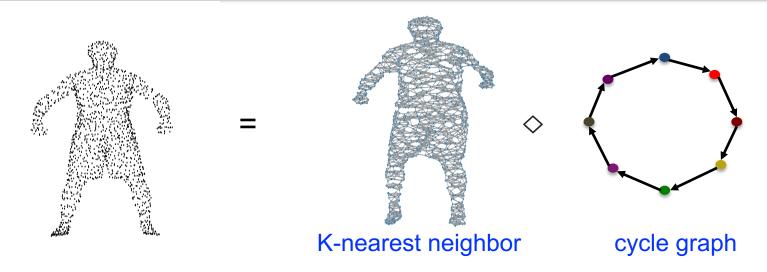
With sparse sampling, we get K_1K_2 equations in L_1L_2 unknowns

For unique reconstruction, we require $K_1 \geq L_1$ and $K_2 \geq L_2$

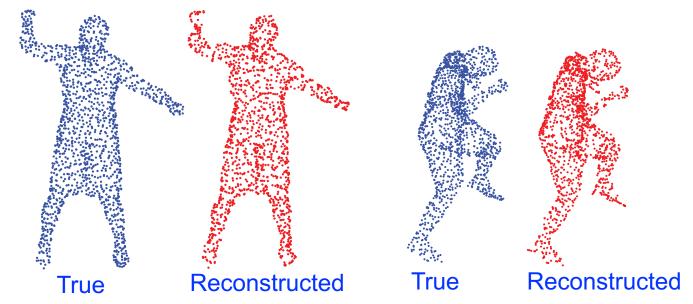
Least squares solution: $\hat{ ilde{m{x}}}_f = [(m{\Phi}_1 m{U}_1)^\dagger \otimes (m{\Phi}_2 m{U}_2)^\dagger] m{y}$

Design of Φ_1 and Φ_2 is crucial for the least-squares solution to be unique

Numerical experiments – dynamic 3D point cloud

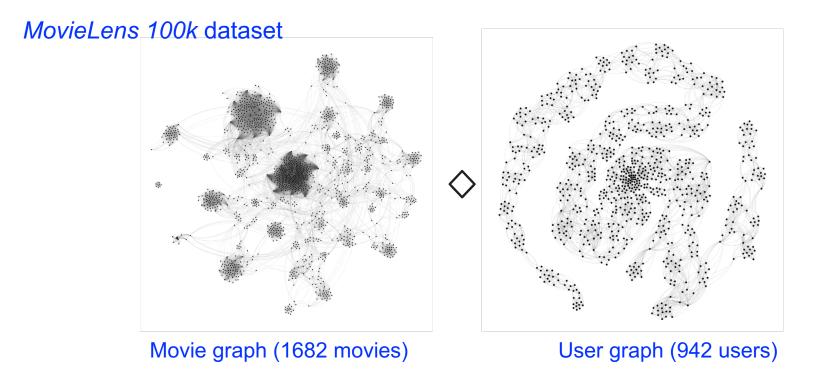


- ➤ 1502 markers, 573 frames. Product graph has 850000 vertices
- We sample 500 spatial points, and 70 time frames



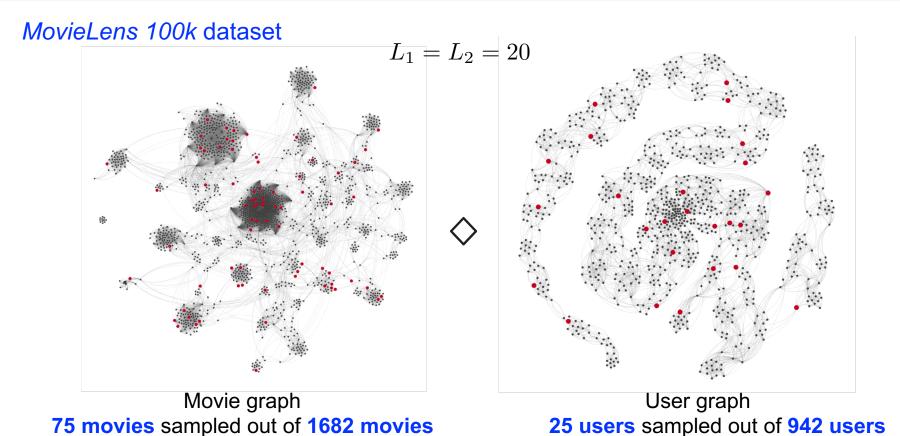
52

Numerical experiments – recommender system



- Product graph has about 1.6 million nodes
- > Features used to build both the graphs (available with the dataset)
- Standard problem: Complete rating matrix using graph prior.
- Active learning: Which users to probe for which movies?

Numerical experiments – recommender system

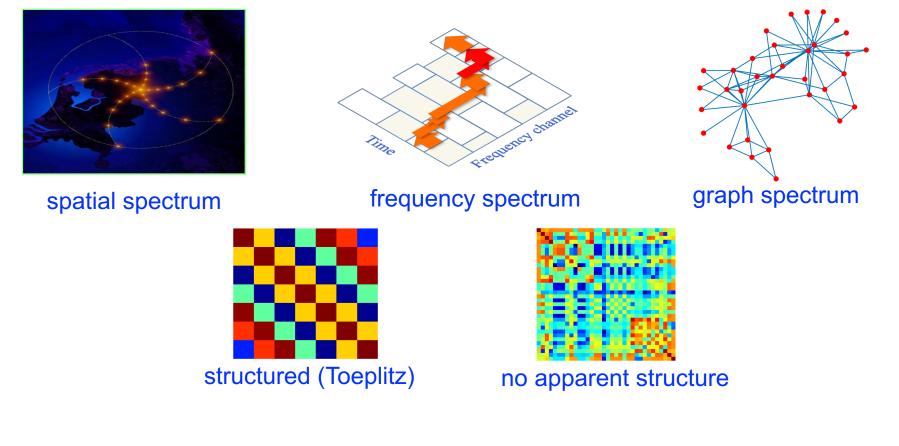


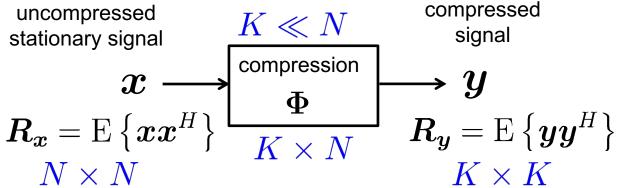
State-of-the-art matrix completion methods

Method	Number of samples	RMSE
GMC [26]	80,000	0.996
GRALS [27]	80,000	0.945
sRGCNN [29]	80,000	0.929
GC-MC [30]	80,000	0.905
Our method	1,875	0.9347

Graph Covariance Sampling

• S.P. Chepuri and G. Leus. Graph Sampling for Covariance Estimation. *IEEE Journ. on Sel. Topics in Sig. Proc. and IEEE Trans. on Sig. and Info. Proc. over Networks, joint special issue on Graph Signal Processing, July 2017.*55



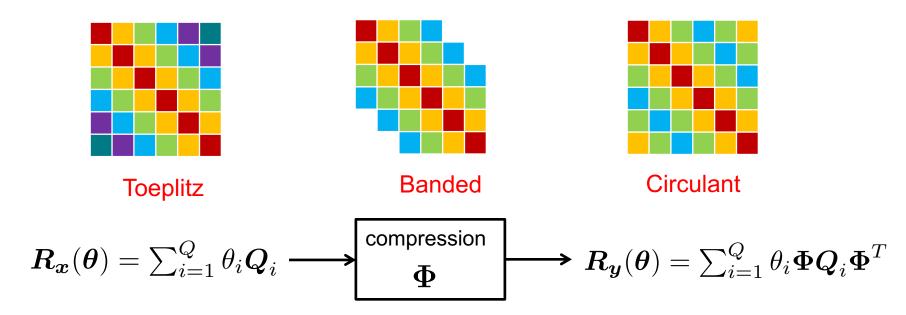


Given R_y or several realizations of y estimate R_x

Compressive covariance sensing

$$egin{aligned} oldsymbol{r_y} & = \mathrm{vec}(oldsymbol{R_y}) = \mathrm{vec}(oldsymbol{\Phi} oldsymbol{R_x} oldsymbol{\Phi}^T) = (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) \mathrm{vec}(oldsymbol{R_x}) \ K^2 imes 1 \end{aligned}$$

ightharpoonup Suppose the covariance matrix R_x has a linear structure



> If
$$K^2>Q$$
 : $m{r_y}=(m{\Phi}\otimesm{\Phi})m{\Psi}m{ heta}$ $m{\hspace{0.5cm}}m{\theta}=[(m{\Phi}\otimesm{\Phi})m{\Psi}]^\daggerm{r_y}$

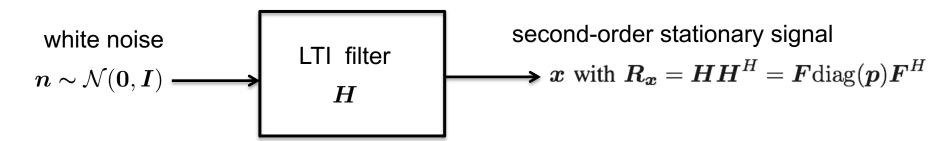
least squares

Design of Φ crucial for the solution to be unique

Second-order stationarity in time

Filtering white noise:

