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How to optimally deploy sensors? 

•  Field estimation/filtering: localize (varying) heat source(s) 
•  Field detection: detect hot spot(s)  
 

Thermal map of a processor 
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Distributed radar (TU Delft campus) 

Indoor localization (e.g., museum) 
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Microseismic event detection 



Radio astronomy (e.g., LOFAR, SKA) 

Power networks (PMU placement) 

Ultrasound imaging 
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The term “sparse sensing = sampling” has been used earlier: 

     - Sampling sparse signals [Vetterli et al.-2008] 

     - Covariance reconstruction and array processing [Vaidyanathan et al.-2011] 

•  T. Blu, P.L. Dragotti, M.Vetterli, P. Marziliano, and L. Coulot. “Sparse sampling of signal innovations,” IEEE Signal Processing 
Magazine, vol. 25, no. 2, pp. 31-40, Mar. 2008. 

•  P.P. Vaidyanathan and P. Pal. "Sparse sensing with co-prime samplers and arrays." IEEE Transactions on Signal Processing, vol. 
59, no. 2, pp.  573-586, Feb. 2011. 

Design structured (sparse) space-time samplers  
 



Why sparse sensing? 

Ø  Economical constraints (hardware cost) 
  
Ø  Limited physical space 
 
Ø  Limited data storage space 
 
Ø  Reduce communications bandwidth  
 
Ø  Reduce processing overhead  

8 



What is sparse sensing? 
Find the best indices          to sample        such that a 

desired inference performance is achieved.  
{�m} x(t)

Design a sparse sampler                                   to acquire  w(t) =
�

m �(� � �m)

y(t) = w(t)x(t) =
�

m x(�m)�(� � �m)

Inference tasks can estimation, filtering, and detection 9 



Compressive sensing 
Ø State-of-the-art tool for sensing cost reduction 

         [Donoho 2006], [Candès 2006] 
 

 

•  D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006. 
•  E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete 

frequency information,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, feb. 2006. 
 

Ø Random linear projections of Nyquist rate samples 
Ø Sparse signal reconstruction 
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Sparse sensing vs. compressed sensing 
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Sparse sensing 
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Sparse sensing vs. compressed sensing 
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unknown sparse signal 
 

uncompressed signal 
 

model 
 

compression 
 

perturbation 
 

sparse reconstruction 

observations 
 

Compressed sensing 



Sparse sensing vs. compressed sensing 

Compressed sensing Sparse sensing 

Sparse signal needed Not needed 

Samplers random Structured and 
deterministic 

Compression robust practical, controllable 

Signal processing 
task  
 

sparse signal reconstruction any statistical inference 
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Sparse sensing paradigms 

1.   Discrete (or on-grid) sparse sensing 

2.   Continuous (or off-grid) sparse sensing 

14 

  

unknown 
parameters 

or 
events 

sparse sensing 

on-grid off-grid 

physical model 

inference from reduced dimension samples 

perturbation unobserved data 
(e.g., temperature, pollution field) 



Discrete Sparse Sensing 
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Discrete sparse sensing - model 

Ø  To design continuous-domain          

Ø Assume                            lie on a discrete grid 

Ø Design the discrete sensing vector   

w(t)

{t1, t2, · · · , tM}

M � K

{�1, �2, · · · , �K}

w = [w(t1), w(t2), . . . , w(tM )]T

= [w1, w2, . . . , wM ]T � {0, 1}M

        number of candidate sensors 
              sensor is (not) selected 
M
wm = (0)1
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Ø Input is also discretized  

Ø Sparse sensing structure 
•   only one nonzero entry per row 
•   many zero columns 

Discrete sparse sensing - model 

y x

•  Sensor selection 
•  Sensor placement  
•  Sample selection 
•  Antenna selection 

x = [x(t1), x(t2), . . . , x(tM )]T

17 

�(w) 2 {0, 1}K⇥M



           inference performance metric  
 
     prescribed accuracy  

Design problem 

Select the “best” subset of sensors out of the candidate sensors 
that guarantee a certain desired inference performance. 

argmin
w

�w�0

s.to f(w) � �

w � {0, 1}M

argmin
w

f(w)

s.to �w�0 = K

w � {0, 1}M

Formulation 1 Formulation 2 

f(w)

�

sample size K
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Design problem 

Select the “best” subset of sensors out of the candidate sensors 
that guarantee a certain desired inference performance. 

argmin
w

�w�0

s.to f(w) � �

w � {0, 1}M

argmin
w

f(w)

s.to �w�0 = K

w � {0, 1}M

Formulation 1 Formulation 2 

Nonconvex Boolean problem 
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Solutions to the combinatorial problem 

Ø Exhaustive search over 
q          possible candidates for formulation 1  
q          possible candidates for formulation 2 

Ø Branch-and-bound methods 
    [Lawler-Wood-1966], [Nguyen-Miller-1992] 

q  long runtimes even for a modest sized problem 

�M
K

�2M

M = 30, 2M = 109

•  E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Oper. Res., vol. 14, pp. 699–719, 1966. 
•  N. Nguyen and A. Miller, “A review of some exchange algorithms for constructing discrete D-optimal designs,” Comput. Statist. 

Data Anal., vol. 14, pp. 489–498, 1992 
 

Exact solutions: 
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Solutions to the combinatorial problem 

Ø Convex optimization (polynomial time) 
       [Joshi-Boyd-2009], [Chepuri-Leus-2015] 

q  convex relaxation for 
q  thresholding, randomization to get back a Boolean solution 
q  Semidefinite program (typically) 

•  S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 451–462, Feb. 
2009 

•  S.P. Chepuri and G. Leus. “Sparsity-Promoting Sensor Selection for Non-linear Measurement Models,” IEEE Trans. on Signal 
Processing, vol. 63, no. 3, pp. 684-698, Feb. 2015.  

Suboptimal solutions: 

{0, 1}, f(w)
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Solutions to the combinatorial problem 

 
 
 
 
 
 
 
Ø Submodular optimization (linear time) 

 [Krause-Singh-Guestrin-2008], [Ranieri-Chebira-Vetteri-2014] 

q  greedy search 
q  solution is               optimal 

•  A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and 
empirical studies,” J. Machine Learn. Res., vol. 9, pp. 235–284, Feb. 2008. 

•  J. Ranieri, A. Chebira, and M. Vetterli, “Near-optimal sensor placement for linear inverse problems,” IEEE Trans. Signal Process., 
vol. 62, no. 5, pp. 1135–1146, Mar. 2014 

 

Suboptimal solutions: 

1 � 1/e
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Convex optimization 

Ø Boolean constraint is relaxed to the box constraint 

Ø      (-quasi) norm is relaxed to either: 
a)      -norm:   

�0
�1

�M
m=1 wm

[0, 1]M

Requires       to be convex function of its argument  f(·)
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Convex optimization 

Ø Boolean constraint is relaxed to the box constraint 

Ø      (-quasi) norm is relaxed to either: 
a)      -norm:   
b)  sum-of-logarithms: 

�0
�1

�M
m=1 wm

[0, 1]M

�M
m=1 ln (wm + �)

Requires       to be convex function of its argument  f(·)

ln (wm + �) � ln (wm[i � 1] + �) + wm�wm[i�1]
wm[i�1]+�

•  E. Candés, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted minimization l1-minimization,” J. Fourier Anal. Appl., vol. 
14, pp. 877–905, 2008. 

[Candés-Wakin-Boyd-2008] 
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Convex optimization 

Ø Boolean constraint is relaxed to the box constraint 

Ø      (-quasi) norm is relaxed to either: 
a)      -norm:   
b)  sum-of-logarithms: 
c)  Your favorite approximation 

�0
�1

�M
m=1 wm

[0, 1]M

�M
m=1 ln (wm + �)

Requires       to be convex function of its argument  f(·)
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Convex optimization 

Ø Boolean constraint is relaxed to the box constraint 

Ø      (-quasi) norm is relaxed to either: 
a)      -norm:   

�0
�1

�M
m=1 wm

[0, 1]M

argmin
w

1T w

s.to f(w) � �

w � [0, 1]M

argmin
w

f(w)

s.to 1T w = K

w � [0, 1]M

Formulation 1 Formulation 2 

Requires       to be convex function of its argument  f(·)
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The question! 

