Sparse Sensing for Statistical Inference

Sundeep Prabhakar Chepuri

March 2016

Acknowledgements: Geert Leus

How to optimally deploy sensors?

Thermal map of a processor

Example:

- Field estimation/filtering: localize (varying) heat source(s)
- Field detection: detect hot spot(s)

Radio astronomy (e.g., SKA)

Power networks, PMU placement

Indoor localization (e.g., museum)

Distributed radar (TU Delft campus)

Design sparse space-time samplers

- Why sparse sensing?
 - Economical constraints (hardware cost)
 - Limited physical space
 - Limited data storage space
 - Reduce communications bandwidth
 - Reduce processing overhead

What is sparse sensing?

Find the best indices $\{t_m\}$ to sample x(t) such that a desired inference performance is achieved.

• Design a sparse sampler $w(t) = \sum_m \delta(t - t_m)$ to acquire

$$y(t) = w(t)x(t) = \sum_{m} x(t_m)\delta(t-t_m)$$

Inference tasks can be estimation, filtering, and detection

• Compressed sensing - state-of-the-art low-cost sensing scheme

	Compressed sensing	Sparse sensing
Sparse $x(t)$	needed	not needed
Samplers	random	structured/deterministic
Compression	robust	practical, controllable
Signal processing task	sparse signal reconstruction	any statistical inference

Discrete Sparse Sensing

- Assume a set of candidate sampling locations $\{t_1, t_2, \ldots, t_M\}$
- Design the discrete sensing vector

$$\mathbf{w} = [w(t_1), w(t_2), \dots, w(t_M)]^T$$

$$= [w_1, w_2, \dots, w_M]^T \in \{0, 1\}^M$$

M number of candidate sensors $w_m = (0)1$ sensor is (not) selected

Discrete sparse sensing

- Sensor selection
- Sensor placement
- Sample selection
- Antenna selection

"Design a sparsest w"

$$\mathbf{x} = [x(t_1), x(t_2), \dots, x(t_M)]^T$$

 $\operatorname{diag}_r(\cdot)$ - diagonal matrix with the argument on its diagonal but with the zero rows removed.

What is discrete sparse sensing?

Select the "best" subset of sensors out of the candidate sensors that guarantee a certain desired inference performance.

- Classic solutions:
 - **convex optimization:** design $\{0,1\}^M$ selection vector

[Joshi-Boyd-09]

- greedy methods and heuristics: submodularity [Krause-Singh-Guestrin-08], [Ranieri-Chebira-Vetterli-14]
- Model-driven vs. data-driven (censoring, outlier rejection) [Rago-Willett-Shalom-96], [Msechu-Giannakis-12]

 $\begin{array}{ll} f(\mathbf{w}) & \text{performance measure} & K & \text{number of selected sensors} \\ \lambda & \text{accuracy requirement} \end{array}$

Non-convex Boolean problem

Greedy submodular maximization

• If
$$f(\mathbf{w})$$
 or $f(\mathcal{X})$ is submodular

$$f(\mathcal{X} \cup s) - f(\mathcal{X}) \ge f(\mathcal{Y} \cup s) - f(\mathcal{Y})$$

$$\mathcal{X} = \{m | w_m = 1, m = 1, 2, \dots, M\}; \ \mathcal{X} \subseteq \mathcal{Y} \subseteq \mathcal{M}$$

• If $f(\mathcal{X})$ is monotonically increasing, i.e., $f(\mathcal{X}) \leq f(\mathcal{Y})$

Greedy algorithm [Krause-Singh-Guestrin-08]		
Require: $\mathcal{X} = \emptyset, K$		
repeat		
$s^* = \arg\max_{s \notin \mathcal{X}} f(\mathcal{X} \cup \{s\})$		
$\mathcal{X} \leftarrow \mathcal{X} \cup \{ \pmb{s}^* \}$		
until $ \mathcal{X} = K$		
return X		

- linear complexity
- near-optimal: $\sim 63\%$ [Nemhauser et al., 1978]

12/56

Convex relaxation

- Boolean constraint is relaxed to the box constraint $[0,1]^M$
- $\ell_0(\text{-quasi})$ norm is relaxed to either:
 - (a.) ℓ_1 -norm: $\sum_{m=1}^{M} w_m$ (b.) sum-of-logs: $\sum_{m=1}^{M} \ln(w_m + \delta)$ with $\delta > 0$
 - (c.) your favorite approximation

What is convex $f(\mathbf{w})$ for estimation, filtering, and detection?