Signal is the output of an LTI filter excited with white noise



The covariance matrix is diagonalized by the Fourier matrix

$$oldsymbol{R_x} = oldsymbol{F} ext{diag}(oldsymbol{p}) oldsymbol{F}^H$$

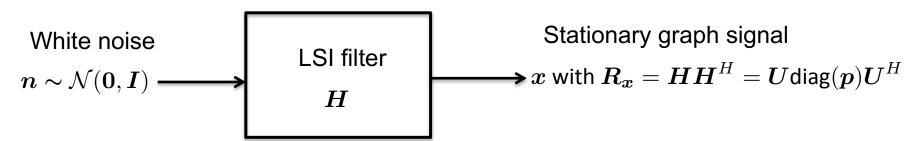
The process has power spectral density

$$\boldsymbol{p} = \operatorname{diag}(\boldsymbol{F}^H \boldsymbol{R}_{\boldsymbol{x}} \boldsymbol{F})$$

Stationary graph signals

Filtering white noise:

ightharpoonup A random graph signal $oldsymbol{x} \in \mathbb{R}^N$ is second-order stationary:



 $m{\succ}$ The filter should be shift invariant $m{H}(m{S}m{x}) = m{S}(m{H}m{x}) \Leftrightarrow m{H} = m{U}$ diag $(m{h}_f)m{U}^H$

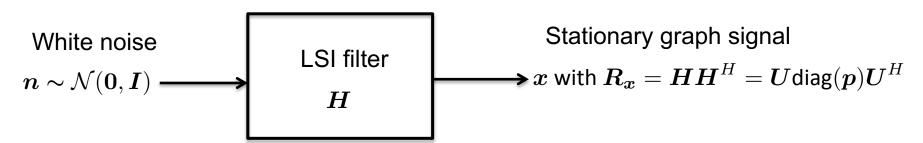
• N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," IEEE TSP, Jul. 2017.

• A. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary graph processes and spectral estimation," IEEE TSP, Nov. 2017.

Stationary graph signals

Filtering white noise:

ightharpoonup A random graph signal $oldsymbol{x} \in \mathbb{R}^N$ is second-order stationary:



Simultaneous diagonalization:

$$oldsymbol{S} = oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^H \qquad \qquad oldsymbol{R_x} = oldsymbol{U} ext{diag}(oldsymbol{p}) oldsymbol{U}^H$$

The process has power spectral density

$$\boldsymbol{p} = \operatorname{diag}(\boldsymbol{U}^H \boldsymbol{R_x} \boldsymbol{U})$$

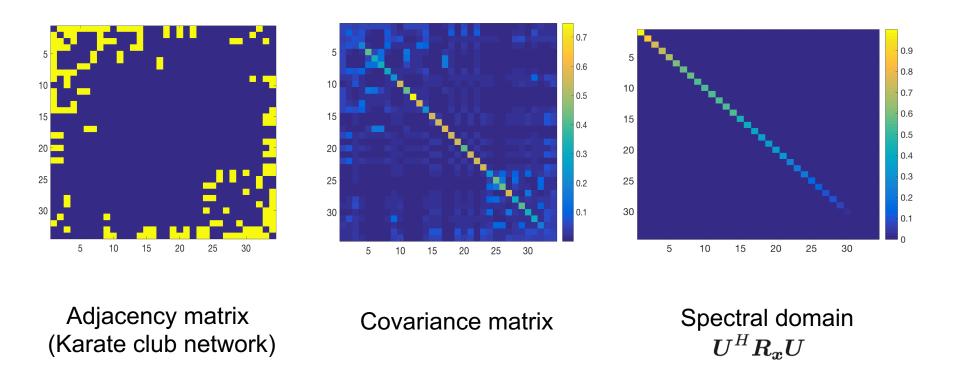
Remark (second-order stationarity in time):

 R_x is a circulant matrix, which can be diagonalized by the DFT matrix

- N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," IEEE TSP, Jul. 2017.
- A. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary graph processes and spectral estimation," IEEE TSP, Nov. 2017.

Stationary graph signals

 $m{ iny}$ Stationary process $m{x} \in \mathbb{R}^N$ on a graph shift $m{S}$

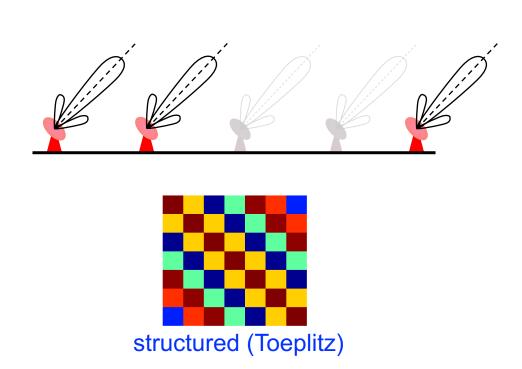


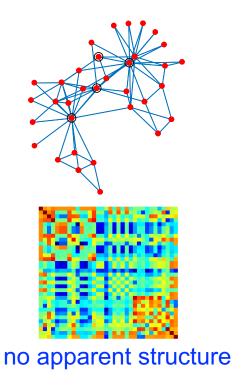
Power spectrum estimation is crucial for statistical inference smoothing, prediction, deconvolution

Power spectrum estimation

Estimate the power spectrum

- a. by observing a reduced subset of nodes/sensors (i.e., subsample)
- b. without using spectral priors (e.g., sparsity, bandlimited with known support)





Non-parametric method

➤ The covariance again admits a linear structure

$$m{R}_{m{x}} = m{U} ext{diag}(m{p}) m{U}^H \qquad \quad m{R}_{m{x}} = \sum_{i=1}^N p_i m{u}_i m{u}_i^H = \sum_{i=1}^N p_i m{Q}_i$$

> After compression:

$$R_{\boldsymbol{x}} = \sum_{i=1}^{N} p_i Q_i \longrightarrow \begin{array}{c} \text{compression} \\ \boldsymbol{\Phi} \end{array} \longrightarrow \begin{array}{c} R_{\boldsymbol{y}} = \sum_{k=i}^{N} p_i \boldsymbol{\Phi} Q_i \boldsymbol{\Phi}^T \end{array}$$

 \blacktriangleright We have K^2 equations in N unknowns

$$egin{aligned} oldsymbol{r}_y &= \mathrm{vec}(oldsymbol{R}_y) = (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) \mathrm{vec}(oldsymbol{R}_x) \ &= (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) (oldsymbol{U} \circ oldsymbol{U}) oldsymbol{p} \ &= (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) oldsymbol{\Psi}_{\mathrm{NP}} oldsymbol{p} \end{aligned}$$

ightharpoonup If the matrix $(\mathbf{\Phi}\otimes\mathbf{\Phi})\mathbf{\Psi}_{\mathrm{NP}}$ has full column rank, which requires $K^2\geq N$

$$\hat{m{p}} = [(m{\Phi} \otimes m{\Phi}) m{\Psi}_{ ext{NP}}]^\dagger m{r_y}$$

 $\mathsf{vec}(A\mathsf{diag}(d)B) = (B^T \circ A)d$

Parametric method (moving average)

 $oldsymbol{\succ}$ Graph signal is a moving average graph process of order L-1

$$oldsymbol{x} = oldsymbol{H}(oldsymbol{h})oldsymbol{n} = \sum_{l=0}^{L-1} h_l oldsymbol{S}^l oldsymbol{n} = oldsymbol{U}\left(\sum_{l=0}^{L-1} h_l oldsymbol{\Lambda}^l\right) oldsymbol{U}^H oldsymbol{n}$$

with covariance matrix

$$oldsymbol{R_x} = oldsymbol{H}(oldsymbol{h}) oldsymbol{H}^H(oldsymbol{h}) = oldsymbol{U}\left(\sum_{l=0}^{L-1} h_l oldsymbol{\Lambda}^l
ight)^2 oldsymbol{U}^H$$

 \succ We can express $oldsymbol{R_x}$ as a matrix polynomial of the graph-shift operator

$$\boldsymbol{R}_{\boldsymbol{x}}(\boldsymbol{b}) = \sum_{k=0}^{Q-1} b_k \boldsymbol{S}^k$$

Covariance matching (basis expansion): $Q = \min\{2L-1,N\}$

degree of minimal polynomial of the graph-shift

For,
$$L=2$$
, $\boldsymbol{R_x}=h_0^2\mathbf{I}+2h_0h_1\boldsymbol{S}+h_1^2\boldsymbol{S}^2$

Parametric method (moving average)

> For a moving average graph process on an undirected graph we have

$$\mathbf{R}_{x} = \sum_{k=0}^{Q-1} b_{k} \mathbf{S}^{k}$$
 $Q = \min\{2L - 1, N\}$

> After compression:

 \blacktriangleright We have K^2 equations in Q unknowns

$$egin{aligned} oldsymbol{r}_y &= \mathrm{vec}(oldsymbol{R}_y) = (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) \mathrm{vec}(oldsymbol{R}_x) \ &= (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) [\mathrm{vec}(oldsymbol{S}^0), \ldots, \mathrm{vec}(oldsymbol{S}^{Q-1})] oldsymbol{b} \ &= (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) oldsymbol{\Psi}_{\mathrm{MA}} oldsymbol{b} \end{aligned}$$

ightharpoonup If the matrix $(oldsymbol{\Phi}\otimesoldsymbol{\Phi})oldsymbol{\Psi}_{
m MA}$ has full column rank, which requires $K^2\geq Q$

$$\hat{m{b}} = [(m{\Phi} \otimes m{\Phi}) m{\Psi}_{ ext{MA}}]^\dagger m{r}_{m{y}}$$