What is the convex function          that we can minimize for 
ü  Estimation 
ü  Filtering  
ü  Detection 

f(w)
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Submodular optimization 
Requires       to be submodular function of its argument  f(·)

Ø Define the sampling set: 

        or 

Ø Set function          is submodular, if 

 

Ø  If           is monotonically increasing, i.e.,  
 

  

f(X )

f(X � {s}) � f(X ) � f(Y � {s}) � f(Y)

f(X )

28 

f(X [ {s}) � f(X )

8X ✓ Y ⇢ M, s 2 M\Y

X := S = {m|wm = 1,m = 1, 2, . . . ,M}

X := M\S = {m|wm = 0,m = 1, 2, . . . ,M}



Submodular optimization 
If        is submodular and monotonic f(·) Linear time 

Then, greedy algorithm is near-optimal 

63% 
•  G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions— I,” 

Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978. 

[Nemhauser-Wolsey-Fisher-1978] 

29 

Algorithm 1 Greedy algorithm

1. Require X = ;, L.

2. for k = 1 to L
3. s⇤ = argmax

s/2X
f(X [ {s})

4. X  X [ {s⇤}
5. end

6. Return X

L = K or L = M �K

f(X ) � (1� 1/e) max

|Y|=L
f(Y)



The question! 

What is the submodular function          that we can maximize for 
ü  Estimation 
ü  Filtering  
ü  Detection 

f(X )

30 



Model-driven vs. data-driven 

Model-driven  
Ø   Performance metric (ensemble) 

ü  Based on model information only 
ü  Design doesn’t depend on the actual data 
ü  Offline sensing design to acquire data   

Data-driven  
Ø   Performance metric (Instantaneous) 

ü  Based on model + data information  
ü  Design depends on actual data 
ü  Sketch or censor already acquired data (big data) 

   

 

[Rago-Willett-Shalom-96], [Msechu-Giannakis-12] 

•  Rago, C., Willett, P. and Bar-Shalom, Y., 1996. Censoring sensors: A low-communication-rate scheme for distributed detection. 
IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, no. 2, pp.554-568. 

•  Msechu, E.J. and Giannakis, G.B., 2012. Sensor-centric data reduction for estimation with WSNs via censoring and quantization. 
IEEE Transactions on Signal Processing, Vol. 60, no. 1, pp.400-414. 31 



Estimation 
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1.  S.P. Chepuri and G. Leus. Sparsity-Promoting Sensor Selection for Non-linear 
Measurement Models. IEEE Trans. on Signal Processing, vol. 63, no. 3, pp. 684-698, Feb. 
2015.  

2.  S.P. Chepuri and G. Leus. Sparse Sensing for Estimation with Correlated Observations. 
To appear in Asilomar Conf. Signals, systems, and Computers (Asilomar 2015), Pacific Grove, 
California, USA, November 2015. 

3.  S. Liu, S.P. Chepuri, M. Fardad, E. Masazade, G. Leus, and P.K. Varshney. Sensor Selection 
for Estimation with Correlated Measurement Noise. IEEE Transactions on Signal 
Processing, Mar. 2016. 

4.  S. Rao, S.P. Chepuri, and G. Leus. Greedy Sensor Selection for Non-Linear Models. In 
Proc. to the IEEE Workshop on Comp. Adv. in Multi-Sensor Adaptive Proc. (CAMSAP 2015), 
Cancun, Mexico, December 2015. 

 



Inverse problem 

Unknown parameter vector              follows 
 

ym = wm

xm�pm(x;�)
� �� �
hm(�, nm), m = 1, 2, . . . , M

Candidate sensing locations 

� � CN

33 

xm m-th spatial or temporal sensor measurement;

hm (in general) non-linear function;

nm (additive/multiplicative) noise process.



Best sampling locations yield the lowest estimation error 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        for estimation f(w)

Example: Linear additive Gaussian model 
 
                                                              and 
 
Error of the least-squares estimate  
 
 
 

hm(�, nm) := hT
m� + nm xm � N (hT

m�, �2
m)

C = E{(θ̂ − θ)(θ̂ − θ)T }

C =

(
M∑

m=1

wmσ−2
m hmhTm

)−1

34 



 
Ø Closed-form expression for      is not always available  

–  e.g., non-linear, non-Gaussian measurement models 
 

Ø Use the Cramér-Rao bound as the performance metric 

 

ü well-suited for offline design problems 

ü  reveals (local) identifiability 

ü  improves performance of any practical algorithm 

ü  equal to the error covariance for the linear additive Gaussian case 

 

 
 
 
 
 

E{(�� � �)(�� � �)T } � C = F �1

        for estimation – Cramér-Rao bound f(w)

C

Fisher Information matrix 

35 



Statistically independent observations 

Ø Suppose the observations are independent 

Ø Consequence, Fisher information (FIM) is additive 

Ø  For non-linear models and/or specific distributions, FIM 
depends on the true unknown parameter 

 
 

F (w, �) =
M�

m=1

wmF m(�)

F m(�) = E
��

� ln pm(x;�)
��

��
� ln pm(x;�)

��

�T
�

� RN�N

36 

ln p(y;✓) = ln
MY

m=1

p(ym;✓)wm =
MX

m=1

wm ln p(ym;✓)



        for estimation – scalar measures f(w)

Ø Prominent scalar measures   
 

q   E-optimality measure (worst case error) 

 
    

R2
�min

�max

Example: Linear additive Gaussian model 
 
 
 
 
 

f(w) := �max{F �1(w, �)}

f(w) = �max

���M
m=1 wm��2

m hmhT
m

��1
�

37 



        for estimation – scalar measures f(w)

Ø Prominent scalar measures   
 

q   E-optimality measure (worst case error) 

 
 

Ø SDP problem based on    -norm heuristics 
    

f(w) := �max{F �1(w, �)}

argmin
w

1T w

s.to
M�

m=1

wmF m(�) � �IN � 0, �� � T ,

0 � wm � 1, m = 1, . . . , M.

�1

Linear matrix inequality 
38 

Set of possible solutions 



        for estimation – scalar measures f(w)

Ø Prominent scalar measures   
 

q   A-optimality measure (average error) 

 
    

f(w) := tr{F �1(w, �)}

Example: Linear additive Gaussian model 
 
 
 
 
 

f(w) = tr
��M

m=1 wm��2
m hmhT

m

��1

R2
�min

�max
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        for estimation – scalar measures f(w)

Ø Prominent scalar measures   
 

q   A-optimality measure (average error) 

 
 

Ø SDP problem based on    -norm heuristics 
 

    

f(w) := tr{F �1(w, �)}
�1

40 

arg min

w2RM ,x2RN
kwk1

s.to

 PM
m=1 wmFm(✓) en

e

T
n xn

�
⌫ 0N+1, n = 1, 2, . . . , N, 8✓ 2 T ,

1T
Nx  �,

0  wm  1, m = 1, 2, . . . ,M.



        for estimation – scalar measures f(w)

Ø Prominent scalar measures   
 

q   D-optimality measure (error volume) 

 
    

Example: Linear additive Gaussian model 
 
 
 
 
ü  Convex function to be minimized 
 

f(w) = ln det
��M

m=1 wm��2
m hmhT

m

��1

f(w) := ln det{F �1(w, �)}

R2
�min

�max

Example: Linear additive Gaussian model 
 
 
 
ü  Submodular function to be maximized 
 

f(X ) = ln det
�

m�X
��2

m hmhT
m

•  M. Shamaiah, S. Banerjee, and H. Vikalo, “Greedy sensor selection: Leveraging submodularity,” in Proc. Of  49th IEEE 
Conference on Decision and Control (CDC), Dec 2010, pp. 2572–2577. 