I. Estimation

- S.P. Chepuri and G. Leus. Sparsity-Promoting Sensor Selection for Non-linear Measurement Models. *IEEE Trans. on Signal Processing*, *Volume 63, Issue 3, pp. 684-698, February 2015.*
- S.P. Chepuri, G. Leus, and A.-J. van der Veen. Sparsity-Exploiting Anchor Placement for Localization in Sensor Networks. *EUSIPCO*, *September 2013*.

Non-linear inverse problem

• Unknown parameter $\boldsymbol{\theta} \in \mathbb{R}^N$

$$y(t) = w(t) \overbrace{h(t; \theta, n(t))}^{\times (t)}$$

- e.g., source localization
- Candidate sampling locations $\{t_1, t_2, \dots, t_M\}$

$$y_m = w_m \overbrace{h_m(\theta, n_m)}^{x_m \sim p_m(x;\theta)}, \ m = 1, 2, \dots, M$$

- y_m *m*-th spatial or temporal sensor measurement;
- h_m (in general) non-linear function;
- *n_m* white (additive/multiplicative) noise process.

 $f(\mathbf{w})$ for estimation - Cramér-Rao bound

• Best subset of sensors yields the lowest error

$$\mathsf{E} = \mathbb{E}\{(\widehat{oldsymbol{ heta}} - oldsymbol{ heta})(\widehat{oldsymbol{ heta}} - oldsymbol{ heta})^{ op}\}$$

- $\widehat{oldsymbol{ heta}}$ unbiased estimate of $oldsymbol{ heta}$
- Closed-form expression for **E** is not always available (e.g., non-linear, non-Gaussian)
- Cramér-Rao bound (CRB) as a performance measure
 - well-suited for offline design problems
 - reveals (local) identifiability
 - improves performance of any practical algorithm
 - equal to the MSE for the linear case

 $f(\mathbf{w})$ for estimation - Cramér-Rao bound

- Assuming independent observations

 Fisher information (FIM) is additive
- FIM is linear in w_m:

$$\mathbf{F}(\mathbf{w}, \boldsymbol{\theta}) = \sum_{m=1}^{M} w_m \mathbf{F}_m(\boldsymbol{\theta}).$$

$$\mathsf{F}_m(\boldsymbol{\theta}) = \mathbb{E}\left\{ \left(\frac{\partial \ln p_m(x;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right) \left(\frac{\partial \ln p_m(x;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^T \right\} \in \mathbb{R}^{N \times N}$$

• For non-linear models, FIM depends on the true parameter

Select the "most informative sensors"

$f(\mathbf{w})$ for estimation - scalar measures

- Prominent scalar measures (related to the confidence ellipsoid):
 - A-optimality (average error):

$$f(\mathbf{w}) := \operatorname{tr} \{ \mathbf{F}^{-1}(\mathbf{w}, \boldsymbol{ heta}) \}$$

2 E-optimality (worst case error):

$$f(w) := 0 \qquad (\mathbf{E}^{-1})$$

$$f(\mathbf{w}) := \lambda_{\max} \{ \mathbf{F}^{-1}(\mathbf{w}, \boldsymbol{\theta}) \}$$

$$f(\mathbf{w}) := \ln \det \{ \mathbf{F}^{-1}(\mathbf{w}, \boldsymbol{\theta}) \}.$$

