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Course structure
• Two sessions per week. Tuesdays and Thursdays between 5:15 p.m. to 6:45 p.m.

• One assignment per topic. There will be a quiz based on each assignment. Tutorial and quiz
sessions will be held by TAs on Saturdays 10-11 a.m. after each topic is finished.

• One mid-term exam.

• One final exam.
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Chapter 1

Poisson Processes

Lecture 1

Course E2.204: Stochastic Processes and Queueuing Theory (SPQT) Spring 2019
Instructor: Vinod Sharma

Indian Institute of Science, Bangalore

1.1 Introduction to stochastic processes
Review: Let (Ω,σ ,P) be a probability space. A measurable mapping X : Ω→ R is called a random
variable (r.v.). X(ω) for ω ∈ Ω is called a realization of X . FX (x) = P[X ≤ x] is called the distribution
function of r.v. X . fX (x) = dF(x)/dx is called the probability density function of X . The probability den-
sity function may not always exist. E[X ] =

∫
xdFX (x) is the expectation of X . When probability density

of X exists E[X ] =
∫

x f (x)dx.

Stochastic processes: {Xt : t ∈ R}, where Xt is a r.v. is called a continuous time stochastic process.
{Xn : n ∈ N}, where Xn is a r.v. is called a discrete time stochastic process.

The function t 7→ Xt(ω) is called a sample path of the stochastic process. For each ω ∈ Ω, Xt(ω)
is a function of t. Ft is the distribution of Xt . An analogous definition holds for discrete time stochastic
processes. A stochastic process is described by the joint distribution of (Xt1 ,Xt2 , . . . ,Xtn) for any −∞ <
t1 < t2 < .. . < tn and n ∈ N+.

A stochastic process {Xt} is said to be stationary if for any 0≤ t1 < t2 < · · ·< tn, the joint distribution
of (Xt1 ,Xt2 , . . . ,Xtn) is identical to the joint distribution of (Xt1+τ ,Xt2+τ , . . . ,Xtn+τ) for any τ ∈ R. A
stochastic process {Xt} is said to have independent increments if (Xt2 −Xt1),(Xt3 −Xt2), . . . ,(Xtn −Xtn−1)
are independent. If joint distribution of (Xtn+τ−Xtn−1+τ), (Xtn−2+τ−Xtn−3+τ), . . . ,(Xt2+τ−Xt1+τ) does not
depend on τ , then {Xt} is said to have stationary increments. If {Xt} has both stationary and independent
increments, it is called a stationary independent increment process.

Point process: A stochastic process {Nt , t ≥ 0}with N0 = 0, Nt a non-negative integer, non-decreasing
with piece-wise constant sample paths is called a point process. Nt counts the number of points or ’ar-
rivals’ in the interval (0, t].

Let An denote the interarrival time between nth and (n−1)th arrival. Let S0 = 0 and Sn =∑
n
k=1 Ak,∀n≥

1. Then Sn denotes the time instant of the nth arrival. Nt = max{n : Sn ≤ t}. A point process with at most
one arrival at any time is called a simple point process. Mathematically, a simple point process {Nt} is
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described by following constraints for all t:

P{Nt+h−Nt ≥ 2}= o(h).

Here, the notation o(g(x)) means a class of functions such that if f (x) ∈ o(g(x)), then limx→0
f (x)
g(x) = 0.

1.2 Poisson process

1.2.1 Definition
In the following we customarily take N0 = 0. A point process Nt is Poisson if any of the following
conditions hold.

Definition [1]:

1. {Ak,k≥ 1} are independent and exponentially distributed with parameter λ : P{Ak ≤ x}= 1−e−λx.
If λ = 0, A1 = ∞ w.p.1. and Nt = 0 ∀t. If λ = ∞, A1 = 0 w.p.1 and Nt = ∞ ∀t. Thus, we restrict to
0 < λ < ∞. In this range for λ , Nt is guaranteed to be simple because P{Ak = 0}= 0 ∀k.

Definition [2]:

1. Nt is simple.

2. Nt has stationary independent increments.

Definition [3]:

1. Nt has independent increment.

2. For s < t,

P{Nt −Ns = n}= (λ (t− s))n

n!
e−λ (t−s)

Definition [4]:

1. Nt has stationary and independent increments.

2. (a) P{Nt+h−Nt = 1}= λh+o(h)

(b) P{Nt+h−Nt = 0}= 1−λh+o(h)

(c) P{Nt+h−Nt ≥ 2}= o(h)

We will show below that these definitions are equivalent. We need the following important charateri-
zation of exponential distribution.
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Exponential r.v. is memoryless: Let X be an exponential r.v.

