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Abstract—We consider the problem of spectrum sensing in
a Cognitive Radio (CR) system when the primaries can be
occupying a few subbands in a wideband spectrum. Since the
primary signal dimension is large, Nyquist rate can be very high.
Compressive sensing (CS) can be useful in this setup. However a
CR system needs to operate at a very low SNR(∼ −20dB) where
the compressive sensing techniques are usually not successful.
Combining them with statistical techniques can be useful. But this
has been difficult because the statistics of the parameters obtained
from the recovery algorithms (e.g., OMP) are not available. We
use a suboptimal recovery algorithm COR for which the statistics
can be easily approximated. This allows us to use Neyman
Pearson technique as well as sequential detection techniques with
CS. The resulting algorithms provide satisfactory performance
at −20 dB SNR. In fact COR’s recovery performance is itself
better than OMP at low SNR. We also modify the algorithm
for the scenario when the channel gains and the noise variance
may also not be available.

keywords : Compressive Sensing, Cognitive Radio, Spec-

trum Sensing, SPRT.

I. INTRODUCTION

The need for higher data rate is increasing due to new multi-

media applications. But the current static frequency allocation

schemes can not accommodate these requirements. However at

any time and place, the occupancy of the licensed spectrum is

very low. Cognitive Radio (CR) technology ([12], [8]) allows

opportunistic use of available spectrum by unlicensed users.

The main task of CR is to sense the spectrum and then use it

efficiently.

A number of different methods [27] have been proposed

for identifying the presence of primary signal transmissions

by CR users, e.g., Energy detection, Matched Filter detection

and Cyclostationarity detection ([19], [24]) for narrow band

sensing. But for sensing an ultra-wideband spectrum the ana-

log front-end becomes very complex as many parallel filters

are required to detect the spectrum using the narrow band

sensing techniques. To sense the ultra-wideband spectrum

directly the RF front-end should be able to sample at the

Nyquist rate. As we are interested in the band of the order

of a few GHz the analog to digital converter (ADC) should

be able to sample at a very high rate. Clearly, this is a

major implementation problem especially when one needs to

implement it in relatively inexpensive CR units.

Often the occupancy by the primary users in the ultra-

wideband spectrum is sparse [3]. For sparse signal recovery,

compressive sensing (CS) at sub-Nyquist-rate sampling offers

reliable signal recovery ([6], [3], [11]). Recently CS has been

used for detection of wideband spectrum [15]− [21] which

use CS recovery algorithms to estimate the wideband spectrum

and then use it to detect the spectrum occupancy. In [21] co-

operative techniques are also used to improve the performance

and they show Receiver Output Characteristics (ROC) at 0
dB via simulations but do not provide any theoretical results

for the detector performance. Signal cyclostationarity which

exploits the sparsity of the two-dimensional spectral correla-

tion function (SCF) is proposed in [22], [18]. Performance

is studied via simulations at SNR between 0-5 dB. For

detecting a frequency hopping signal [26] uses CS techniques

at SNR ≥ 0. A Compressive Detector at SNR ≥ 10 dB is

studied in [5].

We use compressive sensing for detection of spectral holes.

Our aim is to develop efficient, low complexity, practical al-

gorithms for wideband spectrum sensing even at low SNR(≤
−10dB). We develop a new simple algorithm called COR

algorithm. We compare it to an orthogonal matching pursuit

(OMP) based algorithm [2] and show that this computationally

simpler algorithm actually performs better at low SNR. Next

we obtain an improved sequential version of the algorithm.

We theoretically analyze these algorithms and compare with

simulations. We also consider the scenario when the channel

gains, sparsity and noise variance are not known to the CR.

To the best of our knowledge, these issues have not been

addressed previously for CS based algorithms for spectrum

sensing.

Rest of the paper is organized as follows. In Section

II we present our system model. Section III discusses CS

algorithms. In Section IV we present COR algorithm. In

Section V we compare COR to OMP algorithm and show that

this computationally simpler algorithm performs better at low

SNR. We also consider the scenario when the channel gains,

sparsity and noise variance are unknown for COR. In Section

VI we obtain an improved sequential version of the algorithm.

We theoretically analyze these algorithms and compare with

simulations. Section VII concludes the paper.

We will use the following notation:

• ai : i−th column of a matrix A.

• aij : (i, j)−th element of matrix A.