Performance measure convex in \mathbf{w} , but depends on $\boldsymbol{\theta}$

Solver

• SDP problem based on ℓ_1 -norm heuristics (E-optimal design):

arg min
w
$$\mathbf{1}^{T}\mathbf{w}$$
s.to
$$\sum_{m=1}^{M} w_m \mathbf{F}_m(\boldsymbol{\theta}) - \lambda \mathbf{I}_N \succeq \mathbf{0}, \quad \forall \boldsymbol{\theta} \in \mathcal{T},$$

$$\mathbf{0} \leq w_m \leq 1, \quad m = 1, \dots, M.$$

• Prior probability $p(\theta)$ is known (e.g., MMSE, MAP):

$$\mathsf{Bayesian} \; \mathsf{FIM}: \quad \mathbf{J}_{\mathrm{p}} + \sum_{m=1}^{M} w_m \mathbb{E}_{\boldsymbol{\theta}} \{ \mathbf{F}_m(\boldsymbol{\theta}) \} \succeq \lambda \mathbf{I}_N$$

$$\mathbf{J}_{\mathrm{p}} = -\mathbb{E}_{\boldsymbol{\theta}} \left\{ \frac{\partial}{\partial \theta} \left(\frac{\ln p(\boldsymbol{\theta})}{\partial \theta} \right)^{T} \right\}$$

Sensor placement for source localization

• θ contains source location.

20/56

Radar placement — TU Delft campus

• Out of *M* = 117 available radar positions, 20 radar positions are selected. *[Inna et al. 2015]*

Dependent (Gaussian) observations

• Suppose the unknown $oldsymbol{ heta} \in \mathbb{R}^N$ follows

 $\mathbf{x} \sim \mathcal{N}(\mathbf{h}(\boldsymbol{\theta}), \boldsymbol{\Sigma})$

• Fisher information matrix

$$\mathbf{F}(\mathbf{w}, \boldsymbol{\theta}) = \left[\mathbf{\Phi}(\mathbf{w}) \mathbf{J}(\boldsymbol{\theta})\right]^T \mathbf{\Sigma}^{-1}(\mathbf{w}) \left[\mathbf{\Phi}(\mathbf{w}) \mathbf{J}(\boldsymbol{\theta})\right]$$

is no more additive/linear in w.

$$\begin{aligned} \mathbf{J}(\boldsymbol{\theta}) &= \frac{\partial \mathbf{h}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \\ \mathbf{\Sigma}^{-1}(\mathbf{w}) &= \left(\mathbf{\Phi}(\mathbf{w}) \mathbf{\Sigma} \mathbf{\Phi}^{\mathsf{T}}(\mathbf{w})\right)^{-1} \end{aligned}$$

 $F(w, \theta)$ in its current form is non convex in w

$f(\mathbf{w})$ for dependent (Gaussian) observations

• Express

 $\boldsymbol{\Sigma} = a \boldsymbol{\mathsf{I}} + \boldsymbol{\mathsf{S}} \quad \text{for any} \quad a \neq 0 \in \mathbb{R} \quad \text{such that} \quad \boldsymbol{\mathsf{S}} \quad \text{is invertible}$

• (E-optimal design) constraint (i.e., $\lambda_{\min}\{\mathbf{F}(\mathbf{w}, \boldsymbol{\theta})\} \geq \lambda$)

$$\mathsf{J}^{\mathsf{T}}(\theta) \mathbf{\Phi}^{\mathsf{T}} \left(\mathsf{a} \mathsf{I} + \mathbf{\Phi} \mathsf{S} \mathbf{\Phi}^{\mathsf{T}} \right)^{-1} \mathbf{\Phi} \mathsf{J}(\theta) \succeq \lambda \mathsf{I}_{\mathsf{N}}$$

is equivalent to

$$\begin{bmatrix} \mathbf{S}^{-1} + \mathbf{a}^{-1} \mathrm{diag}(\mathbf{w}) & \mathbf{S}^{-1} \mathbf{J}(\boldsymbol{\theta}) \\ \\ \mathbf{J}^{T}(\boldsymbol{\theta}) \mathbf{S}^{-1} & \mathbf{J}^{T}(\boldsymbol{\theta}) \mathbf{S}^{-1} \mathbf{J}(\boldsymbol{\theta}) - \lambda \mathbf{I}_{N} \end{bmatrix} \succeq \mathbf{0},$$

an LMI —linear/convex in **w**.