[Shamaiah-Banerjee-Vikalo-2010] 
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        for estimation – scalar measures f(w)

Ø Prominent scalar measures   
 

q   D-optimality measure (error volume) 

Ø Convex problem based on    -norm heuristics 
 

 
    

f(w) := ln det{F �1(w, �)}

Concave function 

arg min
w � RM

1T w

s.to ln det{
M�

m=1

wmF m(�)} � �, �� � T ,

0 � wm � 1, m = 1, . . . , M,

42 
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Ø Recall, near-optimal greedy algorithm for submodular log-det 

q   D-optimality measure (error volume) for non-linear 
additive Gaussian  model 

 

 
    

PD
d=1 ⇡d

⇣
ln det

P
i2X hi,dh

T
i,d

⌘�1

 
 
ü  Linearize            around 

ü Weighted log-det 

 
ü Modified log-det 

 
 

    

        for estimation – scalar measures f(w)
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xm = hm(✓) + nm,m = 1, · · · ,M

hm(✓) ✓ 2 {✓1, · · · ,✓D} ✓ T

Pr(✓ = ✓d) = ⇡d with 0  ⇡d  1

f(X ) =

DX

d=1

⇡d

⇥
log det

�X

i2X
hi,dh

T
i,d + ✏IN

�
�N log✏

⇤

[Rao-Chepuri-Leus-2015] 

•  S. Rao, S.P. Chepuri, and G. Leus. “Greedy Sensor Selection for Non-Linear Models,” In Proc. of the IEEE Workshop on Comp. 
Adv. in Multi-Sensor Adaptive Proc. (CAMSAP 2015), Cancun, Mexico, December 2015. 



        for estimation – scalar measures f(w)

Ø Prominent scalar measures   

q E-optimality measure (worst case error) 

q A-optimality measure (average error) 

q D-optimality measure (error volume) 
 

 
    

R2Think about this figure! 

Can’t say much about how one performs w.r.t. the other 
44 



Ø Some more scalar measures   

q T-optimality measure (to be maximized) 

 
 

 
    Example: Linear additive Gaussian model 

 
 
 
 
ü  Linear function to be maximized 
 

        for estimation – scalar measures f(w)

f(w) = tr
��M

m=1 wm��2
m hmhT

m

�

45 

f(w) = tr{F (w,✓)}



        for estimation – frame potential f(w)

Ø Some more scalar measures (linear additive Gaussian) 

q Frame potential 

 
ü  orthogonality measure (minimizes MSE) 
ü  to be minimized 
ü  submodular w.r.t. to the complement set  

 

[Ranieri-Chebira-Vetteri-2014] 

•  J. Ranieri, A. Chebira, and M. Vetterli, “Near-optimal sensor placement for linear inverse problems,” IEEE Trans. Signal Process., 
vol. 62, no. 5, pp. 1135–1146, Mar. 2014 46 

xm = hT
m✓ + nm,m = 1, · · · ,M

X

m,n2X
|hT

mhn|2

Ensures          is zero for empty input set f(X )

f(X ) :=
X

m,n2M
|hT

mhn|2 �
X

m,n2S
|hT

mhn|2

X = M\S



Ø  Frame potential for non-linear additive Gaussian model 

Ø  Linearize            around 

Ø Weighted frame potential           

 
 

    

f(X ) :=
DX

d=1

⇡d

0

@
X

i,j2X
|hT

i,dhj,d|2
1

A

        for estimation – frame potential f(w)

47 

xm = hm(✓) + nm,m = 1, · · · ,M

hm(✓) ✓ 2 {✓1, · · · ,✓D} ✓ T

Pr(✓ = ✓d) = ⇡d with 0  ⇡d  1



Ø Modified frame potential for non-linear additive Gaussian case 

 

 
Ø  Frame potential tends to discard rows with a larger norm  
 

ü Rows with larger norm are more relevant for reducing the MSE 
ü Worse performance when rows have different norms  

 
 
 

    

        for estimation – frame potential f(w)

[Rao-Chepuri-Leus-2015] 

•  S. Rao, S.P. Chepuri, and G. Leus. “Greedy Sensor Selection for Non-Linear Models,” In Proc. of the IEEE Workshop on Comp. 
Adv. in Multi-Sensor Adaptive Proc. (CAMSAP 2015), Cancun, Mexico, December 2015. 48 

Hint: weighted sum of submodular functions is submodular 

Submodular w.r.t. to the complement set  X = M\S

f(X ) :=
PD

d=1 ⇡d

⇣P
i,j2M |hT

i,dhj,d|2
⌘
�

PD
d=1 ⇡d

⇣P
i,j2S |hT

i,dhj,d|2
⌘



Ø Use the Bayesian Cramér-Rao bound 

 
ü  Doesn’t depend on the true parameter (averaged over the prior) 
 

 

Example: Linear additive Gaussian model 
 
                                                             and 
 
Inverse error (FIM) of the MAP/MMSE estimate  
 
 
 

Bayesian setting 
Suppose prior probability         is known (e.g., MMSE, MAP) p(✓)

hm(�, nm) := hT
m� + nm

F p = �E✓

⇢
@
@✓

⇣
ln p(✓)
@✓

⌘T
�

Bayesian FIM: F p +
MX

m=1

wmE✓{Fm(✓)} ⌫ �IN

✓ s N (0,F�1
p )

F = F p +
MX

m=1

wm��2
m hmhT

m

49 •  S.P. Chepuri and G. Leus. “Sparsity-Promoting Sensor Selection for Non-linear Measurement Models,” IEEE Trans. on Signal 
Processing, vol. 63, no. 3, pp. 684-698, Feb. 2015.  

[Chepuri-Leus-2015] 



Example: Linear additive Gaussian model 
 
                                                             and 
 
SDP problem: 
 
 
 
 

Bayesian setting 
Suppose prior probability         is known (e.g., MMSE, MAP) p(✓)

hm(�, nm) := hT
m� + nm ✓ s N (0,F�1

p )

50 

argmin

w
tr

8
<

:

"
F p +

MX

m=1

��2
m wmhmhT

m

#�1
9
=

;

s.to 1Tw = K,

0  wm  1, m = 1, . . . ,M.

Extensions: 
ü   Underdetermined system (Wiener interpolation or Krigging) 
ü   Case where        does not exist      F p

[Roy-Simonetto-Leus-2016] 
•  V. Roy, A. Simonetto, and G. Leus. “Spatio-temporal sensor management for environmental field estimation,” Signal Processing, 

vol. 128, pp.369-381, Nov. 2016. 



MATLAB script - CVX 
function selected_locations = cvx_Eoptimality(A,lambda)
 
M = length(A(:,1)); %nr. of candidate sensors
N = length(A(1,:)); %nr. of parameters
threshold = 0.01;   
cvx_begin sdp 
variable w(M);
    minimize sum(w)
    subject to
        F = zeros(N,N); %or F_p (prior info. matrix) 
        for m=1:M
          F = F + w(m).*(A(:,m)'*A(:,m));
        end
        F >= lambda*eye(N);
        w>=0;
        w<=1;
cvx_end
%deterministic thresholding
what=(w>threshold);
selected_locations = find(what==1);

51 



Randomized rounding 

52 

1.  Generate     candidates                with a probability 

2.  Define index set 

3.  If the above set is empty, go back to step 1. 

4.  Suboptimal Boolean estimate:  

L wm,l = 1 bwm

Solution from the convex solver 

argmin
l2⌦

kwlk0

⌦ , {l | f(wl)  �, 8✓ 2 T , l = 1, 2, . . . , L}



Examples 
Target localization  (based on RSS measurements) 

Out of 80 available access point locations, 8 access points are selected.  