Parametric approach (AR)

For an autoregressive graph process we have (cf. Yule-Walker)

$$\mathbf{R}_{x} = \sum_{k=1}^{P} a_{k} \mathbf{S}^{k} \mathbf{R}_{x} + \mathbf{R}_{nx} \approx \sum_{k=1}^{P} a_{k} \mathbf{S}^{k} \mathbf{R}_{x}$$

> After compression:

 \blacktriangleright We have K^2 equations in Q unknowns

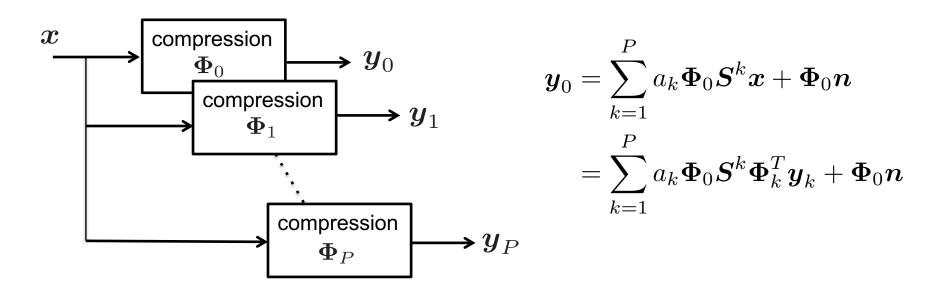
$$egin{aligned} oldsymbol{r}_y &= \mathrm{vec}(oldsymbol{R}_y) = (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) \mathrm{vec}(oldsymbol{R}_x) \ &= (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) [\mathrm{vec}(oldsymbol{S} oldsymbol{R}_{oldsymbol{x}}), \ldots, \mathrm{vec}(oldsymbol{S}^P oldsymbol{R}_{oldsymbol{x}})]_{oldsymbol{a}} \ &= (oldsymbol{\Phi} \otimes oldsymbol{\Phi}) oldsymbol{\Psi}_{\mathrm{AR}} oldsymbol{a} \end{aligned}$$

ightharpoonup If the matrix $(\mathbf{\Phi}\otimes\mathbf{\Phi})\mathbf{\Psi}_{\mathrm{AR}}$ has full column rank, which requires $K^2\geq P$

$$\hat{m{a}} = [(m{\Phi} \otimes m{\Phi}) m{\Psi}_{
m AR}]^\dagger m{r}_{m{y}}$$

Parametric Approach (AR)

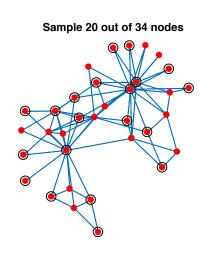
- ightharpoonup The system matrix $\Psi_{
 m AR}$ depends on R_x and not only on R_y
- Solution is to devise a new type of compression scheme
 - ✓ We sample K_0 nodes using Φ_0
 - \checkmark We then sample a P-hop neighborhood of this set of nodes

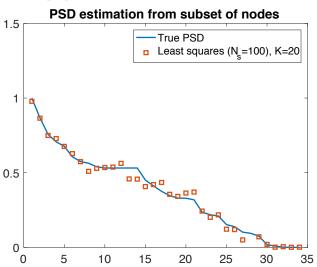


 \triangleright In the time domain, this means we observe series of P consecutive samples

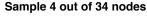
Illustration – Karate club network

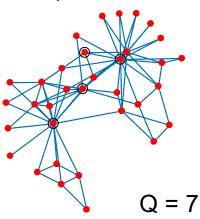
Non-parametric approach

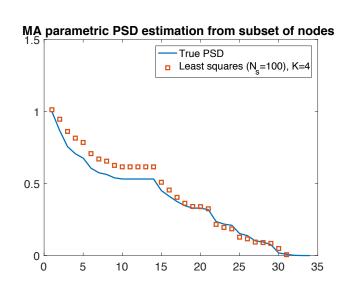




Parametric approach



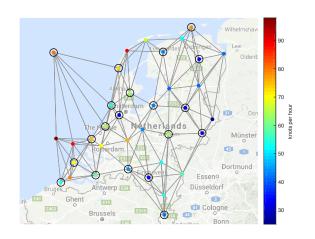


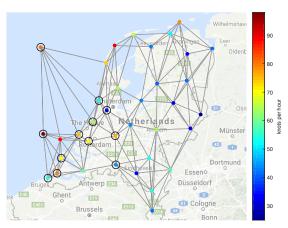


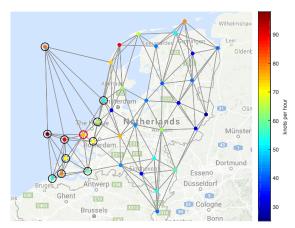
Wind speed dataset

Non-parametric approach

Moving average approach Autoregressive approach







Sample 18 out of 36 stations

Laplacian eigenvalues

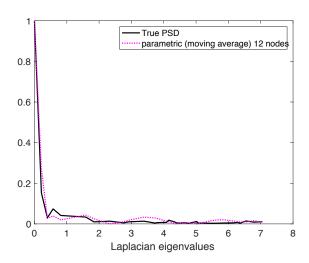
0.8

0.6

0.2

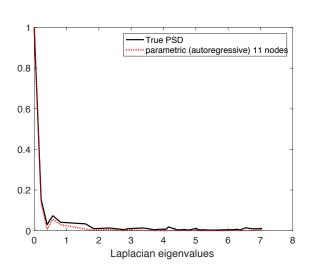
non-parametric approach 18 nodes

12 out of 36 stations



L=6 => Q = 11

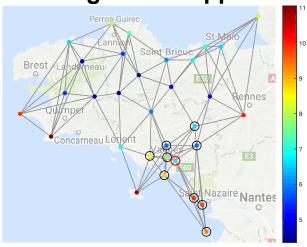
11 out of 36 stations



P = 1

Temperature dataset

Moving average approach Autoregressive approach

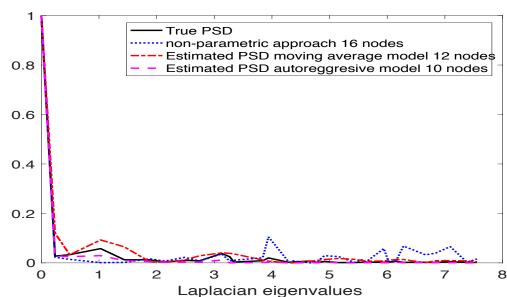


Sample 16 out of 32 nodes

12 out of 32 nodes

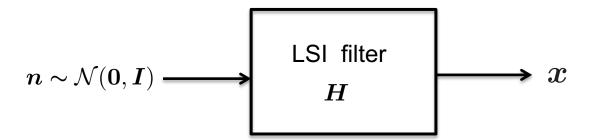
Q = 11

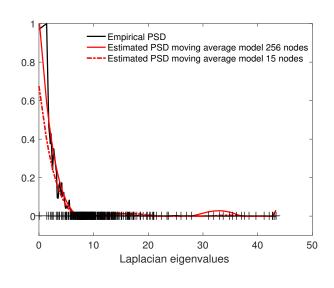
10 out of 32 nodes

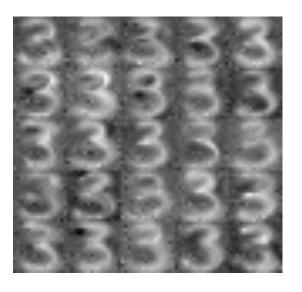


Generate digits

- ➤ Nearest neighbor graph built using digit 3 (16 x 16 pixels) from the USPS dataset.
- Graph signal (pixel intensity) is of length 256

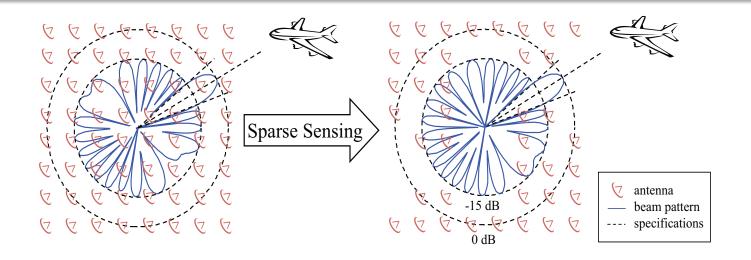






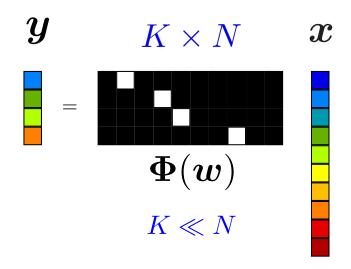
25 realizations

Sparse Sampler Design



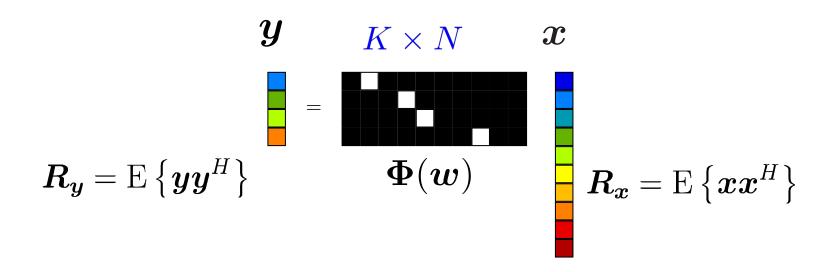
S.P. Chepuri and G. Leus. Sparse Sensing for Statistical Inference. *Foundations and Trends in Signal Processing, Vol. 9: No. 3–4, pp 233-368, Dec. 2016.*