Choose a > 0 and $\mathbf{S} \succ \mathbf{0}$

Hint: use matrix inversion lemma and $\Phi^T \Phi = diag(w)$ 23/56 • SDP problem based on ℓ_1 -norm heuristics (E-optimal design):

$$\begin{array}{l} \arg\min_{\mathbf{w}} \quad \mathbf{1}^{T}\mathbf{w} \\ \text{s.to} \begin{bmatrix} \mathbf{S}^{-1} + a^{-1} \text{diag}(\mathbf{w}) & \mathbf{S}^{-1} \mathbf{J}(\boldsymbol{\theta}) \\ & \mathbf{J}^{T}(\boldsymbol{\theta}) \mathbf{S}^{-1} & \mathbf{J}^{T}(\boldsymbol{\theta}) \mathbf{S}^{-1} \mathbf{J}(\boldsymbol{\theta}) - \lambda \mathbf{I}_{N} \end{bmatrix} \succeq \mathbf{0}, \, \forall \boldsymbol{\theta} \in \mathcal{T}, \\ & \mathbf{0} \leq w_{m} \leq 1, \quad m = 1, \dots, M. \end{array}$$

Sensor placement for source localization

- Sensors along the horizontal edges are equicorrelated (with correlation coefficient = 0.5)
- Sensors along the vertical edges are not correlated

Is correlation good?

- Linear model, Gaussian regression matrix
- Equicorrelated correlation matrix: $\mathbf{\Sigma} = [(1 \rho)\mathbf{I} + \rho\mathbf{1}\mathbf{1}^T]$

 # of sensors required (and MSE, worst case error) reduces as sensors become more coherent

II. Filtering

- S.P. Chepuri, G. Leus. Sparsity-Promoting Adaptive Sensor Selection for Non-Linear Filtering. ICASSP, May 2014.
- S.P. Chepuri, G. Leus. *Compression schemes for time-varying sparse signals*. ASILOMAR, November 2014.

Adaptive sparse sensing

- Some applications:
 - target tracking
 - track time-varying fields

[Masazade-Fardad-Varshney-12], [Chepuri-Leus-14]

• Unknown parameter θ_k obeys the state-space equations

measurements:
$$y_{k,m} = w_{k,m} \underbrace{h_{k,m} (\theta_k, n_{k,m})}_{k,m,m,k,m}, m = 1, 2, ..., M,$$

dynamics: $\theta_{k+1} = \mathbf{A}_k \theta_k + \mathbf{u}_k.$

• Time-varying selection vector:

$$\mathbf{w}_{k} = [w_{k,1}, w_{k,2}, \dots, w_{k,M}]^{T} \in [0, 1]^{M}$$

$f(\mathbf{w})$ for filtering - posterior CRB

• Posterior-FIM can be expressed as

$$\mathbf{F}_{k}(\mathbf{w}_{k}, \{\boldsymbol{\theta}_{\kappa-1}\}_{\kappa=1}^{k}, \boldsymbol{\theta}_{k}) = \overbrace{(\mathbf{Q} + \mathbf{A}_{k}\mathbf{F}_{k-1}^{-1}(\{\boldsymbol{\theta}_{\kappa-1}\}_{\kappa=1}^{k})\mathbf{A}_{k}^{T})^{-1}}^{\mathbf{F}_{k}(\mathbf{w}_{k}, \{\boldsymbol{\theta}_{\kappa-1}\}_{\kappa=1}^{k}, \boldsymbol{\theta}_{k})} + \sum_{m=1}^{M} w_{k,m}\mathbf{F}_{k,m}(\boldsymbol{\theta}_{k})$$

$$\mathbf{F}_{k,m}(\boldsymbol{\theta}_k) = \mathbb{E}\left\{ \left(\frac{\partial \ln p_{k,m}(x;\boldsymbol{\theta}_k)}{\partial \boldsymbol{\theta}_k} \right) \left(\frac{\partial \ln p_{k,m}(x;\boldsymbol{\theta}_k)}{\partial \boldsymbol{\theta}_k} \right)^T \right\} \in \mathbb{R}^{N \times N}$$