53 



Examples 
Multi-static FMCW radar 

Out of 117 available radar positions, 20 radar positions are selected.  
[Inna-Leus-Yarovoy-2016] 

•  I. Ivashko, G. Leus, and A. Yarovoy. “Radar network topology optimization for joint target position and velocity estimation,” 
Elsevier signal processing, To appear May 2016. 54 



Statistically dependent observations 
Suppose that the errors are not independent 
 

Ø Observations follow:  

Ø  Fisher information matrix   

      
    is no more additive/linear.  

 

F (w,✓) = [�(w)J(✓)]T ⌃�1(w) [�(w)J(✓)]

x s N (h(✓),⌃)

J(✓) = @h(✓)
@✓

⌃�1(w) =
⇣
�(w)⌃�T (w)

⌘�1

      in its current form is non convex in F (w,✓) w
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Statistically dependent observations 

Ø  Express the noise covariance matrix 

Ø  FIM  will be 

  

⌃ = aI + S for any a 6= 0 2 R such that S is invertible

F (w,✓) = JT (✓)�T (w)
⇣
aI +�(w)S�T (w)

⌘�1
�(w)J(✓)

use matrix inversion lemma and �T� = diag(w)

JT (✓)S�1J(✓)� JT (✓)S�1 ⇥S�1 + a�1diag(w)
⇤�1

S�1JT (✓)

56 

[Chepuri-Leus-2016] 

•  S.P. Chepuri and G. Leus. “Sparse Sensing for Estimation with Correlated Observations,” In  proc. of Asilomar Conf. Signals, 
systems, and Computers (Asilomar 2015), Pacific Grove, California, USA, November 2015. 



Statistically dependent observations 

Ø  (E-optimal design) constraint 

    is equivalent to 
 
 
 
 

ü an LMI 
ü choose  

�min{F (w,✓)} � �

JT (✓)S�1J(✓)� JT (✓)S�1 ⇥S�1 + a�1diag(w)
⇤�1

S�1JT (✓) ⌫ �IN


S�1 + a�1diag(w) S�1J(✓)

JT (✓)S�1 JT (✓)S�1J(✓)� �IN

�
⌫ 0

—linear/convex in w
a > 0 and S � 0

57 
•  S.P. Chepuri and G. Leus. “Sparse Sensing for Estimation with Correlated Observations,” In  proc. of Asilomar Conf. Signals, 

systems, and Computers (Asilomar 2015), Pacific Grove, California, USA, November 2015. 

[Chepuri-Leus-2016] 



Sampler design: SDP problem 
argmin

w
1Tw

s.to

2

4
S�1

+ a�1
diag(w) S�1J(✓)

JT
(✓)S�1 JT

(✓)S�1J(✓)� �IN

3

5 ⌫ 0, 8✓ 2 T ,

0  wm  1, m = 1, . . . ,M.

ü  Linear model doesn’t depend on the true parameter  
ü  Bayesian setting: prior information can be used as before.        
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[Liu-Chepuri-Leus-Varshney-2016] 

•  S.P. Chepuri and G. Leus. “Sparse Sensing for Estimation with Correlated Observations,” In  proc. of Asilomar Conf. Signals, 
systems, and Computers (Asilomar 2015), Pacific Grove, California, USA, November 2015. 

•  S. Liu, S.P. Chepuri, M. Fardad, E. Maşazade, G. Leus G, P.K. Varshney. “Sensor Selection for Estimation with Correlated 
Measurement Noise,” IEEE Transactions on Signal Processing, vol. 64, no. 13, pp. 3509-22, Aug. 2015. 

[Chepuri-Leus-2016] 



Example: Target localization 
Ø  Sensors along horizontal edges are equicorrelated (correlation coefficient 0.5) 
Ø  Sensors along vertical edges are not correlated 
 
 
 

Out of 80 available uncorrelated and correlated access point locations,  
14 access points are selected.  
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Is correlation good? 
Ø  Linear model, Gaussian regression matrix 
Ø Equicorrelated correlation matrix: ⌃ =

⇥
(1� ⇢)I + ⇢11T

⇤

Nr. of required sensors (worst case error) reduces as sensors become more coherent 
60 



Filtering 

61 

1.  S.P. Chepuri and G. Leus. Sensor Selection for Estimation, Filtering, and Detection. In 
Proc. of the International Conference on Signal Processing and Communications (SPCOM 
2014), Bangalore, India, July 2014. 

 
2.  S.P. Chepuri and G. Leus. Sparsity-Promoting Adaptive Sensor Selection for Non-linear 

Filtering. In Proc. of the International Conference on Acoustics, Speech, and Signal 
Processing (ICASSP 2014), Florence, Italy, May 2014. 

 



Time-varying states 
Ø Unknown parameter      obeys the state-space equations 

Ø Design the sequence of time-varying sensing vectors:  

 
    based on the entire history of measurements up to that point 

✓k

measurements: y
k,m

= w
k,m

xk,mspk,m(x;✓k)z }| {
h
k,m

(✓
k

, n
k,m

), m = 1, 2, . . . ,M,

dynamics: ✓
k+1 = A

k

✓
k

+ u
k

.

wk = [wk,1, wk,2, . . . , wk,M ]T 2 [0, 1]M

E{ukuH
k } = ⌃u
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Ø Use the Posterior Cramér-Rao bound as the metric 
 
 
Ø Posterior-FIM can be expressed as 

 
 

Performance metric – Posterior CRB 

Depends on all the previous states 

E
n

(b✓k|k � ✓k)(b✓k|k � ✓k)
T
o

� Ck = F�1
k

F k(wk, {✓�1}k=1,✓k) =

F p,k�1({✓�1}k
=1)z }| {

(⌃u +AkF
�1
k�1({✓�1}k=1)A

T
k )

�1

+
MX

m=1

wk,mF k,m(✓k)

related to measurements 
(measurements are statistically independent) 
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Ø  To reduce the computational complexity, the prior Fisher can 
be simply evaluated at the past estimate 

ü  Equal to prediction error of the extended Kalman  
         filter for                     (prediction)  
      

 
 
 

Performance metric – Posterior CRB 

✓̃k�1 := b✓k�1|k�1

F k(wk,✓k) ⇡

F
prior,k�1

(

˜✓k�1

)

z }| {
(⌃u +AkF

�1

k�1

(✓̃k�1

)AT
k )

�1 + F
obs,k(wk,✓k)
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✓k := b✓k|k�1

•  S.P. Chepuri and G. Leus. “Sparsity-Promoting Adaptive Sensor Selection for Non-linear Filtering,” In Proc. of the International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014), Florence, Italy, May 2014. 

•  E. Masazade, M. Fardad, and P.K. Varshney. "Sparsity-promoting extended Kalman filtering for target tracking in wireless sensor 
networks," IEEE Signal Processing Letters, vol. 19, no. 12, pp. 845-848, Dec. 2012. 

[Masazade-Farad-Varshney-2012] 

[Chepuri-Leus-2014] 



Ø  To reduce the computational complexity, the prior Fisher can 
be simply evaluated at the past estimate 

 
 
 

Example: Linear additive Gaussian filtering 
 
                                                                     and       
 
Posterior FIM (equal to posterior error covariance of a Kalman filter)  
 
 
 

Performance metric – Posterior CRB 

✓̃k�1 := b✓k�1|k�1

F k(wk,✓k) ⇡

F
prior,k�1

(

˜✓k�1

)

z }| {
(⌃u +AkF

�1

k�1

(✓̃k�1

)AT
k )

�1 + F
obs,k(wk,✓k)

hk,m(✓k, nk,m) := hT
k,m✓k + nk,m

F k(wk) = (⌃u +AkF
�1
k�1A

T
k )

�1 +
1

�2

MX

m=1

wk,mhk,mhT
k,m

uk s N (0,⌃u)

65 Doesn’t depend on the past or present states 



Ø SDP problem (E-optimality) 

Ø Greedy algorithm (D-optimality) 
 

 
 

arg min

wk2[0,1]M
1Twk

s.to F p,k�1 +

MX

m=1

wk,mF k,m(✓k) ⌫ �IN , 8✓k 2 Tk

0  wm  1, m = 1, . . . ,M.

around the prediction 

66 
•  M. Shamaiah, S. Banerjee, and H. Vikalo, “Greedy sensor selection: Leveraging submodularity,” in Proc. Of  49th IEEE 

Conference on Decision and Control (CDC), Dec 2010, pp. 2572–2577. 

