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How to optimally deploy sensors?

Thermal map of a processor

Example:

Field estimation/filtering: localize (varying) heat source(s)

Field detection: detect hot spot(s)
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Radio astronomy (e.g., SKA) Power networks, PMU placement

Indoor localization (e.g., museum) Distributed radar (TU Delft campus)

Design sparse space-time samplers
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Sparse sensing

Why sparse sensing?

- Economical constraints (hardware cost)

- Limited physical space

- Limited data storage space

- Reduce communications bandwidth

- Reduce processing overhead
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Sparse sensing

What is sparse sensing?

Find the best indices {tm} to sample x(t) such that a desired
inference performance is achieved.

Design a sparse sampler w(t) =
∑

m δ(t − tm) to acquire

y(t) = w(t)x(t) =
∑

m

x(tm)δ(t − tm)

Inference tasks can be estimation, filtering, and detection
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Sparse sensing vs. compressed sensing

Compressed sensing – state-of-the-art low-cost sensing scheme

Compressed sensing Sparse sensing

Sparse x(t) needed not needed

Samplers random structured/deterministic

Compression robust practical, controllable

Signal processing
task

sparse signal
reconstruction

any statistical
inference
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Discrete Sparse Sensing
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Discrete sparse sensing

Assume a set of candidate sampling locations {t1, t2, . . . , tM}

Design the discrete sensing vector

w = [w(t1),w(t2), . . . ,w(tM)]T

= [w1,w2, . . . ,wM ]T ∈ {0, 1}M

M number of candidate sensors
wm = (0)1 sensor is (not) selected
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Discrete sparse sensing

y

=

Φ(w) =

{0,1}K×M

︷ ︸︸ ︷
diagr(w) x

- Sensor selection

- Sensor placement

- Sample selection

- Antenna selection

“Design a sparsest w”

x = [x(t1), x(t2), . . . , x(tM)]T

diagr(·) - diagonal matrix with the argument on its diagonal but with the zero

rows removed.
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Discrete sparse sensing or sensor selection

What is discrete sparse sensing?

Select the “best” subset of sensors out of the candidate sensors
that guarantee a certain desired inference performance.

Classic solutions:
- convex optimization: design {0, 1}M selection vector

[Joshi-Boyd-09]

- greedy methods and heuristics: submodularity
[Krause-Singh-Guestrin-08], [Ranieri-Chebira-Vetterli-14]

Model-driven vs. data-driven (censoring, outlier rejection)
[Rago-Willett-Shalom-96], [Msechu-Giannakis-12]
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Design problem

Problem 1

argmin
w
‖w‖0

s.to f (w) ≤ λ

w ∈ {0, 1}M

f (w) performance measure
λ accuracy requirement

Problem 2

argmin
w

f (w)

s.to ‖w‖0 = K

w ∈ {0, 1}M

K number of selected sensors

Non-convex Boolean problem
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Greedy submodular maximization

If f (w) or f (X ) is submodular

f (X ∪ s)− f (X ) ≥ f (Y ∪ s)− f (Y)

X = {m|wm = 1,m = 1, 2, . . . ,M}; X ⊆ Y ⊆ M

If f (X ) is monotonically increasing, i.e., f (X ) ≤ f (Y)

Greedy algorithm [Krause-Singh-Guestrin-08]

Require: X = ∅,K
repeat

s∗ = argmax
s /∈X

f (X ∪ {s})

X ← X ∪ {s∗}

until |X | = K
return X

linear complexity
near-optimal: ∼ 63% [Nemhauser et al., 1978]
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Convex relaxation

Boolean constraint is relaxed to the box constraint [0, 1]M

ℓ0(-quasi) norm is relaxed to either:

(a.) ℓ1-norm:
∑M

m=1 wm

(b.) sum-of-logs:
∑M

m=1 ln (wm + δ) with δ > 0

(c.) your favorite approximation

Relaxed problem 1

argmin
w

1Tw

s.to f (w) ≤ λ

w ∈ [0, 1]M

What is convex f (w) for estimation, filtering, and detection?
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I. Estimation

S.P. Chepuri and G. Leus. Sparsity-Promoting Sensor Selection for
Non-linear Measurement Models. IEEE Trans. on Signal Processing,
Volume 63, Issue 3, pp. 684-698, February 2015.