• To reduce the computational complexity, the prior Fisher can be simply evaluated at the past estimate.

• SDP problem based on ℓ_1 -norm heuristics:

$$\begin{aligned} & \arg \min_{\mathbf{w}_{k} \in [0,1]^{M}} \quad \mathbf{1}^{T} \mathbf{w}_{k} \\ & \text{s.to} \quad \mathbf{F}_{\mathrm{p},k-1} + \sum_{m=1}^{M} w_{k,m} \mathbf{F}_{k,m}(\boldsymbol{\theta}_{k}) \succeq \lambda \mathbf{I}_{N}, \forall \boldsymbol{\theta}_{k} \in \mathcal{T}_{k} \\ & 0 \leq w_{m} \leq 1, \quad m = 1, \dots, M. \end{aligned}$$

 \mathcal{T}_k around the prediction

Target tracking

• M = 49 equally spaced sensor grid points

Structured signals: sparse, joint-sparse, smoothness,...

• Unknown sparse parameter $\boldsymbol{\theta}_k \in \mathbb{R}^N$ obeys

 $\begin{array}{ll} \text{measurements:} & \mathbf{y}_k = \operatorname{diagr}(\mathbf{w}_k)\mathbf{H}_k\boldsymbol{\theta}_k + \mathbf{n}_k\\ & \text{dynamics:} & \boldsymbol{\theta}_k = \mathbf{A}_k\boldsymbol{\theta}_{k-1} + \mathbf{u}_k\\ \text{pseudo-measurement:} & 0 = r(\boldsymbol{\theta}_k) + e_k \end{array}$

- r(θ_k) enforces structure (e.g., sparsity, smoothness,...) [Carmi-Gurfil-Kanevsky-10], [Farahmand-Giannakis-Leus-Tian-14]
- Traditional (compressive sensing) samplers
 Random Gaussian/Bernoulli entries

 $f(\mathbf{w})$ for filtering with structured states

• Inverse error covariance

$$\mathbf{P}_{k|k}^{-1} = \underbrace{\mathbf{P}_{k|k-1}^{-1}}_{\text{dynamics}} + \underbrace{\partial r(\widehat{\boldsymbol{\theta}}_{k|k-1})\partial r(\widehat{\boldsymbol{\theta}}_{k|k-1})}_{\text{sparsity prior/ pseudo-measurement}}^{T} + \underbrace{\sum_{m=1}^{M} w_{k,m} \mathbf{h}_{k,m} \mathbf{h}_{k,m}^{T}}_{\text{measurements}}$$

- $$\begin{split} \mathbf{h}_{k,m} &: \textit{mth row of the dictionary } \mathbf{H}_k \\ \partial r(\widehat{\boldsymbol{\theta}}_{k|k-1}) &: (\textit{sub})\textit{gradient of } r(\boldsymbol{\theta}_k) \textit{ towards } \boldsymbol{\theta}_k \textit{ at } \widehat{\boldsymbol{\theta}}_{k|k-1} \end{split}$$
- Performance measure $f(\mathbf{w}_k) = \operatorname{tr}\{\mathbf{P}_{k|k}\}$ depends on $\boldsymbol{\theta}_k$

Target tracking: grid-based model

III. Detection

- S.P. Chepuri and G. Leus. Sparse Sensing for Distributed Detection. Trans. on Signal Processing, Oct 2015.
- S.P. Chepuri and G. Leus. *Sparse Sensing for Distributed Gaussian* Detection. ICASSP, April 2015. (Best student paper award)