How about 
“frame potential”? 

Example: Linear additive Gaussian filtering 
 
 
 
 

f(X ) = ln det

 
F p,k�1 +

1

�2

X

i2X
hk,ih

T
k,i

!

[Shamaiah-Banerjee-Vikalo-2010] 

Sampler design 



Scheduling example – Target tracking 
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Dependent measurements case 

Ø Recall the decomposition  

Ø E-optimality constraint can be equivalently expressed as 

⌃k = akI + Sk for any ak 6= 0 2 R such that Sk is invertible

Measurements are not statistically independent 
xk s N (hk(✓k),⌃k)

68 

2

4
S�1

k + a�1

k diag(wk) S�1

k Jk(✓k)

JT
k (✓k)S

�1

k F
prior,k�1

+ JT
k (✓)S

�1

k Jk(✓k)� �IN

3

5 ⌫ 0M+N



Structured time-varying states 
Time-varying compressive sensing 

Ø  Unknown parameter      obeys the state-space equations 

Ø            enforces structure (e.g., sparsity, smoothness,...) 

Ø  Can we use sparse sensing framework to design   
    sparse compressive sensing matrices? 

✓k

measurements: yk = diagr(wk)Hk✓k + nk

dynamics: ✓k = Ak✓k�1 + uk

pseudo-measurement: 0 = r(✓k) + ek

r(✓k)

[Carmi-Gurfil-Kanevsky-2010] 

•  A. Carmi, P. Gurfil, and D. Kanevsky, “Methods for sparse signal recovery using kalman filtering with embedded pseudo-
measurement norms and quasi-norms,” IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2405–2409, April 2010. 69 



Performance metric 

Ø  Inverse error covariance  

Ø Performance metric                              depends on   

P�1
k|k = P�1

k|k�1| {z }
dynamics

+ @r(b✓k|k�1)@r(b✓k|k�1)
T

| {z }
sparsity prior/ pseudo-measurement

+
XM

m=1
wk,mhk,mhT

k,m
| {z }

measurements

hk,m : mth row of the dictionary Hk

@r(b✓k|k�1) : (sub)gradient of r(✓k) towards ✓k at

b✓k|k�1

f(wk) = tr{P k|k} ✓k
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Example – grid based target localization 

Out of 30 available sensors, 5 sensors are selected  
(5 measurement equations in 30 unknowns) 71 



Detection 

72 

1.  S.P. Chepuri and G. Leus. Sparse Sensing for Distributed Detection. IEEE Trans. on Signal 
Processing, 16(6): 1446-1460, Mar. 2016. 

 
2.  S.P. Chepuri and G. Leus. Sparse Sensing for Distributed Gaussian Detection. In Proc. of 

the International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2015), 
Brisbane, Australia, April 2015. (ICASSP best student paper award) 

 
 



Binary hypothesis testing 
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Other applications: 
ü spectrum sensing, anomaly detection 
ü radar and sonar systems 
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Detection problem 
Ø Observations follow (binary hypothesis testing) 

 
 

Ø  Gaussian observations 
  [Cambanis-Masry-83], [Yu-Varshney-97], [Bajovic-Sinopoli-Xavier-11]  

 

Ø  Generalization to other distributions 
                [Chepuri-Leus-16] 

 
 

H0 : ym = wmxm;xm s pm(x|H0), m = 1, 2, . . . ,M

H1 : ym = wmxm;xm s pm(x|H1), m = 1, 2, . . . ,M

•  S. Cambanis and E. Masry, “Sampling designs for the detection of signals in noise,” IEEE Trans. Inf. Theory, vol. 29, no. 1, pp. 
83–104, Jan. 1983. 

•  C.-T. Yu and P. K. Varshney, “Sampling design for Gaussian detection problems,” IEEE Trans. Signal Process., vol. 45, no. 9, pp. 
2328–2337, 1997. 

•  D. Bajovic, B. Sinopoli, and J. Xavier, “Sensor selection for event detection in wireless sensor networks,” IEEE Trans. Signal 
Process., vol. 59, no. 10, pp. 4938–4953, Oct. 2011. 

•  S.P. Chepuri and G. Leus. Sparse Sensing for Distributed Detection. IEEE Trans. on Signal Processing, vol. 16, no. 6, pp. 
1446-1460, Mar. 2016. 74 



Sensing design for detection 

Neyman Pearson setting
  

Bayesian setting 

arg min

w2{0,1}M
kwk0

s.to Pe(w)  e

arg min

w2{0,1}M
kwk0

s.to Pf (w)  ↵,

Pm(w)  �

Ø Error probabilities (in general) do not admit expressions  
    suitable for numerical optimization 

ü   Seek weaker performance measures  
 

Pm = 1� P ( bH = H1|H1) ⇡0,⇡1 prior probabilities

Pe = ⇡0Pf + ⇡1PmPf = P ( bH = H1|H0)
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Bayesian setting 
Ø Decision is based upon the log-likelihood ratio test 

Ø Best error exponent: Chernoff distance  

log l(y) = log

p(y|H1)

p(y|H0)

H0

7
H1

log

⇡0

⇡1

C(H1kH0) = � log min

0n1

Z
[p(y|H1)]

n
[p(y|H0)]

1�ndy

= � log min

0n1
E|H0

{[l(y)]n}

Minimization complicates the sensing design 
 

n = 0.5?
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Bhattacharyya distance 
Ø Special case of Chernoff distance: Bhattacharyya distance 
 
 

Ø Hellinger or Bhattacharyya coefficient: average root 
likelihood ratio 

ü Symmetric:  

 

B(H1kH0) = � log ⇢

⇢ =

Z

p

p(y|H1)p(y|H0)dy =

Z

p(y|H0)

s

p(y|H1)

p(y|H0)
dy

= E|H0

n

p

l(y)
o

B(H1kH0) = B(H0kH1)
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Ø Upper bounds the error probabilities 

 

Bhattacharyya distance 

1
2 min(⇡0,⇡1)⇢2  Pe 

p
⇡0⇡1⇢

[Kadota-Shepp-1967], [Kailath-1967] 

•  T. Kadota and L. A. Shepp, “On the best finite set of linear observables for discriminating two Gaussian signals,” IEEE Trans. Inf. 
Theory, vol. 13, no. 2, pp. 278–284, 1967. 

•  T. Kailath, “The divergence and Bhattacharyya distance measures in signal selection,” IEEE Trans. Commun. Technol., vol. 15, no. 
1, pp. 52–60, Feb. 1967. 
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Neyman Pearson setting 

log l(y) = log

p(y|H1)

p(y|H0)

H0

7
H1

�

Ø Decision is based upon the log-likelihood ratio test 

Ø Best error exponent – Kullback-Leibler distance 

 

Ø Average log-likelihood ratio 

[Cover-Thomas-2012] 

logPm
as.
= �K(H1kH0) for Pm ! 0

K(H1kH0) = E|H1
{log l(y)}

=

Z
log l(y)p(y|H1)dy

•  T. M. Cover and J. A. Thomas. “Elements of Information Theory,” New York, NY, USA: Wiley, 2012. 79 



Kullback-Leibler distance 

Ø Upper bound on probability of miss detection 

 

[Chepuri-Leus-2016] 

•  S.P. Chepuri and G. Leus. “Sparse Sensing for Distributed Detection,” IEEE Trans. on Signal Processing, vol. 16, no. 6, pp. 
1446-1460, Mar. 2016. 