Sparsely sensed signals



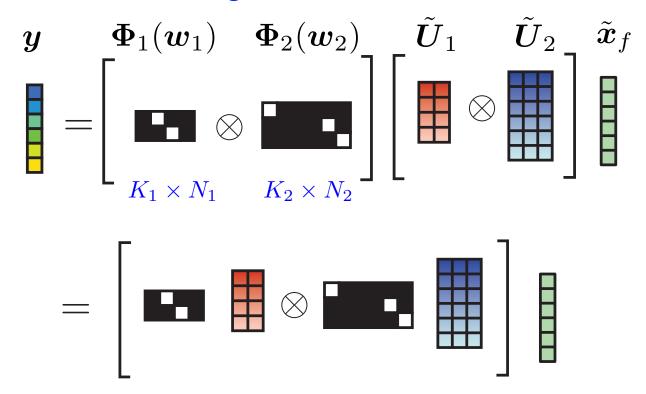
Least squares solution: $[\Phi U_{\mathsf{BL}}]^\dagger y$

Sparsely sensed statistics



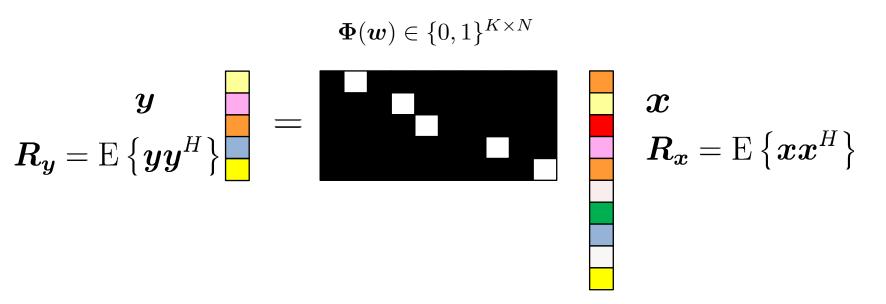
Least squares solution: $[(\mathbf{\Phi}\otimes\mathbf{\Phi})\mathbf{\Psi}]^{\dagger}m{r_y}$

Sparsely sensed multidomain signals



Least squares solution: $[(\mathbf{\Phi}_1 \boldsymbol{U}_1)^\dagger \otimes (\mathbf{\Phi}_2 \boldsymbol{U}_2)^\dagger] \boldsymbol{y}$

What is sparse sampling?



Sampling matrix is determined by the sampling vector/set

$$\mathbf{w} = [w_1, w_2, \dots, w_N]^T \in \{0, 1\}^N$$
 or $\mathcal{S} = \{n | w_n = 1, n = 1, 2, \dots, N\}$

 $w_m = (0)1$ sample or vertex is (not) selected

- Sparse sampling structure
 - only one nonzero entry per row
 - many zero columns

Design problem

Select the "best" subset of vertices out of the candidate vertices that guarantee a certain desired reconstruction accuracy.

optimize
$$f(\boldsymbol{w})$$
 s.to $\operatorname{card}(\boldsymbol{w}) = K$ $\boldsymbol{w} \in \{0,1\}^N$

or

 $f(oldsymbol{w})$ reconstruction performance metric

$$\mathbf{w} = [w_1, w_2, \dots, w_N]^T \in \{0, 1\}^N$$

 ${\cal K}$ sample size

$$S = \{n | w_n = 1, n = 1, 2, \dots, N\}$$

 $w_m = (0)1$ sample or vertex is (not) selected

Design problem

Select the "best" subset of vertices out of the candidate vertices that guarantee a certain desired reconstruction accuracy.

optimize
$$f(\boldsymbol{w})$$
 s.to $\operatorname{card}(\boldsymbol{w}) = K$
$$\boldsymbol{w} \in \{0,1\}^N$$

or

Nonconvex Boolean problem

Solutions to the combinatorial problem

Exact solutions:

- Exhaustive search over
 - $\square \binom{M}{K}$ possible candidates

Branch-and-bound methods

[Lawler-Wood-1966], [Nguyen-Miller-1992]

☐ long runtimes even for a modest sized problem

- E. L. Lawler and D. E. Wood, "Branch-and-bound methods: A survey," Oper. Res., vol. 14, pp. 699–719, 1966.
- N. Nguyen and A. Miller, "A review of some exchange algorithms for constructing discrete D-optimal designs," Comput. Statist.
 Data Anal., vol. 14, pp. 489–498, 1992

Solutions to the combinatorial problem

Suboptimal solutions:

Convex optimization (polynomial time)

[Joshi-Boyd-2009], [Chepuri-Leus-2015]

- $oldsymbol{\square}$ convex relaxation for $\{0,1\},f(oldsymbol{w})$
- ☐ thresholding, randomization to get back a Boolean solution.
- Semidefinite program (typically)

[•] S. Joshi and S. Boyd, "Sensor selection via convex optimization," *IEEE Trans. Signal Process.*, vol. 57, no. 2, pp. 451–462, Feb. 2009

[•] S.P. Chepuri and G. Leus. "Sparsity-Promoting Sensor Selection for Non-linear Measurement Models," *IEEE Trans. on Signal Processing*, vol. 63, no. 3, pp. 684-698, Feb. 2015.

Solutions to the combinatorial problem

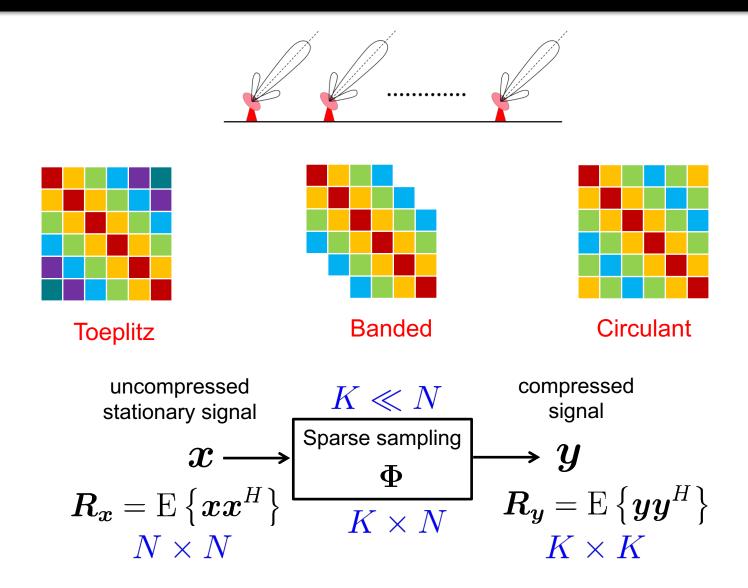
Suboptimal solutions:

Submodular optimization (linear search time)

[Krause-Singh-Guestrin-2008], [Ranieri-Chebira-Vetteri-2014]

- \square Submodularity of f(S)
- greedy search
- solution is near optimal
- A. Krause, A. Singh, and C. Guestrin, "Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies," *J. Machine Learn. Res.*, vol. 9, pp. 235–284, Feb. 2008.
- J. Ranieri, A. Chebira, and M. Vetterli, "Near-optimal sensor placement for linear inverse problems," *IEEE Trans. Signal Process.*, vol. 62, no. 5, pp. 1135–1146, Mar. 2014

Compressive covariance sensing



Sparse covariance sensing (Toeplitz structure)

$$egin{aligned} & R_{m{x}}(m{ heta}) = \sum_{i=1}^{Q} heta_i m{Q}_i & \longrightarrow & \mathbf{R}_{m{y}}(m{ heta}) = \sum_{i=1}^{Q} heta_i m{\Phi} m{Q}_i m{\Phi}^T \end{aligned}$$

- Minimal sparse rulers ensure identifiability and best compression rate (Toeplitz)
 - \checkmark Difference set: $\Delta \mathcal{I} = \{|i_1 i_2|, \forall i_1, i_2 \in I\}$
 - ✓ Length-(N-1) sparse ruler has $\Delta \mathcal{I} = \{0, 1, ..., N-1\}$

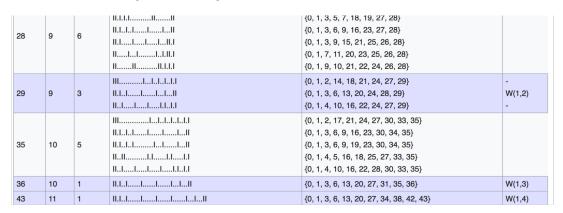
$$N=21$$
:

[Redei-Renyi-1949], [Romero-Ariananda-Tian-Leus-2016]

- L. Redei and A. Renyi, "On the representation of the numbers 1,2,...,n by means of differences (Russian)," Matematicheskii sbornik, vol. 66, no. 3, pp. 385–389, 1949.
- D. Romero, D.D. Ariananda, Z. Tian, and G. Leus. "Compressive covariance sensing: Structure-based compressive sensing beyond sparsity," IEEE Signal Processing Magazine, vol. 33, no. 1, pp.78-93, Jan. 2016.