S.P. Chepuri, G. Leus, and A.-J. van der Veen. Sparsity-Exploiting
Anchor Placement for Localization in Sensor Networks. EUSIPCO,
September 2013.
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Non-linear inverse problem

Unknown parameter θ ∈ R
N

y(t) = w(t)

x(t)︷ ︸︸ ︷
h(t;θ, n(t))

- e.g., source localization

Candidate sampling locations {t1, t2, . . . , tM}

ym = wm

xm∼pm(x ;θ)︷ ︸︸ ︷
hm(θ, nm), m = 1, 2, . . . ,M

ym m-th spatial or temporal sensor measurement;
hm (in general) non-linear function;

nm white (additive/multiplicative) noise process.
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f (w) for estimation - Cramér-Rao bound

Best subset of sensors yields the lowest error

E = E{(θ̂ − θ)(θ̂ − θ)T}

θ̂ unbiased estimate of θ

Closed-form expression for E is not always available
(e.g., non-linear, non-Gaussian)

Cramér-Rao bound (CRB) as a performance measure
- well-suited for offline design problems
- reveals (local) identifiability
- improves performance of any practical algorithm
- equal to the MSE for the linear case
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f (w) for estimation - Cramér-Rao bound

Assuming independent observations
- Fisher information (FIM) is additive

FIM is linear in wm:

F(w,θ) =

M∑

m=1

wmFm(θ).

Fm(θ) = E

{(
∂ ln pm(x ;θ)

∂θ

)(
∂ ln pm(x ;θ)

∂θ

)T
}

∈ R
N×N

For non-linear models, FIM depends on the true parameter

Select the “most informative sensors”
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f (w) for estimation - scalar measures

Prominent scalar measures (related to the confidence
ellipsoid):

1 A-optimality (average error):

f (w) := tr{F−1(w, θ)}

2 E-optimality (worst case error):

f (w) := λmax{F
−1(w, θ)}

3 D-optimality (error volume):

f (w) := ln det{F−1(w, θ)}.

Performance measure convex in w, but depends on θ
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Solver

SDP problem based on ℓ1-norm heuristics (E-optimal design):

argmin
w

1Tw

s.to

M∑

m=1

wmFm(θ)− λIN � 0, ∀θ ∈ T ,

0 ≤ wm ≤ 1, m = 1, . . . ,M .

Prior probability p(θ) is known (e.g., MMSE, MAP):

Bayesian FIM: Jp +

M∑

m=1

wmEθ{Fm(θ)} � λIN

Jp = −Eθ

{
∂
∂θ

(
ln p(θ)
∂θ

)T
}
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Sensor placement for source localization

θ contains source location.
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Out of M = 80 available sensors (�), 8 sensors indicated by
(∗) are selected. The source domain is indicated by (◦).
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Radar placement — TU Delft campus
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Out of M = 117 available radar positions, 20 radar positions
are selected. [Inna et al. 2015]
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Dependent (Gaussian) observations

Suppose the unknown θ ∈ R
N follows

x ∼ N (h(θ),Σ)

Fisher information matrix

F(w,θ) = [Φ(w)J(θ)]T Σ−1(w) [Φ(w)J(θ)]

is no more additive/linear in w.

J(θ) = ∂h(θ)
∂θ

Σ−1(w) =
(
Φ(w)ΣΦT (w)

)−1

F(w,θ) in its current form is non convex in w
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f (w) for dependent (Gaussian) observations

Express

Σ = aI+S for any a 6= 0 ∈ R such that S is invertible

(E-optimal design) constraint (i.e., λmin{F(w,θ)} ≥ λ)

JT (θ)ΦT
(
aI+ΦSΦT

)−1
ΦJ(θ) � λIN

is equivalent to



S−1 + a−1diag(w) S−1J(θ)

JT (θ)S−1 JT (θ)S−1J(θ)− λIN


 � 0,

an LMI —linear/convex in w.