•  T. Kadota and L. A. Shepp, “On the best finite set of linear observables for discriminating two Gaussian signals,” IEEE Trans. Inf. 
Theory, vol. 13, no. 2, pp. 278–284, 1967. 

 
 
 

Pm  1

1 + (K(H1kH0)�log �)2

v2

v2: variance of the log-likehood ratio
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Kullback-Leibler distance 

Ø  J-divergence: symmetric form of the Kullback-Leibler distance 
 
 

ü  reasonable for                             and for Gaussian  
observations (upper bounds error prob.)  

•  S.P. Chepuri and G. Leus. “Sparse Sensing for Distributed Detection,” IEEE Trans. on Signal Processing, vol. 16, no. 6, pp. 
1446-1460, Mar. 2016. 

•  T. Kadota and L. A. Shepp, “On the best finite set of linear observables for discriminating two Gaussian signals,” IEEE Trans. Inf. 
Theory, vol. 13, no. 2, pp. 278–284, 1967. 

 
 
 

D(H1kH0) = K(H1kH0) +K(H0kH1)

⇡0 = ⇡1 = 0.5

[Kadota-Shepp-1967] 

81 



Performance metric 

Ø Kullback-Leibler dist., J-divergence, Bhattacharyya dist. 
ü Don’t depend on the actual data 
ü Depend on the model 
ü Can be computed offline 

 

Example: Gaussian - uncommon means and common covariances 
 
            
 
Bhattacharyya distance, Kullback-Leibler distance, J-divergence are all the 
same up to a constant:  
 
 
 

H0 : x s N (✓0,�
2I) and H1 : x s N (✓1,�

2I)

SNR: s(w) = ��2(✓1 � ✓0)
Tdiag(w)(✓1 � ✓0)

B(H1kH0) = s(w)/8 K(H1kH0) = s(w)/2 D(H1kH0) = s(w)
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Statistically independent observations 
Ø Assuming conditionally independent observations 

Ø Distance measures are additive: 

Local distance 

Recall: additive property of FIM 83 

(KL distance) K(H1kH0) = E|H1
{log l(y)}

=

MX

m=1

wm E|H1
{log lm(x)}

| {z }
Km

(Bhattacharyya distance) B(H1kH0) = � logE|H0
{
p
l(y)}

= �
MX

m=1

wm logE|H0
{
p

lm(x)}
| {z }

Bm

l(y) =
MY

m=1


p(ym|H1)

p(ym|H0)

�wm



Sensing design  
Ø  Linear program 

argmin

w
kwk0

s.to
MX

m=1

wmdm � �,

wm 2 {0, 1},m = 1, 2, . . . ,M

Classical setting dm := {Km}Mm=1

Bayesian setting dm := {Bm}Mm=1

Do we need convex relaxation(s) or submodular greedy algorithms? 
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Ø  Linear program with explicit solution 

Ø Solution: Ordering! 

Ø  The best subset of sensors: sensors with largest average 
log/root local likelihood ratio 

 

Sensing design  

argmin

w
kwk0

s.to
MX

m=1

wmdm � �,

wm 2 {0, 1},m = 1, 2, . . . ,M

Classical setting dm := {Km}Mm=1

Bayesian setting dm := {Bm}Mm=1
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Example 

Example: Gaussian - uncommon means and common covariances 
 
            
 
Bhattacharyya distance, Kullback-Leibler distance, J-divergence are all the 
same up to a constant:  
 
 
 
 

H0 : x s N (✓0,�
2I) and H1 : x s N (✓1,�

2I)

SNR: s(w) = ��2(✓1 � ✓0)
Tdiag(w)(✓1 � ✓0)

B(H1kH0) = s(w)/8 K(H1kH0) = s(w)/2 D(H1kH0) = s(w)

Sensors with the largest local SNR values are optimal 
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Example 

87 
Shaded regions denote the performance of the possible suboptimal samplers 



Dependent (Gaussian) observations 

Ø Suppose 

Ø Distance measure (or SNR) is not additive 

 

H0 : x s N (✓0,⌃) vs. H1 : x s N (✓1,⌃)

Not diagonal or scaled identity 

s(w) = [�(w)m]T ⌃�1(w) [�(w)m]

m = ✓1 � ✓0

⌃(w) = �(w)⌃�T (w)
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Dependent (Gaussian) observations 
Ø Express (as before) 

Ø Constraint 

    is equivalent to an LMI:  

⌃ = aI + S for any a 6= 0 2 R such that S is invertible

d(w) � �

mTS�1m�mTS�1 ⇥S�1 + a�1diag(w)
⇤�1

S�1m � �

2

4
S�1 + a�1diag(w) S�1m

mTS�1 mTS�1m� �

3

5 ⌫ 0
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Dependent case: solver 

Relaxed SDP 
 
 
 
 
 
 
 
 
 
 
 
Randomized rounding (similar to estimation) 

argmin

w
1Tw

s.to

2

4
S�1

+ a�1
diag(w) S�1m

mTS�1 mTS�1m� �

3

5 ⌫ 0,

0  wm  1, m = 1, . . . ,M.

90 

How about  
submodular algorithms? 



MATLAB – CVX (Formulation 2) 
function sel_loc = cvx_detection(theta1,theta0,Sigma,K)
 
M = length(theta1);
a=0.11; S = Sigma - a*eye(M);

cvx_begin sdp
    variable w(M)
    variable t
    minimize t;
    subject to
    sum(w) ==  K;
    [inv(S)+ a^-1*diag(w), inv(S)*(theta1-theta0);
    (theta1-theta0)’*inv(S) , t] >= semidefinite(M+1);
    w<=1;
    w>=0;
cvx_end

%deterministic thresholding
wsort=sort(w); threshold =wsort(M-K); what=(w>threshold);
sel_loc = find(what==1); 
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Is correlation good or bad? 
Equicorrelated correlation matrix: ⌃ =

⇥
(1� ⇢)I + ⇢11T

⇤

92 

Identical sensors: ✓0 = c01 and ✓1 = c11



Is correlation good or bad? 
Equicorrelated correlation matrix: ⌃ =

⇥
(1� ⇢)I + ⇢11T

⇤

Nr. of required sensors reduces as sensors become more coherent 
93 

Non-Identical sensors: ✓1 6= c11 and ✓0 6= c21



Dependent (Gaussian) observations 

Ø Suppose the conditional observations have uncommon 
variances 

 
Ø Distance measures are different, and complicated 

Ø  For example, J-divergence will be  

94 

D(H1||H0) =
1

2
tr{⌃�1

0 (w)⌃1(w)}+ 1

2
tr{⌃�1

1 (w)⌃0(w)}� kwk0

H0 : x s N (✓,⌃0)

H1 : x s N (✓,⌃1)

Signal-to-noise ratio matrix 

Not diagonal 



Ø Express                          and  

Ø  For a fixed    , maximizing J-divergence is same as 
minimizing 

 
Ø  Introduce two variables 

 

Dependent (Gaussian) observations 
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⌃0 = a0I + S0 ⌃1 = a1I + S1

K

1

2
tr{S�1

0

⇥
S�1

0 + a�1
0 diag(w)

⇤�1
S�1

0 ⌃1}

+
1

2
tr{S�1

1

⇥
S�1

1 + a�1
1 diag(w)

⇤�1
S�1

1 ⌃0}

Z0 = ⌃T/2
1 S�1

0

⇥
S�1

0 + a�1
0 diag(w)

⇤�1
S�1

0 ⌃1/2
1 ;

Z1 = ⌃T/2
0 S�1

1

⇥
S�1

1 + a�1
1 diag(w)

⇤�1
S�1

1 ⌃1/2
0 ,



Convex solver  

Ø SDP based on    -norm heuristics    

96 

�1

arg min

w,Z0,Z1

1

2

tr{Z0}+
1

2

tr{Z1}

s.to 1Tw = K,

⌃T/2
1 S�1

0

⇥
S�1

0 + a�1
0 diag(w)

⇤�1
S�1

0 ⌃1/2
1 � Z0

⌃T/2
0 S�1

1

⇥
S�1

1 + a�1
1 diag(w)

⇤�1
S�1

1 ⌃1/2
0 � Z1

0  wm  1,m = 1, 2, . . . ,M.