Distributed detection

• Sensor placement for binary hypothesis testing

 \mathcal{H}_0 : No hot-spot

 \mathcal{H}_1 : Hot-spot

- Other applications
 - spectrum sensing, anomaly detection
 - radar and sonar systems

Distributed detection

• Observations are related to

$$\begin{aligned} \mathcal{H}_0: \quad x_m \sim p_m(x|\mathcal{H}_0), \ m = 1, 2, \dots, M \\ \mathcal{H}_1: \quad x_m \sim p_m(x|\mathcal{H}_1), \ m = 1, 2, \dots, M \end{aligned}$$

- Binary hypothesis testing:
 - classical setting (Neyman-Pearson detector)
 - Bayesian setting

[Cambanis-Masry-83], [Yu-Varshney-97], [Bajovic-Sinopoli-Xavier-11]

Sparse sensing for distributed detection

Classical setting		
arg w	$\min_{\mathbf{v}\in\{0,1\}^M} \ \mathbf{w}\ _0$	
s.to	$P_f(\mathbf{w}) \leq \alpha, P_m(\mathbf{w}) \leq \beta$	

 $\begin{aligned} P_m &= 1 - P(\widehat{\mathcal{H}} = \mathcal{H}_1 | \mathcal{H}_1) & \pi_0, \pi_1 & \text{prior probabilities} \\ P_f &= P(\widehat{\mathcal{H}} = \mathcal{H}_1 | \mathcal{H}_0) & P_e &= \pi_0 P_f + \pi_1 P_m \end{aligned}$

• Error probabilities (in general) do not admit expressions suitable for numerical optimization.

- Weaker measures can be used instead
- Kullback-Liebler distance for the classical setting $\rightarrow \mathcal{D}(\mathcal{H}_1 || \mathcal{H}_0) = \mathbb{E}_{|\mathcal{H}_1} \{ \log I(\mathbf{x}) \}$ \rightarrow upper & lower bounds P_m for fixed P_f
- Bhattacharyya distance (a special case of Chernoff inform.) for the Bayesian setting

• These distances are suitable for offline designs

$f(\mathbf{w})$ for detection

• Assuming conditionally independent observations:

(KL distance)
$$\mathcal{D}(\mathcal{H}_1 || \mathcal{H}_0) = \mathbb{E}_{|\mathcal{H}_1} \{ \log I(\mathbf{x}) \}$$

= $\sum_{m=1}^{M} w_m \underbrace{\mathbb{E}_{|\mathcal{H}_1} \{ \log I_m(\mathbf{x}) \}}_{\mathcal{D}_m}$

(Bhattacharyya distance)
$$\mathcal{B}(\mathcal{H}_1 || \mathcal{H}_0) = -\log \mathbb{E}_{|\mathcal{H}_0} \{ \sqrt{I(\mathbf{x})} \}$$

= $-\sum_{m=1}^{M} w_m \underbrace{\log \mathbb{E}_{|\mathcal{H}_0} \{ \sqrt{I_m(\mathbf{x})} \}}_{\mathcal{B}_m}$

$$\begin{split} I(\mathbf{x}) &= \prod_{m=1}^{M} \frac{p_m(x|\mathcal{H}_1)}{p_m(x|\mathcal{H}_0)} & \text{likelihood ratio} \\ I_m(x) &= \frac{p_m(x|\mathcal{H}_1)}{p_m(x|\mathcal{H}_0)} & \text{local likelihood ratio} \end{split}$$

Solver

• Linear program with explicit solution

arg min
w
$$\|\mathbf{w}\|_{0}$$
s.to
$$\sum_{m=1}^{M} w_{m} d_{m} \geq \lambda,$$

$$w_{m} \in \{0, 1\}, m = 1, 2, \dots, M$$

Hint: sorting

- Classical setting $d_m := \{\mathcal{D}_m\}_{m=1}^M$ Bayesian setting $d_m := \{\mathcal{B}_m\}_{m=1}^M$
- The best subset of sensors: sensors with largest average log/root local likelihood ratio.