Choose a > 0 and S ≻ 0

Hint: use matrix inversion lemma and ΦTΦ = diag(w)
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Solver

SDP problem based on ℓ1-norm heuristics (E-optimal design):

argmin
w

1Tw

s.to




S−1 + a−1diag(w) S−1J(θ)

JT (θ)S−1 JT (θ)S−1J(θ)− λIN


 � 0, ∀θ ∈ T ,

0 ≤ wm ≤ 1, m = 1, . . . ,M .
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Sensor placement for source localization

Sensors along the horizontal edges are equicorrelated (with
correlation coefficient = 0.5)

Sensors along the vertical edges are not correlated
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Out of M = 80 available uncorrelated sensors (�) and correlated sensors

(⋄), 14 sensors indicated by (∗) are selected. The source domain is

indicated by (◦).
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Is correlation good?

Linear model, Gaussian regression matrix

Equicorrelated correlation matrix: Σ =
[
(1− ρ)I+ ρ11T

]
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# of sensors required (and MSE, worst case error) reduces as
sensors become more coherent
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II. Filtering

S.P. Chepuri, G. Leus. Sparsity-Promoting Adaptive Sensor Selection for
Non-Linear Filtering. ICASSP, May 2014.

S.P. Chepuri, G. Leus. Compression schemes for time-varying sparse
signals. ASILOMAR, November 2014.
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Adaptive sparse sensing

Some applications:
- target tracking
- track time-varying fields

[Masazade-Fardad-Varshney-12], [Chepuri-Leus-14]

Unknown parameter θk obeys the state-space equations

measurements: yk,m = wk,m

xk,m∼pk,m(x ;θk)︷ ︸︸ ︷
hk,m(θk , nk,m), m = 1, 2, . . . ,M,

dynamics: θk+1 = Akθk + uk .

Time-varying selection vector:

wk = [wk,1,wk,2, . . . ,wk,M ]T ∈ [0, 1]M
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f (w) for filtering - posterior CRB

Posterior-FIM can be expressed as

Fk(wk , {θκ−1}
k
κ=1,θk) =

Fp,k−1({θκ−1}kκ=1)︷ ︸︸ ︷
(Q+ AkF

−1
k−1({θκ−1}

k
κ=1)A

T
k )

−1

+
M∑

m=1

wk,mFk,m(θk)

Fk,m(θk) = E

{(
∂ ln pk,m(x ;θk )

∂θk

)(
∂ ln pk,m(x ;θk )

∂θk

)T
}

∈ R
N×N

To reduce the computational complexity, the prior Fisher can
be simply evaluated at the past estimate.
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Solver

SDP problem based on ℓ1-norm heuristics:

arg min
wk∈[0,1]M

1Twk

s.to Fp,k−1 +

M∑

m=1

wk,mFk,m(θk) � λIN , ∀θk ∈ Tk

0 ≤ wm ≤ 1, m = 1, . . . ,M .

Tk around the prediction
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Target tracking
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Structured signals: sparse, joint-sparse, smoothness,...

Unknown sparse parameter θk ∈ R
N obeys

measurements: yk = diagr(wk)Hkθk + nk

dynamics: θk = Akθk−1 + uk

pseudo-measurement: 0 = r(θk) + ek

r(θk) enforces structure (e.g., sparsity, smoothness,...)
[Carmi-Gurfil-Kanevsky-10], [Farahmand-Giannakis-Leus-Tian-14]

Traditional (compressive sensing) samplers

- Random Gaussian/Bernoulli entries
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f (w) for filtering with structured states

Inverse error covariance

P−1
k|k = P−1

k|k−1︸ ︷︷ ︸
dynamics

+ ∂r(θ̂k|k−1)∂r(θ̂k|k−1)
T

︸ ︷︷ ︸
sparsity prior/ pseudo-measurement

+
∑M

m=1
wk,mhk,mh

T
k,m︸ ︷︷ ︸

measurements

hk,m : mth row of the dictionary Hk

∂r(θ̂k|k−1) : (sub)gradient of r(θk) towards θk at θ̂k|k−1

Performance measure f (wk) = tr{Pk|k} depends on θk
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Target tracking: grid-based model