Sparse covariance sensing (Toeplitz structure)

Minimal sparse rulers are precomputed



https://en.wikipedia.org/wiki/Sparse_ruler

Suboptimal designs for DOA estimation: co-prime, nested samplers
[Vaidyanathan-Pal-2011]

84

Submodular optimization

Requires $f(\cdot)$ to be submodular function of its arguments

Define the sampling set:

$$\mathcal{X}:=\mathcal{S}=\{n|w_n=1,n=1,2,\ldots,N\}$$
 or
$$\mathcal{X}:=\mathcal{N}\setminus\mathcal{S}=\{n|w_n=0,n=1,2,\ldots,N\}$$

 \blacktriangleright Set function $f(\mathcal{X})$ is submodular, if $\forall \mathcal{X} \subseteq \mathcal{Y} \subset N$, $s \in \mathcal{N} \setminus \mathcal{Y}$

$$f(\mathcal{X} \cup \{s\}) - f(\mathcal{X}) \ge f(\mathcal{Y} \cup \{s\}) - f(\mathcal{Y})$$

 \blacktriangleright Set function $f(\mathcal{X})$ is monotone non-decreasing, if

$$f(\mathcal{X} \cup \{s\}) \ge f(\mathcal{X})$$

Design problem

Select the "best" subset of vertices out of the candidate vertices that guarantee a certain desired reconstruction accuracy.

$$\label{eq:maximize} \begin{aligned} & \underset{\mathcal{X}}{\text{maximize}} \ f(\mathcal{X}) \\ & \text{s.to} \quad |\mathcal{X}| = L \end{aligned}$$

$$L = K \text{ or } L = N - K$$

Nonconvex Boolean problem

Submodular optimization

If $f(\cdot)$ is submodular and monotonic

Linear sweep time

Algorithm 1 Greedy algorithm

- 1. Require $\mathcal{X} = \emptyset, L$.
- 2. for k = 1 to L
- $s^* = \arg \max_{s \notin \mathcal{X}} f(\mathcal{X} \cup \{s\})$ $\mathcal{X} \leftarrow \mathcal{X} \cup \{s^*\}$
- 5. **end**
- 6. **Return** \mathcal{X}

$$L = K$$
 or $L = N - K$

Then, greedy algorithm is near-optimal

$$f(\mathcal{X}) \geq \underbrace{(1-1/e)}_{|\mathcal{Y}|=L} \max_{|\mathcal{Y}|=L} f(\mathcal{Y})$$
[Nemhauser-Wolsey-Fisher-1978]

 G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, "An analysis of approximations for maximizing submodular set functions— I," Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

Design problem

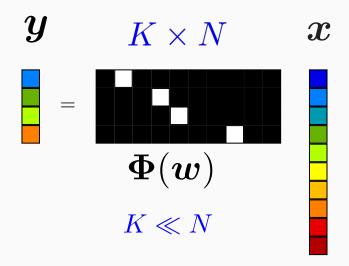
Select the "best" subset of vertices out of the candidate vertices that guarantee a certain desired reconstruction accuracy.

$$\label{eq:maximize} \begin{aligned} & \underset{\mathcal{X}}{\text{maximize}} \ f(\mathcal{X}) \\ & \text{s.to} \quad |\mathcal{X}| = L \end{aligned}$$

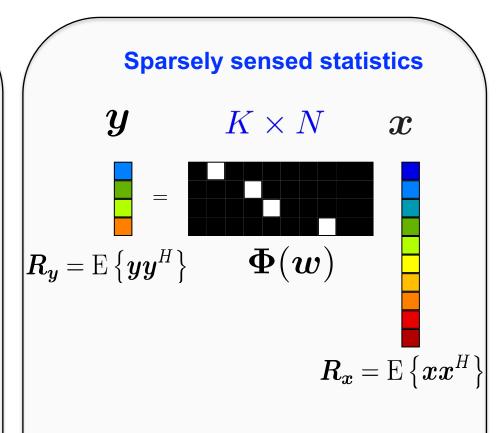
$$L = K \text{ or } L = N - K$$

What is a suitable submodular function $f(\mathcal{X})$ for sparse sampling?

Sparsely sensed signals



Least squares solution: $[\Phi U_{\mathsf{BL}}]^\dagger y$



Least squares solution: $[(\mathbf{\Phi}\otimes\mathbf{\Phi})\mathbf{\Psi}]^{\dagger}m{r_y}$

Quality of the least squares solution

$$[oldsymbol{\Phi}oldsymbol{U}_{\mathsf{BL}}]^\daggeroldsymbol{y}$$
 or $[(oldsymbol{\Phi}\otimesoldsymbol{\Phi})oldsymbol{\Psi}]^\daggeroldsymbol{r_b}$

depends on the spectrum (eigenvalues) of

$$m{T}(m{w}) = [m{\Phi}m{U}_{\mathsf{BL}}]^H [m{\Phi}m{U}_{\mathsf{BL}}] = m{U}_{\mathsf{BL}}^H \mathsf{diag}(m{w}) m{U}_{\mathsf{BL}}$$
 or

$$T(w) = [(\Phi \otimes \Phi)\Psi]^H [(\Phi \otimes \Phi)\Psi] = \Psi^H [\operatorname{diag}(w) \otimes \operatorname{diag}(w)]\Psi$$

We try to balance the spectrum:

$$\operatorname{arg} \max_{\boldsymbol{w} \in \{0,1\}^N} \quad \operatorname{log} \det \{\boldsymbol{T}(\boldsymbol{w})\} \quad \text{s.to} \quad \|\boldsymbol{w}\|_0 = K$$

$$\arg \max_{\boldsymbol{w} \in \{0,1\}^N} \quad \log \det \{\boldsymbol{T}(\boldsymbol{w})\} \quad \text{s.to} \quad \|\boldsymbol{w}\|_0 = K$$

Using set notation

$$\mathcal{X} = \{m | w_m = 1, m = 1, 2, \dots, M\}$$

> Set function

$$\begin{split} f(\mathcal{X}) &= \log \det \left\{ \sum\nolimits_{i \in \mathcal{X}} \boldsymbol{u}_{\mathrm{BL},i} \boldsymbol{u}_{\mathrm{BL},i}^{H} \right\} \quad \text{or} \quad f(\mathcal{X}) = \log \det \left\{ \sum\nolimits_{(i,j) \in \mathcal{X} \times \mathcal{X}} \boldsymbol{\psi}_{i,j} \boldsymbol{\psi}_{i,j}^{H} \right\} \\ \boldsymbol{U}_{\mathrm{BL}} &= [\boldsymbol{u}_{\mathrm{BL},1}, \cdots, \boldsymbol{u}_{\mathrm{BL},N}]^{T} \qquad \qquad \boldsymbol{\Psi} = [\boldsymbol{\psi}_{1,1}, \boldsymbol{\psi}_{1,2}, \cdots, \boldsymbol{\psi}_{N,N}]^{H} \end{split}$$

Set function is submodular and monotone non-decreasing

$$\operatorname{arg} \max_{\boldsymbol{w} \in \{0,1\}^N} \quad \operatorname{log} \det \{T(\boldsymbol{w})\} \quad \text{s.to} \quad \|\boldsymbol{w}\|_0 = K$$

This combinatorial optimization can be near optimally solved using a low-complexity greedy algorithm

$$f(\mathcal{X}) \geq (1 - 1/e) \max_{|\mathcal{Y}| = K} f(\mathcal{Y})$$
[Nemhauser-Wolsey-Fisher-1978]

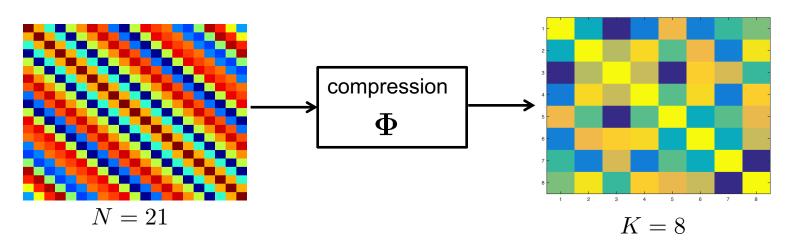
- 1. Require $\mathcal{X} = \emptyset, K$.
- 2. for k=1 to K
- 3. $s^* = \arg\max_{s \notin \mathcal{X}} f(\mathcal{X} \cup \{s\})$ 4. $\mathcal{X} \leftarrow \mathcal{X} \cup \{s^*\}$
- 5. **end**
- 6. Return \mathcal{X}

- ✓ Leverages submodularity
- ✓ Linear sweep time

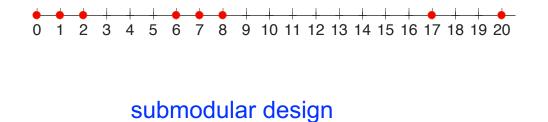
[•] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, "An analysis of approximations for maximizing submodular set functions— I," Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