• N (µ, σ2) : real Gaussian distribution with mean µ and

variance σ2.

• E{ · } : expectation of the operand.



• V ar{ · } : variance of the operand.

II. SYSTEM MODEL

Consider an ultra-wide frequency band that is licensed to

primary users. The entire wideband spectrum is divided into

N non-overlapping narrowband subchannels centered at {fm},

m = 0, 1, .., N . The locations of these bands are pre-defined

and known, as in multi-band radios and OFDM systems. At

any time some of these subbands are occupied by the primary

users. The temporarily idle subbands are termed spectral

holes and are available for opportunistic spectrum access by

secondary users.

A CR node senses the wideband spectrum in order to

identify the spectral holes. We assume that each subband is an

additive white Gaussian noise (AWGN) channel. Our problem

is to sense the primary spectrum at low SNR(< −10 dB) and

detect if each subband is free or not. The received signal at

the CR is

y(t) = h(t) ∗ x(t) + w(t), (1)

where w(t) is white Gaussian noise with zero mean and power

spectral density σ2
w and h(t) is the channel impulse response.

We represent the continuous time primary signal x(t) in dis-

crete time as x = {x(0), x(Ts), ..., x((N−1)Ts)}, which is an

N length sequence sampled at uniform rate W = 1/Ts, where

W is the baseband bandwidth. We denote by X the Discrete

Fourier Transform (DFT) of vector x. Thus X = Fx, where

F is an N ×N DFT matrix. The signal-to-noise-ratio SNR,

E= signal energy/ noise energy, where in a time window of

NTs, where signal energy =

N−1
∑

n=0

|x[n]|2 =

N−1
∑

n=0

|X [n]|2 and

noise energy is Nσ2. We assume that the signal is S sparse

in DFT domain, i.e., out of N atmost S ≪ N entries of X

are nonzero. We have the following two possibilities for any

channel,

|X [n]| =

{

A under H0,
0 under H1.

Our problem is to sense the noisy wideband primary sig-

nal received by the CR and identify spectral holes in the

given wideband. We want to achieve robust detection even

at SNR = −20 dB. However, for a wideband system, the

sampling rate can be very high. To design a CR system with

modest costs, this sampling rate can be prohibitive. Thus, we

consider compressive sensing techniques that can reduce the

sampling rate when the number of active primary users at a

time is small.

III. COMPRESSIVE SENSING ALGORITHMS

Compressive sensing allows us to recover a signal com-

pletely even if it is sampled at a rate less than the Nyquist rate

if the signal is sparse in some domain. In our case primary

spectral usage is sparse in the frequency domain.

In the following we briefly present CS and then explain how

we will use it in our context. Compressive sensing considers

equation

v = Φx, (2)

where x is an N dimensional vector and Φ is an M × N
random projection matrix with M < N . CS theory [6], [11]

implies that one can reconstruct x from y if M ≥ CS logN ,

where C is a constant.

In our case equation (2) is (we will assume h(t) ≡ 1 until

further notice),

y = Φ(x+w) = Θ(X +W), (3)

where X = Finvx, Θ = ΦFinv,W = Finvw and Finv is the

IDFT matrix.

The reconstruction requires a non-linear algorithm to find

S-sparse signal X from y. There are many such algorithms in

literature survey for compressive sensing. Among the existing

reconstruction algorithms, Basis Pursuit (BP) [6] uses ℓ1 opti-

mization. Another class of algorithms are iterative algorithms.

These include matching pursuit (MP) and orthogonal match-

ing pursuit (OMP) [23]. Their followers are stagewise OMP

(StOMP) [7] and the regularized OMP (ROMP) [13]. The

reconstruction complexity of these algorithms is much lower

than ℓ1 optimization. However these algorithms require more

measurements for perfect recovery. There are algorithms such

as subspace pursuit (SP) [4] and compressive sensing matching

pursuit (CoSaMP) [14] that use the idea of backtracking.

These algorithms give an estimate X̂ of X. The performance

of some these algorithms in a noisy setup has been studied

in [2], [14] and it is found that to recover the signal they

require SNR ≥ 10dB. We now consider one commonly used

recovery algorithm OMP. OMP works as follows: Initially it

finds a column of Θ which has maximum correlation with

y. Then from y it removes the orthogonal projection of y on

that column. It repeats the above procedure until it finds S
columns. Then X̂ is the projection of y on these columns.