0 5 10 15 20 25 30
0

5

10

15

20

25

30

 

 

target track
Sensors
Selected sensors

x-axis coordinates [m], time [s]

y-
ax
is
co
or
d
in
at
es

[m
],
ti
m
e
[s
]

1 3 5 7 9 11 13 15 17 19 21 23 25

5

10

15

20

25

30

R
ow

s
o
f
th
e
d
ic
ti
o
n
ar
y
H

time [s]

M = 30 sensors; 5 sensors are selected.
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III. Detection

S.P. Chepuri and G. Leus. Sparse Sensing for Distributed Detection.
Trans. on Signal Processing, Oct 2015.

S.P. Chepuri and G. Leus. Sparse Sensing for Distributed Gaussian
Detection. ICASSP, April 2015. (Best student paper award)
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Distributed detection

Sensor placement for binary hypothesis testing
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Other applications
- spectrum sensing, anomaly detection
- radar and sonar systems
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Distributed detection

Observations are related to

H0 : xm ∼ pm(x |H0), m = 1, 2, . . . ,M

H1 : xm ∼ pm(x |H1), m = 1, 2, . . . ,M

Binary hypothesis testing:

- classical setting (Neyman-Pearson detector)
- Bayesian setting

[Cambanis-Masry-83], [Yu-Varshney-97], [Bajovic-Sinopoli-Xavier-11]
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Sparse sensing for distributed detection

Classical setting

arg min
w∈{0,1}M

‖w‖0

s.to Pf (w) ≤ α,Pm(w) ≤ β

Pm = 1− P(Ĥ = H1|H1)

Pf = P(Ĥ = H1|H0)

Bayesian setting

arg min
w∈{0,1}M

‖w‖0

s.to Pe(w) ≤ e

π0, π1 prior probabilities

Pe = π0Pf + π1Pm

Error probabilities (in general) do not admit expressions
suitable for numerical optimization.
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f (w) for detection

Weaker measures can be used instead

Kullback-Liebler distance for the classical setting
→ D(H1‖H0) = E|H1

{log l(x)}
→ upper & lower bounds Pm for fixed Pf

Bhattacharyya distance (a special case of Chernoff inform.)
for the Bayesian setting

→ B(H1‖H0) = − logE|H0
{
√

l(x)}
→ upper & lower bounds Pe

These distances are suitable for offline designs
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f (w) for detection

Assuming conditionally independent observations:

(KL distance) D(H1‖H0) = E|H1
{log l(x)}

=
M∑

m=1

wm E|H1
{log lm(x)}︸ ︷︷ ︸

Dm

(Bhattacharyya distance) B(H1‖H0) = − logE|H0
{
√

l(x)}

= −
M∑

m=1

wm logE|H0
{
√

lm(x)}︸ ︷︷ ︸
Bm

l(x) =
∏M

m=1
pm(x|H1)
pm(x|H0)

likelihood ratio

lm(x) =
pm(x|H1)
pm(x|H0)

local likelihood ratio
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Solver

Linear program with explicit solution

argmin
w

‖w‖0

s.to

M∑

m=1

wmdm ≥ λ,

wm ∈ {0, 1},m = 1, 2, . . . ,M,

Hint: sorting

Classical setting dm := {Dm}Mm=1

Bayesian setting dm := {Bm}Mm=1

The best subset of sensors:
sensors with largest average log/root local likelihood ratio.
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Example: Gaussian detection

Suppose

H0 : x ∼ N (θ0, σ
2I) vs. H1 : x ∼ N (θ1, σ

2I)

Kullback-Leibler and Bhattacharyya distance measures are the
same up to a constant.