Toeplitz matrix – array processing

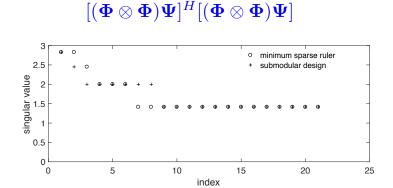
$$m{x} = m{A}(m{ heta}) m{s} + m{n} \Rightarrow m{R}_{m{x}} = m{A}(m{ heta}) \mathsf{diag}(m{\sigma}_s^2) m{A}^H(m{ heta}) + \sigma^2 m{I}$$



sparse ruler (best compression rate, but not easy to compute)

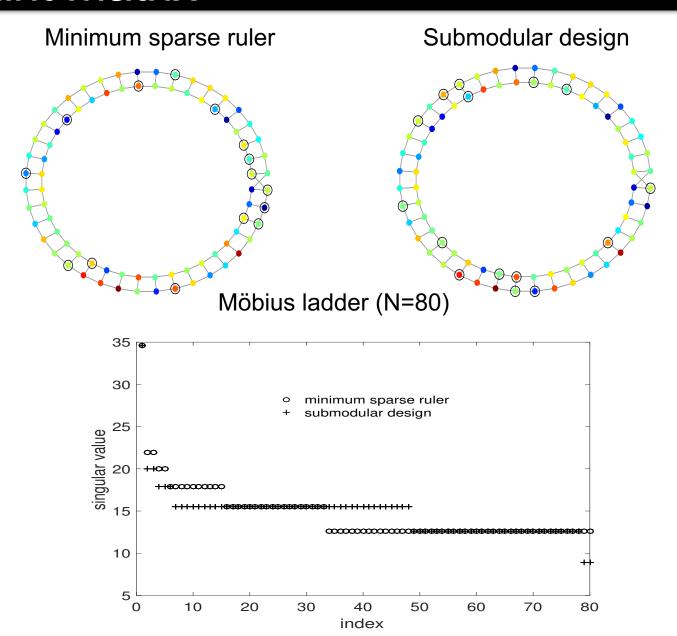






Localize more sources than sensors!

Circulant matrix



Sparsely sensed multidomain signals

Least squares solution: $[(\mathbf{\Phi}_1 \boldsymbol{U}_1)^\dagger \otimes (\mathbf{\Phi}_2 \boldsymbol{U}_2)^\dagger] \boldsymbol{y}$

Design of Φ_1 and Φ_2 is crucial for the least-squares solution to be unique

Quality of the least squares solution

$$[(oldsymbol{\Phi}_1oldsymbol{U}_1)^\dagger\otimes (oldsymbol{\Phi}_2oldsymbol{U}_2)^\dagger]oldsymbol{y}$$

depends on the error covariance matrix

$$egin{aligned} oldsymbol{T}(\mathcal{X}) &= \left(oldsymbol{\Phi}_1 ilde{oldsymbol{U}}_1 \otimes oldsymbol{\Phi}_2 ilde{oldsymbol{U}}_2
ight)^H \left(oldsymbol{\Phi}_1 ilde{oldsymbol{U}}_1 \otimes oldsymbol{\Phi}_2 ilde{oldsymbol{U}}_2
ight)^H \left(oldsymbol{\Phi}_2 ilde{oldsymbol{U}}_2
ight)^H \left(oldsymbol{\Psi}_2 ilde{oldsymbol{U}}_2
ight)^H \left(oldsymbol{$$

$$\mathcal{X} = \mathcal{X}_1 \cup \mathcal{X}_2$$

ightharpoonup Since rank $(A \otimes B) = \text{rank}(A)\text{rank}(B)$, we require (additional constraints)

$$|\mathcal{X}_1| \geq L_1$$
 and $|\mathcal{X}_2| \geq L_2$

As before, we optimize a scalar function of the error covariance matrix

maximize
$$f(T(\mathcal{X}))$$
 s.to $|\mathcal{X}| = K, \ \mathcal{X} = \mathcal{X}_1 \cup \mathcal{X}_2$ $|\mathcal{X}| \geq L_1 \quad |\mathcal{X}_2| \geq L_2$

In particular, we minimize the so-called frame potential (related to the mean squared error)

$$F(\mathcal{X}) := \mathsf{trace}\{\boldsymbol{T}^H\boldsymbol{T}\} = \mathsf{trace}\{\boldsymbol{T}_1^H\boldsymbol{T}_1 \otimes \boldsymbol{T}_2^H\boldsymbol{T}_2\} := F_1(\mathcal{X}_1)F_2(\mathcal{X}_2)$$

ightharpoonup Or, maximize the set function with change of variable $\mathcal{S} = \mathcal{N} \setminus \mathcal{X}$

$$G(S) = F(N) - F(N \setminus S)$$
 $\mathcal{N} = \mathcal{N}_1 \cup \mathcal{N}_2$

Therefore, we have to solve

$$\underset{\mathcal{S}\subseteq\mathcal{N}}{\operatorname{maximize}}\ G(\mathcal{S})$$

s.to
$$S \in \mathcal{I}_u \cap \mathcal{I}_u$$
,

$$\mathcal{I}_u = \{ \mathcal{S} \subseteq \mathcal{N} : \mathcal{S} \le N - K \}$$

$$\mathcal{I}_p = \{ \mathcal{S} \subseteq \mathcal{N} : |\mathcal{S} \cap \mathcal{N}_i| \le N_i - L_i, i = 1, 2 \}$$

[Ortiz-Jiménez et al.-2018]

Truncated partition matroid

- 1. Require $\mathcal{X} = \emptyset, K, \mathcal{I}_u, \mathcal{I}_n$.
- 2. **for** k = 1 **to** N K
- $$\begin{split} s^* &= \arg\max_{s \notin \mathcal{X}} \left\{ f(\mathcal{X} \cup \{s\}) : \mathcal{X} \in \mathcal{I}_u \cap \mathcal{I}_p \right\} \\ \mathcal{X} &\leftarrow \mathcal{X} \cup \{s^*\} \end{split}$$
- 5. **end**
- 6. Return \mathcal{X}

Near optimality guarantees

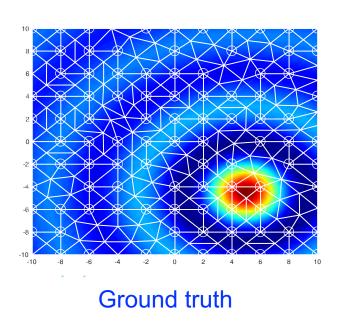
$$G(\mathcal{S}_{\mathsf{greedy}}) \geq \frac{1}{2} G(\mathcal{S}^{\star})$$

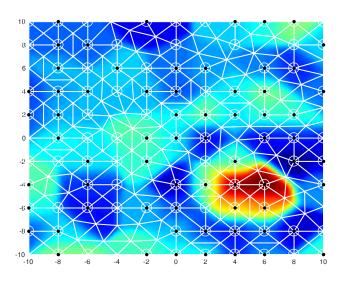
[Nemhauser-Wolsey-Fisher-1978]

Linear sweep time

- G. Ortiz-Jiménez, M. Coutino, S.P. Chepuri, and G. Leus. Sparse Sampling for Inverse Problems with Tensors. IEEE TSP (under review), June 2018. (available as arXiv:1806.10976).
- G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, "An analysis of approximations for maximizing submodular set functions— I." Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

Sampler design for kernel-based method





Measured 67 out of 97 mesh points

Design of sampling sets for kernel methods

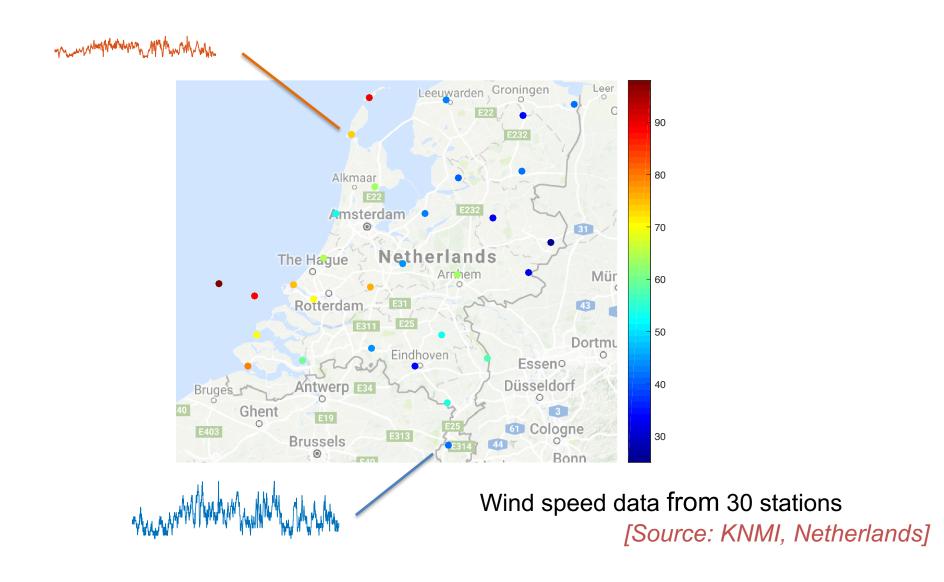
- Submodular optimization
- Convex optimization

[Coutino-Chepuri-Leus-2018]

• M. Coutino, S.P. Chepuri and G. Leus. Subset Selection for Kernel-based Reconstruction. In Proc. of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2018), Calgary, Canada, April 2018.