We use a computationally simpler but sub-optimal algo-

rithm. An advantage is that we can approximate distributions

of its projections under different hypothesis and then use the

statistical techniques to detect holes. We call this algorithm

COR. In COR we find the correlation of y with each of the

columns of Θ and find the statistics of these correlations.

Thus it is not an iterative procedure like OMP and hence it is

simple to find the distribution of correlation for each column.

As an X recovery algorithm COR is suboptimal. But along

with statistical methods it can provide a better procedure at

low SNR than OMP.

IV. COR ALGORITHM

We define

cor = Θhy. (4)

We take each entry of Φ as i.i.d. N (0, 1/M). Since Finv is an

unitary matrix, Θ is a Complex Gaussian matrix. We will use

cor(i), the ith component of cor, to detect if the ith channel

is occupied or not.



Expanding the ith component of cor,

cor(i) = θhi θi(X(i) +W (i)) +
∑

j 6=i

θhi θj(X(j) +W (j))

= ziiX(i) +
∑

j 6=i

zijX(j) + Z(i), (5)

where θhi denotes the conjugate transpose of ith column of

matrix Θ and zi,j = θhi θj . It can be easily shown that zii is

a Chi-Squared distributed random variable with M Degrees

of freedom. For a sufficiently large M , zii ∼ N (0, 1/M).
Similarly for large M , zij is a sum of a large number of

i.i.d. random variables. Thus we can assume zij is distributed

as CN (0, 1/M) if j = N − i else CN (0, 2/M), where

CN (0, σ2) is circularly symmetric complex Gaussian distri-

bution with variance σ2. Therefore we can rewrite cor(i) as,

cor(i) = ziiX(i) + I(i) + Z(i), where I(i) corresponds to

the interference term present due to other existing primary

channels. Thus, for any channel i we have the following

Hypothesis

H0 : ℜ(cor(i)) ∼ N (0, σ2),ℑ(cor(i)) ∼ N (0, σ2) versus

H1 : ℜ(cor(i)) ∼ N (ℜ(X(i)), σ2),

ℑ(cor(i)) ∼ N (ℑ(X(i)), σ2),

where ℜ(c) denotes the real part and ℑ(c) denotes the imag-

inary part of c.
Consider the case when |X(i)| = A, whenever channel i

is being used by a primary. For this case σ2 = SA2/2M +
1/2 + (N + 2)/M and A =

√

EN/S.

All above approximations hold asymptotically, as N → ∞,

M → ∞, S/N → e1 < ∞ and M/N → e2 < ∞, where e1 is

the sparsity and e2 is the compression ratio. We are interested

in the scenario where e1 < 0.02 and 0.1 < e2 < 0.5.

To detect each band we use the Neyman-Pearson (NP) test

for each channel i. Under H0 we fix probability of False alarm

PFA , P [Decision is H1|H0] as α and we choose threshold

η such that PFA = α = exp(−η/2σ2). Thus η = 2σ2 log 1
α

and probability of Detection PD , P [Decision is H1|H1] =
Qχ

′2

2
(λ)(|cor(i)|

2/σ2 > η2/σ2), because |cor(i)|2/σ2 is a

noncentral chi-square random variable with degrees of free-

dom 2 and noncentrality parameter A2. Thus we can find the

Receiver operating characteristics (ROC) of our detector.

We study the effect of parameters S,N,M,E on the perfor-

mance of this detector. For simplicity we take X(i) = A, for

all iǫSsup. where Ssup denotes the set of occupied channels.

Then we have

PFA = Q(η/σ2), (6)

PD = Q(
η −A

σ
)

= Q(f(S,N,M,E)). (7)

where A =
√

EN/S, σ2 = SA2/2M + 1/2 + (N + 2)/M ,

c = log(1/PFA) and f(S,N,M,E) = c−A/σ.

If we fix E,N, S and decrease M , f(M,N,E, S)
decreases and hence PD decreases. This is verified in Fig 2.