P{X > t + s|X > t}= P{X > t + s,X > t}
P{X > t}

=
P{X > t + s}
P{X > t}

=
e−λ (t+s)

e−λ t

= e−λ s

= P{X > s}

If X is interarrival time, this property of an exponential r.v. indicates that the remaining time till next
arrival does not depend on time t since last arrival. Thus, the term memoryless is used.

Theorem 1.2.1. Exponential distribution is the unique distribution on R+ with the memoryless property.

Proof. If a r.v. X on R+ is memoryless, we show that X must be exponential. If X is memoryless, we
have for all t,s ≥ 0, P{X > t + s} = P{X > t}P{X > s}. Let f (t) = P{X > t}. We have the functional
equation

f (t + s) = f (t) f (s) (1.1)

Taking t = s, we get f (2t) = f 2(t). By repeated application of Eq 1.1, m times, we get f (mt) = f m(t)
for positive integer m. Equivalently, we have f (t/m) = f

1
m (t). Again by repeated application of Eq 1.1

n times, f ( n
m t) = f

n
m (t) for any positive integers m and n. So, we have f (rt) = f r(t) for any positive

rational number r. We know that 0 ≤ f (t) ≤ 1 since 1− f is probability distribution. So, we can write
f (1) = e−λ for some λ ≥ 0. Therefore we have, f (r) = f (r×1) = f r(1) = e−λ r for any positive rational
number r.

For any x ∈ R, there is a sequence of rationals rn ↓ x. Since f is right continuous, f (rn)→ f (x). In
other words, for any x ∈ R,

f (x) = lim
rn→x

f (rn)

= lim
rn→x

e−λ rn

= e−λx

Thus, P{X > x}= e−λx and X is an exponential random variable.

Now we show that definitions [1−4] for Poisson process given above are equivalent.

Proposition 1.2.2. Definition [3] =⇒ Definition [2].

Proof. We need to show that Nt has stationary increments if Nt has independent increments and Nt −Ns
is Poisson distributed with mean λ (t − s). Stationarity follows directly from the definition since the
distribution of number of points in an interval depends only in the length of interval. The conditions for
a simple process is also met which can be easily verified from the definition:

P{Nt+h−Nt ≥ 2}= 1−
(
(λh)0

0!
e−λh +

(λh)1

1!
e−λh

)
= o(h)
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Lecture 2

Course E2.204: Stochastic Processes and Queueuing Theory (SPQT) Spring 2019
Instructor: Vinod Sharma

Indian Institute of Science, Bangalore

1.2.1 (Contd.) Poisson Processes: Definition
Proposition 1.2.3. Definition [1] of Poisson processes (see lecture-01) =⇒ Definition [3].

Proof. Step 1: Density function of nth arrival pSn(t) =
λ ntn−1

(n−1)! e−λ t . This can be shown using induction
on n. Sn = ∑

n
k=1 Ak, where Ak ∼ exp(λ ). For n = 1 and S1 = A1, the expresssion is true since it reduces

to density function of an expoenential random variable with mean λ . Now, assuming it is true for Sn, we
will show that it is true for Sn+1.

pSn+1(t) = pSn ∗An+1 (density of sum of ind. r.v.s is their convolution)

=
∫ t

τ=0

(
λ nτn−1

(n−1)!
e−λτ

)(
λe−λ (t−τ)

)
dτ

= e−λ t
λ

n+1
∫ t

τ=0

τn−1

(n−1)!
dτ

= e−λ t
λ

n+1 tn

n!

Step 2:

P{Nt = n}= P{Sn ≤ t < Sn+1}

=
∫

∞

0
P{Sn ≤ t < Sn+1|Sn = s}pSn(s)

=
∫ t

0
P{An+1 > t− s}pSn(s) ({Sn = s < t,Sn+1 > t} ≡ {An+1 > t− s})

=
(λ t)n

n!
e−λ t (Use the fact that An is exp(λ ))

Independent increments and stationary increments property follows from Ak begin i.i.d. with exp(λ ).

Proposition 1.2.4. Definition [2] of Poisson processes (see lecture-01) =⇒ Definition [1].

Proof. Step 1: Show that A1 must be exponential.

P{A1 > t + s|A1 > t}= P{Nt+s−Nt = 0|Nt = 0}
= P{Nt+s−Nt = 0} (increments are independent)
= P{Ns = 0} (stationary increments)
= P{A1 > s}

=⇒ P{A1 > t + s}= P{A1 > s}P{A1 > t}

This leads to the functional equation whose only right continuous solution is that A1 is an exponential r.v.
(this was proved in lecture-01).
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Step 2: Show that A2 is independent of A1 and has the same distribution.