Sparse Graph Learning

- S.P. Chepuri, S. Liu, G. Leus, and A. Hero. Learning Sparse Graphs Under Smoothness Prior. *ICASSP 2017*, New Orleans, USA.
- V. Kalofolias, "How to learn a graph from smooth signals," in Proc. of the 19th International Conference on Artificial Intelligence and Statistics, 2016.
- X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, "Learning laplacian matrix in smooth graph signal representations," *IEEE TSP, vol. 64, no. 23, Dec. 2016*.

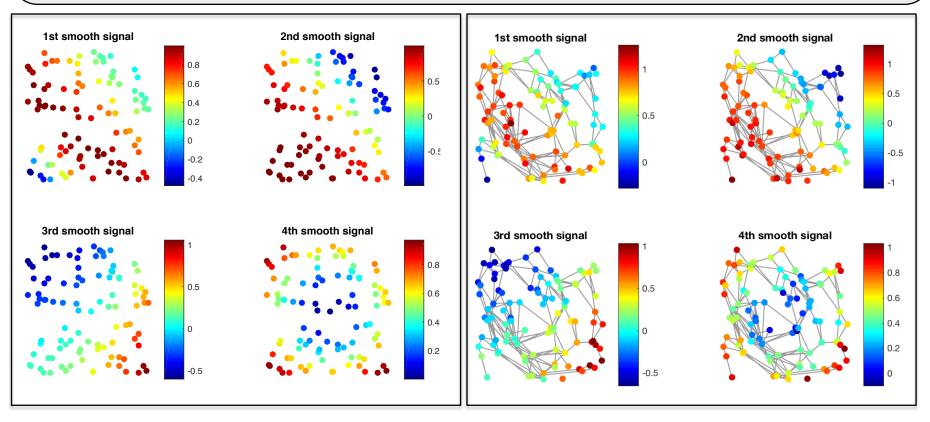


"Learn a sparse graph that sufficiently explains the data"

Sparse graph learning problem

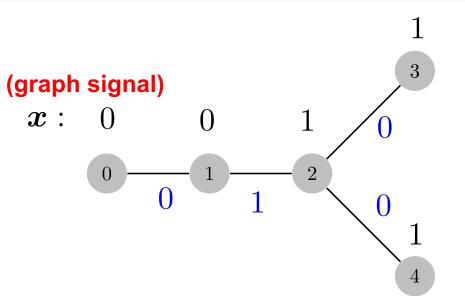
Learn a "sparse graph" (or the graph Laplacian) from data:

- ✓ with " K" edges
- ✓ data varies "smoothly" on the resulting graph



Learnt graph with K = 175 edges using 4 snapshots

Graph Laplacian – quadratic form

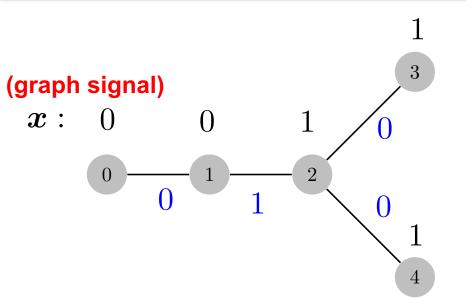


$$\mathbf{x}^{T} \mathbf{L} \mathbf{x} = \sum_{(i,j) \in \mathcal{E}} (x_i - x_j)^2$$
$$= 1$$

Sum of squares of differences across edges

 \succ Quantifies ${\sf smoothness}$ of $m{x}$ with respect to the underlying graph

Graph Laplacian – quadratic form



$$\mathbf{x}^{T} \mathbf{L} \mathbf{x} = \sum_{(i,j) \in \mathcal{E}} (x_i - x_j)^2$$
$$= 1$$

Sum of squares of differences across edges

104

Laplacian matrix can be written as a outer product of "incidence" vectors

$$L = AA^T = \sum_{m=1}^M a_m a_m^T \ \ \text{(quadratic form)}$$
 $[a_m]_i = 1$ $[a_m]_j = -1$ For an edge "m" connecting node "i" and "j" zeros elsewhere

Graph learning as a sampling problem

ightharpoonup Denote the subgraph of $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ or K-sparse graph

$$\mathcal{G}_s(\mathcal{V},\mathcal{E}_s)$$
 with the edge set $\mathcal{E}_s\subset\mathcal{E}$ such that $|\mathcal{E}_s|=K\ll M$

Introduce an "edge sampling" vector

$$\mathbf{w} = [w_1, w_2, \cdots, w_M]^T \in \{0, 1\}^M$$

 $w_m=1$ if an edge belongs to the edge subset $\,\mathcal{E}_s$

Graph Laplacian of the K-sparse graph

$$oldsymbol{L}_s(oldsymbol{w}) = \sum_{m=1}^M w_m oldsymbol{a}_m oldsymbol{a}_m^T$$

(Recall the outer product decomposition of the Laplacian)

- Complete graph
- Given graph

Sparse edge selection

- \succ Given L "noiseless" graph signals $m{X} = [m{x}_1, m{x}_2, \dots, m{x}_L]$
- K-sparse graph learning will be

$$\arg\min_{\boldsymbol{w}\in\mathcal{W}} \quad \frac{1}{L} \sum_{k=1}^{L} \boldsymbol{x}_k^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{x}_k = \frac{1}{L} \operatorname{tr} \{ \boldsymbol{X}^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{X} \}$$

$$\mathcal{W} = \{ \mathbf{w} \in \{0, 1\}^M \mid ||\mathbf{w}||_0 = K \}$$

Non-convex (Boolean optimization problem)

Sparse edge selection

- imes Given L "noiseless" graph signals $oldsymbol{X} = [oldsymbol{x}_1, oldsymbol{x}_2, \dots, oldsymbol{x}_L]$
- K-sparse graph learning will be

$$\arg\min_{\boldsymbol{w}\in\mathcal{W}} \quad \frac{1}{L} \sum_{k=1}^{L} \boldsymbol{x}_k^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{x}_k = \frac{1}{L} \text{tr} \{ \boldsymbol{X}^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{X} \}$$

$$\mathbf{W} = \{ \mathbf{w} \in \{0, 1\}^M \, | \, \|\mathbf{w}\|_0 = K \}$$

Cost function (modular):

$$\frac{1}{L}\operatorname{tr}\left\{\boldsymbol{X}^{T}\boldsymbol{L}_{s}(\boldsymbol{w})\boldsymbol{X}\right\} = \sum_{m=1}^{M} w_{m}\operatorname{tr}\left\{\boldsymbol{X}^{T}(\boldsymbol{a}_{m}\boldsymbol{a}_{m}^{T})\boldsymbol{X}\right\}$$

- Solution: rank ordering!
 - ✓ Computational complexity O(K log K), or O(K) with parallel implementation

Sparse edge selection

Given L "noiseless" graph signals, K-sparse graph learning

$$\arg\min_{\boldsymbol{w}\in\mathcal{W}} \quad \frac{1}{L} \sum_{k=1}^{L} \boldsymbol{x}_k^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{x}_k = \frac{1}{L} \text{tr} \{ \boldsymbol{X}^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{X} \}$$

$$\mathbf{W} = \{ \mathbf{w} \in \{0, 1\}^M \, | \, \|\mathbf{w}\|_0 = K \}$$

Example: Suppose covariance matrix of $oldsymbol{x}$ is $oldsymbol{R_x}$, then

$$L^{-1}\operatorname{tr}\{\boldsymbol{X}^{T}\boldsymbol{L}_{s}(\boldsymbol{w})\boldsymbol{X}\} = \sum_{m=1}^{M} w_{m}(\boldsymbol{a}_{m}^{T}\widehat{\boldsymbol{R}}_{\boldsymbol{x}}\boldsymbol{a}_{m})$$

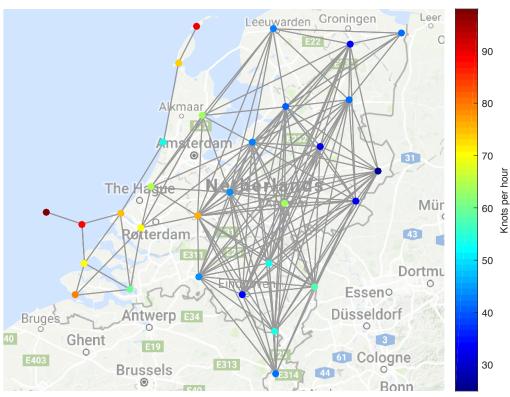
Solution: select K edges between those nodes having highest cross-correlation as

$$\boldsymbol{a}_{m}^{T} \widehat{\boldsymbol{R}}_{\boldsymbol{x}} \boldsymbol{a}_{m} = [\widehat{\boldsymbol{R}}_{\boldsymbol{x}}]_{i,i} + [\widehat{\boldsymbol{R}}_{\boldsymbol{x}}]_{j,j} - 2[\widehat{\boldsymbol{R}}_{\boldsymbol{x}}]_{i,j}$$

(Special case: GMRF model with $oldsymbol{R_x} := oldsymbol{L}^\dagger + \sigma^2 \mathbf{I}$)