If we fix E,N,M and increase S, the argument in equation 7

decreases and hence the performance degrades with increase

in S. This is also verified in Fig 3. In both the figures we

plot theoretical and simulation results. There is an excellent

match between them.
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Theoretical Result : M = 75

Simulation Result : M = 75

Theoretical Result : M = 40

Simulation Result : M = 40

Theoretical Result : M = 20

Simulation Result :  M = 20

Fig. 1. Performance for given N = 200, S = 4, SNR=0 dB with variation
in measurements M
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Simulation Result : S = 4

Theoretical Result : S = 4

Simulation Result : S = 8

Theoretical Result : S = 8

Simulation Result : S = 20

Theoretical Result : S = 20

Fig. 2. Performance for given N = 200,M = 100, H = 1, SNR=0 dB
with variation in sparsity S

Now we consider the case when we take K blocks of M
samples of y and assume that the statistics of each channel

doesn’t change with block. Thus it is optimum to consider

cor(i) =
1

K

K
∑

k=1

cork(i), (8)

where cork(i) is cor(i) for the kth block. The effective

variance for each channel now becomes σ2
eff = SA2

2MK
+

1
2K + N+2

2MK
. Now we show the trade off between (M,K)

combination. If we have 2M measurements and K blocks

then σ2
eff = SA2

2(2M)K + 1
2K + N+2

2(2M)K . Instead we can

take M measurements and 2K blocks and then σ2
eff =

SA2

2M(2K) + 1
2(2K) + N+2

2M(2K) . We see these results in lower

effective variance than the former although the total number

of observations is 2MK in both the cases.



Next we consider the case when the parameters S,N,M,E
are unknown. We need to know σ2 = SA2/2M + 1/2 +
(N + 2)/M and A =

√

EN/S to find the PFA, PMD and

hence the threshold η for appropriate performance guarantee.

Thus we use Generalized Log-likelihood Ratio test (GLRT) to

estimate the parameters and then detect the holes. We take K
independent samples of y (i.e., K sets of M measurements).

The ML estimate of ℜ(X(i)) and ℑ(X(i)) are

X̂R(i)ML =
1

K

K
∑

k=1

ℜ(cork(i)), (9)

X̂I(i)ML =
1

K

K
∑

k=1

ℑ(cork(i)). (10)

The ML estimate of σ2

σ̂2(i)ML =
1

2K

K
∑

k=1

({

ℜ(cork(i))− X̂R(i)ML

}2

+

{

ℑ(cork(i))− X̂I(i)ML

}2)

, (11)

Thus X̂R(i) ∼ N (XR(i), σ
2/K), X̂I(i) ∼ N (XI(i), σ

2/K).
Also E(σ̂2(i)) = K

K−1σ
2 and V ar(σ̂2(i)) = 2σ4/(K − 1).

Since the noise for each channel is almost same for

S >5, we can further improve the estimate of variance as

σ̂2 = 1
N

N
∑

i=1

σ̂2(i). Then, E{σ̂2} = Kσ2

(K−1) and V ar{σ̂2} ≥

2σ4

N(K−1) .

For SNR = −15dB,N = 200, S = 4, σ2 = 1.5416,

K = 10, E{σ̂2} = 1.387, V ar{σ̂2} = 0.0337, K
K−1E{σ̂2} =

1.5411. For K = 5, E{σ̂2} = 1.2327, V ar{σ̂2} = 0.1257,
K

K−1E{σ̂2} = 1.5409. Thus even if we do not know the

parameters we can achieve satisfactory performance because

of the good estimate of the variance.

The GLRT can also be used when the channel gains h
are unknown. We assume slow fading and hence for a given

detection interval channel gains are constant. Here we assume

σ2 to be unknown, therefore S, E can be unknown parameters.

Some results are reported in Table I for COR algorithm with

GLRT at −15 dB.

h PMDsim P̂MDsim PMDtheory

1.00 0.0480 0.0481 0.0490
0.90 0.1130 0.1120 0.1107
0.80 0.2300 0.2300 0.2300
0.70 0.3890 0.3880 0.3880
0.60 0.5500 0.5530 0.5512
0.55 0.6480 0.6400 0.6403

TABLE I
COMPARISONS OF THEORETICAL AND SIMULATION RESULTS OF PMD

FOR GIVEN PFA = 0.01, N = 1000, M = 500, S = 10, SNR = −15

DB, K = 10, AT DIFFERENT CHANNEL GAINS

In the Table I, h column denotes the channel gain, PMDsim

denotes the probability of miss detection found by simulation

using COR-GLRT and P̂MDsim denotes the probability of

miss detection found theoretically from σ̂2 and PMDtheory

when all the channel gains are known a priori to the CR.