"
Z0 S�1

0 ⌃1/2
1

⌃T/2
1 S�1

0 S�1
0 + a�1

0 diag(w)

#
⌫ 0,

"
Z1 S�1

1 ⌃1/2
0

⌃T/2
0 S�1

1 S�1
1 + a�1

1 diag(w)

#
⌫ 0.

LMIs 



Sparse sensing for detection 

Setting Neyman-Pearson  Bayesian 

Optimization criterion Kullback-Leibler distance 
or J-divergence Bhattacharyya distance 

Independent observations Ordering distances Ordering distances 

Dependent Gaussian 
observations (uncommon 
means) 

Signal-to-noise (convex) 
optimization 

Signal-to-noise (convex) 
optimization 
 

Dependent Gaussian 
observations (uncommon 
covariances) 

Nonconvex (Kullback-
Leibler distance) or convex 
(J-divergence) optimization 

Nonconvex (Bhattacharyya 
distance) or convex (J-
divergence) optimization 
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Off-the-grid Sparse Sensing 

98 

S.P. Chepuri and G. Leus. Continuous Sensor Placement. IEEE Signal Processing Letters, 
22(5): 544-548, May 2015. 

 
 



Rough gridding 

Ø So far, the focus was on discrete sparse sensing 

q start with a discrete set of candidates to pick the best ones 

Ø Rough grid for complexity savings 
 

q candidate set is too small and/or resolution is too coarse 
q desired performance might not be achieved 
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Fine gridding 
Ø Suppose 

Ø How about fine (or dense) gridding? 

y(t) = w(t)[hH(t)✓ + n(t)]
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Off-the-grid sensor placement 
Ø Off-the-grid sampling point = on-grid point + perturbation 

 

y = diagr(w)(x+ diag(x0)p)

x

0
derivative of x(t) towards t

p perturbation of the grid points
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unknown 
parameters 

or 
events 

sparse sensing 

on-grid off-grid 

physical model 

inference from reduced dimension samples 

perturbation unobserved data 
(e.g., temperature, pollution field) 



Off-the-grid sensor placement 
Ø Off-the-grid sampling point = on-grid point + perturbation 

 
Ø Similar to sparse total-least-squares, continuous basis  pursuit  

ü  off-the-grid on the input space 
 

Ø Sensor placement: off-the-grid on the output space 

y = diagr(w)(x+ diag(x0)p)

x

0
derivative of x(t) towards t

p perturbation of the grid points

[Zhu-Leus-Giannakis-2011], [Ekanadham-Tranchina-Simoncelli-2011] 

•  H. Zhu, G. Leus, and G. Giannakis, “Sparsity-cognizant total least-squares for perturbed compressive sampling,” IEEE Trans. 
Signal Process., vol. 59, no. 5, pp. 2002–2016, May 2011. 

•  C. Ekanadham, D. Tranchina, and E. Simoncelli, “Recovery of sparse translation-invariant signals with continuous basis pursuit,” 
IEEE Trans. Signal Process., vol. 59, no. 10, pp. 4735–4744, Oct. 2011. 

•  S.P. Chepuri and G. Leus, “Continuous Sensor Placement,” IEEE Signal Processing Letters, vol. 22, no. 5, pp. 544-548, May 
2015. 

 
 

[Chepuri-Leus-2015] 
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Off-the-grid sensor placement 
Ø Off-the-grid sampling point = on-grid point + perturbation 

Ø  For                                             off-the-grid sample would be 

 

 

y(t) = w(t)[hH(t)✓ + n(t)]

ym = wm(hH
m + pmh0H

m )✓ + wmnm

= (wmhm + vmh0
m)H✓ + wmnm

vm := wmpm
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y = diagr(w)(x+ diag(x0)p)

x

0
derivative of x(t) towards t

p perturbation of the grid points



Least squares estimate 
Ø Mean-squared error of the least-squares estimate 

Ø   Optimize jointly w.r.t. 
ü  We are interested in        only when        is not zero 
ü  Non-linear models: FIM  

 

 

 

f(w,v) = �2tr

⇢✓XM

m=1
wmhmhH

m + v2mh0
mh0H

m

+vm(h0
mhH

m + hmh0H
m )

⌘�1
�
.

w,v
vm wm

104 



Sensing design problem 

arg min

Z=[w,v]
kZk0,2

s.to f(w,v)  �,

wm 2 {0, 1},m = 1, 2, . . . ,M,

vm 2 [�r, r],m = 1, 2, . . . ,M.

Bin size (replace grid by a bin) 

kZk0,2: # non-zero rows of Z
105 



Example 
On-grid points {tm = 1, 2, 3, . . . , 11}

Discrete sparse sensing Off-the-grid sparse sensing 

mse(✓) ⇡ 0.36mse(✓) ⇡ 0.47
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Model Mismatch 

107 

1.  G. Kail, S.P. Chepuri, and G. Leus. Robust Censoring Using Metropolis-Hastings 
Sampling. IEEE Journ. of Selec. Topics in Signal Processing, 10(2): 270-283, Mar. 2016. 

2.  S.P. Chepuri, Y. Zhang, G. Leus, and G.B. Giannakis. Big Data Sketching with Model 
Mismatch. In proc. of Asilomar Conf. Signals, systems, and Computers (Asilomar 2015), 
Pacific Grove, California, USA, November 2015. 



Robust sparse sensing 

Ø  Till now, we assume model information is perfectly known 

Ø What if the model parameters are partially known? 
 

ü  Regressors, noise variance, correlation matrices 

Ø Or simply, if the data doesn’t follow the postulated model 

ü Outliers 
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Robust sparse sensing (model driven) 

109 

Example: Linear additive Gaussian model 
 

         and 
  
Regressors are known up to a bounded uncertainty            
 
 

xm = h̄
T
m✓ + nm, m = 1, 2, . . . ,M nm = N (0,�2)

h̄m = hm|{z}
known

+ ↵m|{z}
unknown,k↵mk2⌘

Ø  Minimize worst case ensemble error volume (D-optimality) 

max

w2{0,1}M
min

k↵mk2⌘
ln det

(
MX

m=1

wm(hm +↵m)(hm +↵m)

T

)

s.to kwk0 = K

Solver: convex relaxation using S-procedure 
[Joshi-Boyd-2009] 

•  S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 451–462, 
Feb. 2009 



Robust sparse sensing (data driven): Censoring or Sketching 
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Example: Linear additive Gaussian model 
 

         and 
  
Regressors are known up to a bounded uncertainty            
 
 

xm = h̄
T
m✓ + nm, m = 1, 2, . . . ,M nm = N (0,�2)

h̄m = hm|{z}
known

+ ↵m|{z}
unknown,k↵mk2⌘

Ø  Minimize worst case residual 

Two-step solver: ordering + convex/SOCP [Chepuri-Zhang-Leus-Giannakis-2015] 
•  S.P. Chepuri, Y. Zhang, G. Leus, and G.B. Giannakis. Big Data Sketching with Model Mismatch. To appear in Asilomar Conf. 