Distance measure

d(w) =
1

σ2
(θ1 − θ0)

Tdiag(w)(θ1 − θ0)

is simply the scaled signal-to-noise ratio
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Example: Gaussian detection

Sensor selection is optimal in terms of error probabilities
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Dependent (Gaussian) observations

Suppose

H0 : x ∼ N (θ0,Σ) vs. H1 : x ∼ N (θ1,Σ)

Distance measure

d(w) = [Φ(w)m]T Σ−1(w) [Φ(w)m]

is no more linear in w.

m = θ1 − θ0

Σ(w) = Φ(w)ΣΦT (w)
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f (w) for dependent (Gaussian) detection

Express (as before)

Σ = aI+S for any a 6= 0 ∈ R such that S is invertible

Constraint d(w) ≥ λ:

mTΦT
(
aI+ΦSΦT

)−1
Φm ≥ λ

is equivalent to



S−1 + a−1diag(w) S−1m

mTS−1 mTS−1m− λ


 � 0,

an LMI —linear/convex in w.

Choose a > 0 and S ≻ 0

Hint: use matrix inversion lemma and ΦTΦ = diag(w)
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Solver

SDP problem based on ℓ1-norm heuristics:

argmin
w

1Tw

s.to




S−1 + a−1diag(w) S−1m

mTS−1 mTS−1m− λ


 � 0,

0 ≤ wm ≤ 1, m = 1, . . . ,M .
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Is correlation good or bad?

Equicorrelated Gaussian observations
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Non-identical observations

Required # of sensors reduce significantly as they become
more coherent

47/56



Continuous Sparse Sensing

S.P. Chepuri, G. Leus. Continuous Sensor Placement. Signal Proc.
Letters, Volume 22, Issue 5, May 2015.
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Rough gridding

So far, the focus was on discrete sparse sensing

- start with a discrete set of candidates to pick the best ones

Rough grid for complexity savings

- candidate set is too small and/or resolution is too coarse

- desired performance might not be achieved
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Fine gridding

Suppose
y(t) = w(t)[hH(t)θ + n(t)]

How about fine gridding?
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Continuous sparse sensing

Off-the-grid sampling point = on-grid point + perturbation

y = diagr(w)(x+ diag(x′)p)

x′ derivative of x(t) towards t

p perturbation of the grid points

Similar to total-least-squares, continuous basis pursuit
[Zhu-Leus-Giannakis-11], [Ekanadham-Tranchina-Simoncelli-11]

For
y(t) = w(t)[hH(t)θ + n(t)]

off-the-grid sample would be

ym = wm(h
H
m + pmh

′H
m )θ + wmnm

= (wmhm + vmh
′
m)

H
θ + wmnm

vm := wmpm
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Continuous sparse sensing - estimation

Mean-squared error of the least-squares estimate

f (w, v) = σ2tr

{(∑M

m=1
wmhmh

H
m + v2

mh
′
mh

′H
m

+vm(h
′
mh

H
m + hmh

′H
m )

)−1
}
.

Joint sparse optimization problem

arg min
Z=[w,v]

‖Z‖0,2

s.to f (w, v) ≤ λ,

wm ∈ {0, 1},m = 1, 2, . . . ,M,

vm ∈ [−r , r ],m = 1, 2, . . . ,M.

r : resolution of candidate grid

‖Z‖0,2: # non-zero rows of Z
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Example: linear inverse problem

On-grid points {tm = 1, 2, 3, . . . , 11}
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Discrete sparse sensing

mse(θ) ≈ 0.47
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Continuous sparse sensing

mse(θ) ≈ 0.36
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Conclusions and future works

Conclusions:

Design space-time sparse samplers
extend Nyquist-based classical sensing techniques

Fundamental statistical inference problems:
Estimation, filtering, and detection

Applications in networks:
environmental monitoring, location-aware
services, spectrum sensing,. . .

Ongoing and future work:

Data-driven sparse sensing, model mismatch.

Continuous sparse sensing

Clustering and classification
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Thank You!!

For more on sparse sensing for statistical inference, see:
http://cas.et.tudelft.nl/∼sundeep
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