From these results we conclude that the performance of the

COR under the unknown parameters case is almost the same

as that of the COR algorithm with the known parameters.

From the above two results we conclude that even when we

do not know channel gains, σ2 etc we can achieve satisfactory

performance even at low SNR for COR with GLRT.

We can show that correlation between cor(i) and cor(j),
i 6= j ρ = 1

2M . Thus if M > 100 one can assume cor(i) and

cor(j) are roughly independent. But if M < 100 then joint

detection can improve performance. We do ML detection from

observed cor. As there are
(

N
S

)

possible hypothesis, for large

N even for small S, the number of possible hypothesis is very

large. Thus we search for busy channels over the channels

with aS largest cor(i) coefficients, where 1 < a < 2. Here

we assume S is known a priori to the detector. We have the

following results for parameters N = 200,M = 100, S = 4
and SNR = 0 dB. For PFA = 0.01, PMD are 0.02, 0.06 via

OMP and COR respectively, but via COR-JOINT PMD =
0.03.

V. COMPARISON WITH OMP ALGORITHMS

We compare COR with OMP. For OMP the statistics of

the channel coefficients are not known. Thus for OMP we

obtained results via estimating X̂ and comparing each entry

of X̂(i) with optimum threshold chosen using simulations. We

take N = 200, S = 4 and we compare OMP with COR for

different values of SNR and M . CS theory recommends M

≥ CS logN , where C is between 2−4.
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OMP: M =  50

COR: M = 50

OMP: M =  100

COR: M = 100

OMP: M = 40

COR: M = 40

Fig. 3. OMP vs COR: ROC for given N = 200, S = 4 and SNR = 0 dB

We see that at 0 dB (Fig 4) OMP provides much better

performance than COR when M ≥ 50 but not for M = 40.

However at −10 dB (Fig 5) their performance are close at

M = 100 but COR outperforms OMP at M = 40. This can

be explained as follows. We have σ2 = SA2/2M+1/2+(N+
2)/2M . As A =

√

EN/S, for higher SNR A is also large.

Thus σ2 is dominated by A at each iteration of OMP. In the

next iteration σ2 will decrease as we remove the orthogonal

projection of the higher energy channel. Thus OMP improves

performance. But as M decreases σ2 is dominated by N/M
and therefore OMP does not perform well. At low SNR, σ2 ≈
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COR: M = 100

OMP: M = 100

OMP: M = 40

COR: M = 40

Fig. 4. OMP vs COR: ROC for given N = 200, S = 4 and SNR = −10

dB

1/2 + (N + 2)/M. Thus at low SNR COR performs better

than OMP for small M . As we want to detect at low SNR
we should prefer COR algorithm for detection of a wideband

signal.

Now consider the fact that M ≥ Mmin = CS logN , where

C is a constant. The minimum SNR requirement for OMP

during the first iteration can be found by using this. Since σ2 ≤
SA2/2Mmin+1/2+(N+2)/(2Mmin) = EN/(2SC logN)+
1/2+(N+2)/(2CS logN), minimum SNR requirement with

C = 2 is

Em =
SA2

EmN/(4S logN) + 1/2 + (N + 2)/(4S logN)

=
1

1/(4S logN) + 1/2EmN + 1/(4EmS logN)
.

For N = 200, S = 4 Emin = 15dB.

Now we consider the algorithm in [10] called Sequential

OMP. We know that M ≥ S logN measurements are required

for signal recovery even for the noiseless case. Thus to fix

M we need S. If knowledge of S is unknown then sequential

OMP has been suggested to find M . The algorithm starts with

some arbitrary M measurements and we keep on increasing

M by 1 until ||X̂M+1−X̂M ||2 < e, where e is a small number.

We use this concept on COR algorithm also. We compare

its performance with Sequential OMP.

We find E{||X̂M − X̂M+1||2} for both the algorithms via

simulation. In Fig 5 we plot

ERN(M) =
E{||X̂M − ˆXM+1||2}

E{||X̂1 − X̂2||2}
(12)

We conclude that the recovery of Sequential-COR is same as

Sequential-OMP at low SNR ≤ −5 dB.