Suppose

$$\mathcal{H}_0: \mathbf{x} \sim \mathcal{N}(\boldsymbol{\theta}_0, \sigma^2 \mathbf{I})$$
 vs. $\mathcal{H}_1: \mathbf{x} \sim \mathcal{N}(\boldsymbol{\theta}_1, \sigma^2 \mathbf{I})$

- Kullback-Leibler and Bhattacharyya distance measures are the same up to a constant.
- Distance measure

$$d(\mathbf{w}) = \frac{1}{\sigma^2} (\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)^T \operatorname{diag}(\mathbf{w}) (\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)$$

is simply the scaled signal-to-noise ratio

Example: Gaussian detection

• Sensor selection is optimal in terms of error probabilities

43/56

Suppose

$$\mathcal{H}_0$$
: $\mathbf{x} \sim \mathcal{N}(\boldsymbol{ heta}_0, \boldsymbol{\Sigma})$ vs. \mathcal{H}_1 : $\mathbf{x} \sim \mathcal{N}(\boldsymbol{ heta}_1, \boldsymbol{\Sigma})$

• Distance measure

$$d(\mathbf{w}) = \left[\mathbf{\Phi}(\mathbf{w})\mathbf{m}\right]^T \mathbf{\Sigma}^{-1}(\mathbf{w}) \left[\mathbf{\Phi}(\mathbf{w})\mathbf{m}\right]$$

is no more linear in w.

$$\mathbf{m} = oldsymbol{ heta}_1 - oldsymbol{ heta}_0 \ \mathbf{\Sigma}(\mathbf{w}) = \mathbf{\Phi}(\mathbf{w}) \mathbf{\Sigma} \mathbf{\Phi}^{ op}(\mathbf{w})$$

$f(\mathbf{w})$ for dependent (Gaussian) detection

• Express (as before)

 $\mathbf{\Sigma} = a\mathbf{I} + \mathbf{S}$ for any $a \neq 0 \in \mathbb{R}$ such that \mathbf{S} is invertible

• Constraint $d(\mathbf{w}) \geq \lambda$:

$$\mathbf{m}^{T} \mathbf{\Phi}^{T} \left(\mathbf{a} \mathbf{I} + \mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^{T} \right)^{-1} \mathbf{\Phi} \mathbf{m} \geq \lambda$$

is equivalent to

$$\begin{bmatrix} \mathbf{S}^{-1} + a^{-1} \operatorname{diag}(\mathbf{w}) & \mathbf{S}^{-1}\mathbf{m} \\ \\ \mathbf{m}^{\mathsf{T}} \mathbf{S}^{-1} & \mathbf{m}^{\mathsf{T}} \mathbf{S}^{-1}\mathbf{m} - \lambda \end{bmatrix} \succeq \mathbf{0},$$

an LMI —linear/convex in w.

Choose a > 0 and $\mathbf{S} \succ \mathbf{0}$

Hint: use matrix inversion lemma and $\Phi^T \Phi = diag(w)$ 45/56

• SDP problem based on ℓ_1 -norm heuristics:

arg min
$$\mathbf{1}^T \mathbf{w}$$

s.to $\begin{bmatrix} \mathbf{S}^{-1} + \mathbf{a}^{-1} \operatorname{diag}(\mathbf{w}) & \mathbf{S}^{-1}\mathbf{m} \\ \mathbf{m}^T \mathbf{S}^{-1} & \mathbf{m}^T \mathbf{S}^{-1}\mathbf{m} - \lambda \end{bmatrix} \succeq \mathbf{0},$
 $\mathbf{0} \le w_m \le 1, \quad m = 1, \dots, M.$

Is correlation good or bad?

 Required # of sensors reduce significantly as they become more coherent

Continuous Sparse Sensing

• S.P. Chepuri, G. Leus. *Continuous Sensor Placement*. Signal Proc. Letters, Volume 22, Issue 5, May 2015.