P{A2 > t|A1 = s}= P{Nt+s−Ns = 0|Ns = 1}
= P{Nt+s−Ns = 0} (independent increments)
= P{Nt = 0} (stationary increments)
= P{A1 > t}

This shows that A2 is independent of and also identically distributed as A1. Similar argument holds for all
other Ans.

Proposition 1.2.5. Definition [3] =⇒ De f inition[4]

Proof. We have already shown that definition [3] implies stationary increments. We now show that it
implies (2) in definition [4].

P{Nt+h−Nt = 1}= λhe−λh

1!
= λh(1−λh+o(h))

= λh+o(h)

which shows [4]− (2)− (a).

P{Nt+h−Nt ≥ 2}=
∞

∑
k=2

(λh)2e−λh

k!

= o(h)

which shows [4]− (2)− (c). These together also proves [4]− (2)− (b).

Proposition 1.2.6. Definition [4] implies definition [3]

Proof. Let fn(t) = P{Nt = n}. We will first find f0(t) by developing and solving a differential equation.

f0(t +h) = P{Nt = 0,Nt+h−Nt = 0}
= P{Nt = 0}P{Nt+h−Nt = 0} (independent increments)
= f0(t)(1−λh+o(h)) (using definition [4]− (2)− (b))

=⇒ f ′0(t) =−λ f0(t) (rearraging and taking h ↓ 0)

=⇒ f0(t) = e−λ t (Solving diff equation using N0 = 0)

For n≥ 1, we have

fn(t +h) = P{Nt = n,Nt+h−Nt = 0}
+P{Nt = n−1,Nt+h−Nt = 1}+o(h) (definition [4]− (2)− (c))
= fn(t)(1−λh)− fn−1(t)λh+o(h) (independent increments and

definition [4]− (2)− (a,b))
=⇒ f ′n(t) =−λ fn(t)−λ fn−1(t) (taking h ↓ 0)

=⇒ d
dt

(
eλ t fn(t)

)
=−λeλ t fn−1(t) (mulitplying by eλ t and rearranging)
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Solving the above equation for n = 1 using the initial condition f1(0) = 0, we obtain

f1(t) = λ te−λ t .

For general n, we can verify using induction on n that

fn(t) = P{Nt = n}= (λ t)n

n!
eλ t .

This verifies definition [3].
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Lecture 3

Course E2.204: Stochastic Processes and Queueuing Theory (SPQT) Spring 2019
Instructor: Vinod Sharma

Indian Institute of Science, Bangalore

1.2.2 Properties of Poisson processes
Conditional distribution of points in an interval:

Theorem 1.2.7. Given that there are n points in the interval I = (a,b], these n points are distributed
uniformly in the interval I. Their joint distribution is given by order statistics of n uniformly distributed
point in the interval I.

Proof outline: Take s1 < s2 < · · ·< sn and h> 0 small enought such that s1+h< s2,s2+h< s3, . . . ,sn−1+
h < sn in (0, t].

P{S1 ∈ (s1,s1 +h],S2 ∈ (s2,s2 +h], · · · ,Sn ∈ (sn,sn +h]|Nt = n}

=
P{S1 ∈ (s1,s1 +h],S2 ∈ (s2,s2 +h], · · · ,Sn ∈ (sn,sn +h],Nt = n}

P{Nt = n}

=
e−λ s1(λh)e−λh× e−λ (s2−(s1+h))(λh)e−λh× . . .× e−λ (sn−(sn−1+h))(λh)e−λh× e−λ (t−(sn+h))(λh)e−λh

(λ t)n

n! e−λ t

+o(hn)

=
(λh)ne−λ (t−nh))

(λ t)n

n! e−λ t
+o(hn) =

n!
tn hn +o(hn)

Now, we have

pS1,S2,···Sn|Nt=n(s1,s2, · · · ,sn) = lim
h↓0

P{S1 ∈ (s1,s1 +h],S2 ∈ (s2,s2 +h], · · · ,Sn ∈ (sn,sn +h]|Nt = n}
hn

where pS1,S2,···Sn|Nt=n is the joint density of S1,S2, · · · ,Sn conditioned on Nt = n. Therefore,

pS1,S2,···Sn|Nt=n(s1,s2, · · · ,sn) =
n!
t

This is the density function of n ordered random variables uniformly distributed in the interval (0, t]. By
stationarity, this property holds for any interval.

Superposition of independent Poisson processes:

Theorem 1.2.8. If n Poisson processes N(1)
t ,N(2)

t , · · · ,N(n)
t of rates λ1,λ2, · · · ,λn respectively are inde-

pendent, then their superposition is a Poisson process of rate ∑
n
k=1 λk.