VI. SEQUENTIAL COR

In the previous analysis we assumed a fixed number K of

sample y. But at low SNR to achieve satisfactory performance

we need more samples. We now use sequential techniques

for COR algorithm to minimize K for a given target, say

PFA < 0.1 and 1 − PD , PMD < 0.1. It is known

that Sequential Probability Ratio Test (SPRT) [10] requires
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SEQ−OMP @ SNR =  10 dB

SEQ−OMP @ SNR = 0 dB
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SEQ − COR

Fig. 5. Performance for given N = 200, S = 2,H = 1

minimum mean number of samples for K given PFA and

PMD . The test samples till K̄ = inf
{

k : Lk ≥ β or Lk ≤ α
}

where Lk is the likelihood ratio of k samples and α and β are

chosen to satisfy PFA and PMD. At time K̄, the decision is

H1 if LK̄ ≥ β and H0 if LK̄ ≤ α. When applied on COR we

call it COR-SPRT while the algorithm with NP as COR-NP.

Since for OMP we do not know the statistics of the projections,

we are unable to use SPRT with OMP. For H0 : N (0, σ2) vs

H1 : N (A, σ2), it has been shown [16] that KNP/E{K̄} = 4
when PFA, PMD → 0, where KNP is the number of samples

for NP.

SNR PFA PMD KNP KOMP E{K̄|H0} E{K̄|H1}

-15dB 0.05 0.01 20 23 09.35 14.14
-20dB 0.10 0.05 40 44 21.50 27.50

TABLE II
COMPARISON AMONG COR-NP, COR-SPRT AND OMP

We compare the number of samples K required by COR-

NP, OMP and COR-SPRT for SNR = −15 dB in Table II

where KNP and KOMP are the number of samples needed for

COR-NP and OMP; while E{K̄|Hj} is the mean number of

samples required by COR-SPRT under hypothesis i = 0, 1.

We see that COR-SPRT needs about half the number of

observations required for KNP and KOMP .

Next we discuss COR-SPRT when parameters A and σ2

may be unknown. For A unknown Lai [9] proposed the

following stopping rule

K̃ = inf

{

k : max

[

k
∑

i=1

log
f
θ̂k
(X(i))

fθ0(X(i))
,

k
∑

i=1

log
f
θ̂k
(X(i))

fθ1(X(i))

]

≥ g(ck)

}

. (13)

where θ̂k is the ML estimate of θ using k samples and g(t) ∼
log t−1 as t → 0.

We compare the performance of COR-SPRT when the

parameters are known vs when they are not known at −20 dB

in Table III. We denote by E{K̄|Hj} the expected number



c 0.01 0.003 0.001

PFA 0.014 0.062 0.110
PMD 0.014 0.066 0.100

E{K̄|H0} 11.60 13.92 18.58

E{K̄|H1} 11.20 14.00 18.88

E{K̂|H0} 11.87 17.58 23.58

E{K̂|H1} 11.90 17.94 22.76

E{K̃, σ̂2|H0} 13.50 22.92 26.55

E{K̃, σ̂2|H1} 13.80 23.50 26.58

TABLE III
COMPARISONS OF SAMPLES REQUIRED FOR SPRT AND COMPOSITE-SPRT

ALGORITHMS FOR N = 200,M = 100, S = 4, SNR = −20 dB

of samples required under Hypothesis j when parameter

A is known and E{K̂|Hj} denotes the same when A is

unknown. For both cases we assume that σ2 is known. For the

general case when both A and σ2 are unknown then these are

denoted by E{K̃, σ̂2|Hj}. We observe that the performance

degradation due to not knowing the parameters is marginal.

VII. CONCLUSIONS

We have developed a simple COR algorithm which can be

used with compressive sensing data for detection from noisy

observations. We have also analyzed it theoretically. COR is

a suboptimal algorithm and not designed to be used as a data

recovery algorithm in CS. Instead, because of its simplicity,

its statistics can be easily approximated and hence it allows

us to use it with standard detection algorithms available in

literature. This combination allows us to develop powerful

algorithms for spectrum sensing. We have compared COR with

OMP algorithm (for which statistics are intractable and hence

statistical techniques are difficult to combine). We conclude

that if we are operating at a low SNR(≤ −5 db) then the

COR algorithm is a good choice for detection as compared to

the existing algorithms, for fixed size sample case. We have

also improved over COR by developing its sequential version.

Finally we have extended these algorithms to the case when

the parameters are not known. This work seems to be one of

the first in this direction.
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