- So far, the focus was on discrete sparse sensing
 - start with a discrete set of candidates to pick the best ones
- Rough grid for complexity savings
 - candidate set is too small and/or resolution is too coarse
 - desired performance might not be achieved

Fine gridding

• Suppose

$$y(t) = w(t)[\mathbf{h}^{H}(t)\boldsymbol{\theta} + n(t)]$$

• How about fine gridding?

Continuous sparse sensing

• Off-the-grid sampling point = on-grid point + perturbation

 $\mathbf{y} = \operatorname{diag}_{\mathbf{r}}(\mathbf{w})(\mathbf{x} + \operatorname{diag}(\mathbf{x}')\mathbf{p})$

 \mathbf{x}' derivative of x(t) towards t

 ${\bf p}$ perturbation of the grid points

• Similar to total-least-squares, continuous basis pursuit [Zhu-Leus-Giannakis-11], [Ekanadham-Tranchina-Simoncelli-11]

For

$$y(t) = w(t)[\mathbf{h}^{H}(t)\boldsymbol{\theta} + n(t)]$$

off-the-grid sample would be

$$y_m = w_m (\mathbf{h}_m^H + \mathbf{p}_m \mathbf{h}_m'^H) \boldsymbol{\theta} + w_m n_m$$
$$= (w_m \mathbf{h}_m + \mathbf{v}_m \mathbf{h}_m')^H \boldsymbol{\theta} + w_m n_m$$

 $v_m := w_m p_m$

Continuous sparse sensing - estimation

• Mean-squared error of the least-squares estimate

$$f(\mathbf{w}, \mathbf{v}) = \sigma^{2} \operatorname{tr} \left\{ \left(\sum_{m=1}^{M} w_{m} \mathbf{h}_{m} \mathbf{h}_{m}^{H} + v_{m}^{2} \mathbf{h}_{m}^{\prime} \mathbf{h}_{m}^{\prime H} + v_{m} (\mathbf{h}_{m}^{\prime} \mathbf{h}_{m}^{H} + \mathbf{h}_{m} \mathbf{h}_{m}^{\prime H}) \right)^{-1} \right\}.$$

• Joint sparse optimization problem

$$\begin{aligned} &\arg \min_{\mathbf{Z} = [\mathbf{w}, \mathbf{v}]} \quad \|\mathbf{Z}\|_{0, 2} \\ &\text{s.to} \quad f(\mathbf{w}, \mathbf{v}) \leq \lambda, \\ & w_m \in \{0, 1\}, m = 1, 2, \dots, M, \\ & v_m \in [-r, r], m = 1, 2, \dots, M. \end{aligned}$$

r: resolution of candidate grid

$$\|\boldsymbol{\mathsf{Z}}\|_{0,2}\!\!:$$
 $\#$ non-zero rows of $\boldsymbol{\mathsf{Z}}$

Example: linear inverse problem

53/56

Conclusions and future works

Conclusions:

• Design space-time sparse samplers

extend Nyquist-based classical sensing techniques

- Fundamental statistical inference problems: Estimation, filtering, and detection
- Applications in networks:

environmental monitoring, location-aware services, spectrum sensing,...

Ongoing and future work:

- Data-driven sparse sensing, model mismatch.
- Continuous sparse sensing
- Clustering and classification

Some more acknowledgements

- Georg Kail (TU Vienna)
- Georgios Giannakis (Univ. of Minnesota)
- Inna Ivashko (TU Delft)
- P.K. Varshney (Syracuse Univ.)
- Shilpa Rao (Indian Inst. of Science)
- Sijia Liu (Syracuse Univ.)
- Venkat Roy (TU Delft)
- Yu Zhang (Univ. of Minnesota)

Thank You!!

For more on sparse sensing for statistical inference, see: $\label{eq:http://cas.et.tudelft.nl/} http://cas.et.tudelft.nl/\sim sundeep$