Signals, systems, and Computers (Asilomar 2015), Pacific Grove, California, USA, November 2015 

min

w2{0,1}M ,✓
max

k↵mk2⌘

MX

m=1

wm

�
xm � (hm +↵m)

T✓
�2

s.to kwk0 = K



Robust sparse sensing (data driven) – outlier rejection 

111 

Example: Linear additive Gaussian model 
 
We know the (uncontaminated) data model 
 

            and   
  
Output data           is possibly contaminated with up to      outliers   
   
 

x̄m = hT
m✓ + nm, m = 1, 2, . . . ,M nm = N (0,�2)

{xm}
o

Given                      and noise pdf: 
 
a)  Design      to censor less-informative samples and 

reject outliers 
b)  Estimate     using the uncensored data  

{xm}, {hm},

w

✓



Robust sparse sensing (data driven) – outlier rejection 
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Example: Linear additive Gaussian model 
 
We know the (uncontaminated) data model 
 

            and   
  
Output data           is possibly contaminated with up to      outliers   
   
 

x̄m = hT
m✓ + nm, m = 1, 2, . . . ,M nm = N (0,�2)

{xm}
o

Data samples with smaller residuals are informative 

min

w2{0,1}M
r(w)

s.to kwk0 = K,
,

r(w) = xT
w

⇣
I�Hw

�
HT

wHw

��1
HT

w

⌘
xw, Hw = �H;xw = �x.

[Kail-Chepuri-Leus-2016] 

•  G. Kail, S.P. Chepuri, and G. Leus. “Robust Censoring Using Metropolis-Hastings Sampling,” IEEE Journ. of Selec. Topics in 
Signal Processing, vol. 10, no. 2, pp. 270-283, Mar. 2016. 

min

w2{0,1}M ,✓

MX

m=1

wm

�
xm � hT

m✓
�2

s.to kwk0 = K,



Ø  Also known as least trimmed squares 

Ø  This problem is non convex in general 

ü  Can be convexified using to sparsity based outlier rejection 

 
ü  Markov chain Monte Carlo methods (e.g., Metropolis-Hastings sampling) 

 

Robust sparse sensing (data driven) – outlier rejection 
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min

w2{0,1}M
r(w)

s.to kwk0 = K,
,

r(w) = xT
w

⇣
I�Hw

�
HT

wHw

��1
HT

w

⌘
xw, Hw = �H;xw = �x.

[Kail-Chepuri-Leus-2016] 

•  J.-J. Fuchs, “An inverse problem approach to robust regression,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. 
(ICASSP), Phoenix, AZ, USA, Mar. 1999, pp. 1809–1812. 

•  G. Kail, S.P. Chepuri, and G. Leus. “Robust Censoring Using Metropolis-Hastings Sampling,” IEEE Journ. of Selec. Topics in 
Signal Processing, vol. 10, no. 2, pp. 270-283, Mar. 2016. 

min

w2{0,1}M ,✓

MX

m=1

wm

�
xm � hT

m✓
�2

s.to kwk0 = K,

[Fuchs-1999] 



Hybrid model-data-driven 

Ø Data-driven samplers are robust to outliers, but are not 
MSE optimal 

Ø Model-driven samplers are MSE optimal, but are not 
robust to outliers 

Ø Hybrid model-data-driven designs 
 

 + Designs are robust to outliers and are MSE optimal 
 
 -  Samplers need to be designed for each data realization   

 

114 



Hybrid model-data-driven 

Ø  Jointly optimizes the likelihood function (i.e., residual) 
and the mean squared error 

             
 
Ø                    results in the related data (model)-driven  

scheme 
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� ! 0(1)

,
min

w2{0,1}M ,t1,t2
t1 + �t2

s.to r(w)  t1, f(w)  t2

kwk0 = K

min
w2{0,1}M

r(w) + �f(w)

s.to kwk0 = K



Hybrid model-data-driven 
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Best performance of the hybrid scheme is not necessarily in between the  
best performances of the data-driven and model-driven schemes. 



Sparse Covariance Sensing 

117 

1.  D. Romero, D.D. Ariananda, Z. Tian, and G. Leus. Compressive covariance sensing: 
Structure-based compressive sensing beyond sparsity. IEEE Signal Processing 
Magazine, vol. 33, no. 1, pp.78-93, Jan. 2016. 

2.  S.P. Chepuri and G. Leus. Subsampling for Graph Power Spectrum Estimation. In proc. Of 
the Ninth IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2016), Rio 
de Janeiro, Brazil, July 2016. 



 
Compressive covariance sensing 
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Uncompressed 
stationary signal  

compressed 
signal 

Toeplitz 

compression 
yx

K ⌧ M

K2 ⇥ 1
K ⇥M M2 ⇥ 1

Least squares 

Design of     crucial for the least-squares solution to be unique �

ry = vec(Ry) = vec(�Rx�
H) = (�⇤ ⌦�)vec(Rx)

r
y

= (�⇤ ⌦�)Tr
x

r
x

= [(�⇤ ⌦�)T ]†r
y
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Uncompressed 
stationary signal  

compressed 
signal 

compression 
yx

Ø  Minimal sparse rulers ensure identifiability 

[Romero-Ariananda-Tian-Leus-2016] 

•  D. Romero, D.D. Ariananda, Z. Tian, and G. Leus. “Compressive covariance sensing: Structure-based compressive sensing 
beyond sparsity,” IEEE Signal Processing Magazine, vol. 33, no. 1, pp.78-93, Jan. 2016. 

How about inference performance (mean squared error)? 

 
Compressive covariance sensing 
 



Sparse covariance sensing 

Ø Quality of the least squares solution 

    depends on the spectrum of 
 
 
Ø We balance the spectrum via (D-optimal design) 

 
 
ü Submodular or convex relaxation 
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rx = [(�H ⌦�)T ]†ry

arg max

w2{0,1}N
log det{G(w)} s.to kwk0 = K

G(w) = [(�H ⌦�)T ]H [(�H ⌦�)T ] = TH [diag(w)⌦ diag(w)]T



Some ongoing work 
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Gas leak detection (field estimation) 
•  Joint work between TU Delft, MIT, and KAUST 
•  Communications and energy constraints 



Some ongoing work 
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Rainfall estimation 
•  Joint work between KNMI 
•  Estimation from selected microwave links 



Some ongoing work 
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Sensor, relay, and link selection 
•  Towards efficient wireless sensor network design 
   
    

Selected sensor 

Selected link 

Access point 

Relay 

Sensor 



Some ongoing work 
Subsampling signals on graphs 

•  Signal reconstruction/detection 
•  Power spectral density estimation 
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Brain networks  
 - fMRI time series   
 - EEG signals 
 - …  

 



Open issues: theoretical  

q Tight upper/lower bounds for Formulations 1 and 2 
 
q Greedy algorithms for correlated estimation/detection 
 
q Off-the-grid for detection, submodular off-the-grid? 
 
q Specialized inference problems 

q Constrained estimation  
q Composite and multiple hypothesis testing 
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Open issues: applications  

q Medical and computational imaging 
 
q Speech and audio processing  

q Big and graph data applications (scalable algorithms) 

q Radar applications 

q Radio astronomy 

q Seismic applications 
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Conclusions 

Ø Design space-time sparse samplers 
  Extend Nyquist-based classical sensing techniques 

Ø Basic statistical inference problems 
  Estimation, filtering, and detection 

Ø Related problems 
  Covariance sensing, data analytics 
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Sparse sensing 

Sparse signal Not needed 

Samplers Structured and deterministic 

Compression practical, controllable 

Signal processing task  
 any statistical inference 



Reference material 
PhD thesis available on EURASIP thesis library 
     http://theses.eurasip.org/theses/648/sparse-sensing-for-statistical-inference-theory/ 
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Reference material 

Foundations and Trends in Signal processing 
Monograph to appear soon 
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For more papers on sparse sensing see: http://cas.et.tudelft.nl/~sundeep/ 
 

        or 
 
Send us an email: s.p.chepuri@tudelft.nl 

  



Thank you! 
Discussion and Q&A 
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