Numerical experiments – windspeed data

K=125

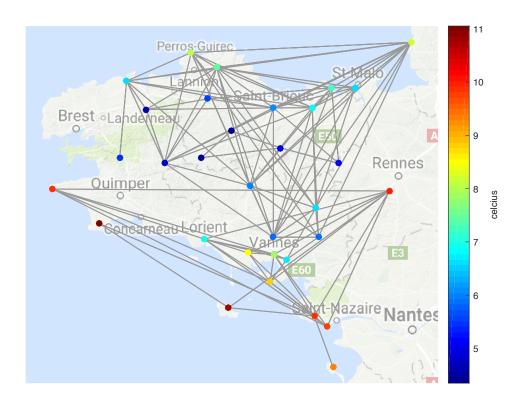


Wind speed data of year 2002 from 30 stations

[Source: KNMI, Netherlands]

Numerical experiments – French temp. data

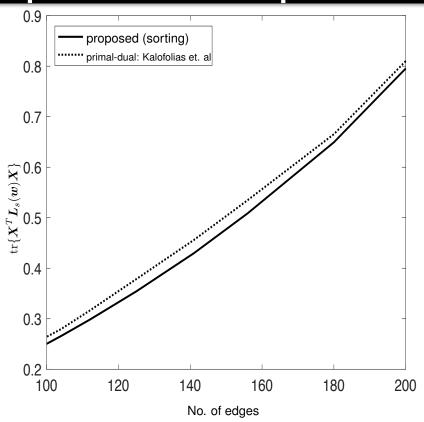
K=110



Temperature data of Brittany, France from 32 stations

Thanks to N. Perraudin and P. Vandergheynst for the dataset.

Numerical experiments - performance



Kalofolias:
$$\min ext{imize}_{m{L} \in \mathcal{L}} \sum_{k=1}^L m{x}_k^T m{L} m{x}_k + \lambda ext{card}(m{L})$$
 $\mathcal{L} = \{m{L} \succeq 0, L_{i,j} = L_{j,i} \leq 0, m{L} m{1} = m{0}\}$

 V. Kalofolias, "How to learn a graph from smooth signals," in Proc. of the 19th International Conference on Artificial Intelligence and Statistics, 2016, pp. 920–929.

Sparse edge selection with "denoising"

 \succ Given "L" noisy signals: $oldsymbol{y}_k = oldsymbol{x}_k + oldsymbol{n}_k$,

$$\arg\min_{\{\boldsymbol{x}_k\}_{k=1}^L, \boldsymbol{w} \in \mathcal{W}} \frac{1}{L} \sum_{k=1}^L (\|\boldsymbol{y}_k - \boldsymbol{x}_k\|_2^2 + \gamma \, \boldsymbol{x}_k^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{x}_k)$$

Solution 1: (alternating minimization)

Fixed
$$\boldsymbol{w}: \boldsymbol{X}_{\min}(\boldsymbol{w}) = [\mathbf{I} + \gamma \boldsymbol{L}_s(\boldsymbol{w})]^{-1} \boldsymbol{Y}$$
 (denoising)

 $\mathsf{Fixed} oldsymbol{X} : oldsymbol{w}_{\min}(oldsymbol{X}) \; \mathsf{sorting}, \; \mathsf{as} \; \mathsf{before} \qquad \mathsf{(edge \, selection)}$

- ✓ Converges to a stationary point
- ✓ Suffers from the choice of the initial estimate

Sparse edge selection and "denoising"

ightharpoonup Given "L" noisy signals: $m{y}_k = m{x}_k + m{n}_k$, $rg \min_{\{m{x}_k\}_{k=1}^L, m{w} \in \mathcal{W}} rac{1}{L} \sum_{k=1}^L (\|m{y}_k - m{x}_k\|_2^2 + \gamma \, m{x}_k^T m{L}_s(m{w}) m{x}_k)$

> Solution 2: (convex optimization – one step)

$$egin{aligned} \widehat{m{w}} &= rg \min_{m{w} \in \mathcal{W}} \quad r(m{w}); \quad \widehat{m{X}} = m{X}_{\min}(\widehat{m{w}}) \end{aligned}$$
 with $r(m{w}) = \|m{Y} - m{X}_{\min}(m{w})\|_F^2 + \gamma \operatorname{tr}\{m{X}_{\min}^T(m{w})m{L}_s(m{w})m{X}_{\min}(m{w})\}$

Hint: Solution to optimal "X" as a function of "w" can be computed in closed form

Convex program:

$$\left(\begin{array}{cc} \operatorname{arg\,min}_{\boldsymbol{Z},\boldsymbol{w}} & \operatorname{tr}\{\boldsymbol{Z}\} \\ \text{s.to} & \left[\begin{array}{cc} \boldsymbol{Z} - \gamma \boldsymbol{Y}^T \boldsymbol{L}_s(\boldsymbol{w}) \boldsymbol{Y} & \boldsymbol{Y}^T \\ \boldsymbol{Y} & \boldsymbol{I} + \gamma \boldsymbol{L}_s(\boldsymbol{w}) \end{array}\right] \succeq \boldsymbol{0}_{L+N}, \\ \boldsymbol{1}^T \boldsymbol{w} = K, \ 0 \leq w_m \leq 1, m = 1, 2, \dots, M, \end{array}\right)$$

Summary

- Reconstructing bandlimited/smooth graph signals via sparse sampling
- Relation to kernel-based signal reconstruction
- Reconstructing product graph signals via sparse tensor sampling
- Reconstructing second-order statistics by subsampling without priors
- Sparse graph learning as a sampling problem

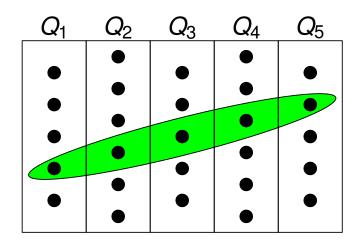
Future directions

- Robust sparse sampling that accounts for perturbations in the graph-shift operator
- Sensor/source placement for topology-aware inference (detection, tracking, network identification, rumor or vaccination injection)
- Joint sensor and edge/link selection (route planning, fast information diffusion or efficient wireless sensor network design)

Matroids

A finite matroid \mathcal{M} is a pair $(\mathcal{N}, \mathcal{I})$, where \mathcal{N} is a finite set (also called the ground set) and \mathcal{I} is a family of subsets of \mathcal{N} (called the independent sets) that satisfies the following properties:

- 1. The empty set is independent, i.e., $\emptyset \in \mathcal{I}$.
- 2. For every $\mathcal{X} \subseteq \mathcal{Y} \subseteq \mathcal{N}$, if $\mathcal{Y} \in \mathcal{I}$, then $\mathcal{X} \in \mathcal{I}$.
- 3. For every $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{N}$ such that $|\mathcal{Y}| > |\mathcal{X}|$ and $\mathcal{X}, \mathcal{Y} \in \mathcal{I}$ there exists one $x \in \mathcal{Y} \setminus \mathcal{X}$ such that $\mathcal{X} \cup \{x\} \in \mathcal{I}$.

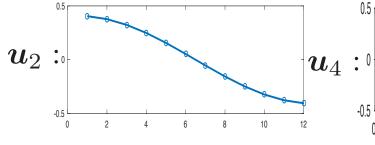


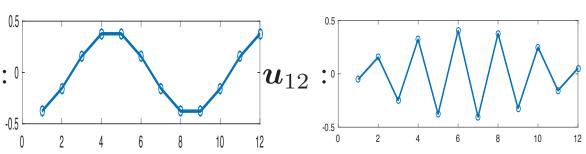
Example: partition matroid

S is independent, if $|S \cap Q_i| \le 1$ for each Q_i .

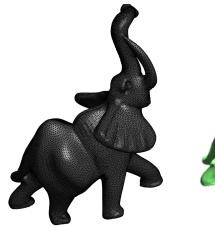
Fourier-like basis

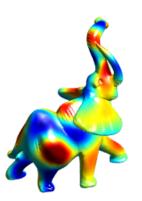
Path graph with 12 nodes

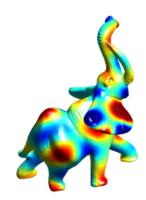




fundamental modes of vibration of a string with free ends

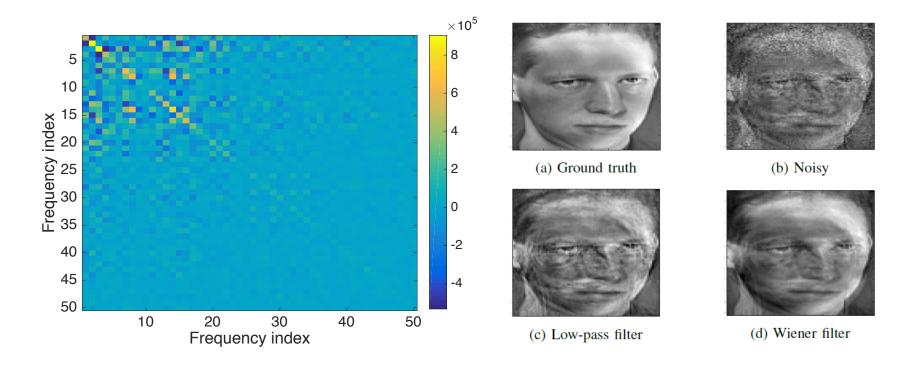






PSD of face images

PSD estimation for spectral signatures of faces of different people



- Graph process corresponding to a single individual is stationary in the covariance matrix graph related to multiple individuals
- Estimated PSD can be used for Wiener filtering