Proof. We use definition [3]. The superposition process is simple since component processes are simple
(follows from union bound). Independent increments property also from the fact that component process
are independent and have independent increments property. [3]− (2) follows from the fact that sum
of independent Poisson random variables with mean λ1t,λ2t, · · · ,λnt is a Poisson random variable with
mean ∑

n
k=1 λkt.
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Splitting of Poisson processes:

Theorem 1.2.9. Let Nt be a Poisson process of the rate λ . Suppose each point of the process Nt is marked
independently as type i for i ∈ {1,2, · · · ,m} with probability pi such that ∑

m
i=1 pi = 1. Let the processes

{N(i)
t } for i ∈ {1,2, · · · ,m} be comprised of only those points marked as type i respectively. Then, {N(i)

t }
are independent Poisson processes with respective rates piλ .

Proof. We prove for the case of m = 2. The proof for the general case is similar. The processes N(1)
t

and N(2)
t are simple and have independent increment property which follows from Nt being simple with

independent increments. We also have

P{N(1)
t = k1,N

(2)
t = k2}=

∞

∑
k=0

P{N(1)
t = k1,N

(2)
t = k2|Nt = k}P{Nt = k}

= P{N(1)
t = k1,N

(2)
t = k2|Nt = k1 + k2}P{Nt = k1 + k2}

=
(p1λ t)k

1e−p1λ t

k1!
×

(p2λ t)k
1e−p2λ t

k2!
.

We can now appeal to definition [3] to conclude that N(1)
t and N(2)

t are independent with rates p1λ and
p2λ respectively.

1.2.3 Generalization of Poisson processes
Batch Poisson processes:

Let {Nt} be a Poisson process of rate λ . At each arrival, instead of just one customer, a batch of customers
arrive. The number of customers at nth arrival is Xn. The sequence of Xn, n = 1,2, · · · is i.i.d and is also
independent of {Nt}. The overall process {Yt} where Yt is the total number of arrivals in (0, t] is called a
batch Poisson process. Yt = ∑

Nt
k=1 Xk. We can compute the distribution of Yt as follows

P{Yt = m}=
∞

∑
n=0

{
P{

Nt

∑
k=1

Xk = m}P{Nt = n}

}

=
∞

∑
n=0

{
P{

n

∑
k=1

Xk = m} (λ t)ne−λ t

n!

}

where P{∑n
k=1 Xk =m} can be computed by convolution or from momentum generating functions. For the

mean of Yt , we have E[Yt ] = (λ t)E[X1]. We note that batch Poisson process is a relaxation of requirement
of simplicity in definition [2] of Poisson process.

Nonstationary Poisson processes:

The non-stationary (also called non-homogeneous) Poisson process {Nt} is defined as follows.

• {Nt} has independent increments.

• Let λ (t) be non negative function of t.

– P{Nt+h−Nt = 1}= λ (t)h

– P{Nt+h−Nt = 0}= 1−λ (t)h+o(h)

– P{Nt+h−Nt ≥ 2}= o(h)

11



Let m(t) =
∫ t

o λ (s)ds. We show that Nt+s−Nt is a Poisson random variable with mean m(t + s)−m(t).
Let fn(s) = P{Nt+s−Nt = n}. For n = 0, we have for h ↓ 0

f0(s+h) = P{Nt+s+h−Nt+s = 0,Nt+s−Nt = 0}
= P{Nt+s+h−Nt+s = 0}P{Nt+s−Nt = 0} (independent increments)
= (1−λ (t + s)h+o(h)) f0(s)

=⇒ f
′
0(s) =−λ (t + s) f0(s)

=⇒ f0(s) = e−(m(t+s)−m(t))

Using similar argument we can show by induction on n that

P{Nt+s−Nt = n}= fn(s) =
(m(t + s)−m(t))ne−((m(t+s)−m(t))

n!

Spatial Poisson process:

So far we have defined Poisson processes on R+. Now, we generalize to Rk, k≥ 2. Let A,B⊂Rk and NA
is the number of points in A.

1. NA and NB are independent for disjoint A and B.

2. if |A| denotes the volume of A,

P{NA}=
(λ |A|)ne−λ |A|

n!

From this definition, it follows that for the process {N}, P{NBx(h) ∈ {0,1}} = 1+ o(hk) for all x ∈ Rk

where Bx(h) is a ball of radius h around x. This means that {N} is simple.

12



1.3 Problems
Problem 1: An item has a random lifetime with exponential distribution with parameter λ . When the item fails,
it is immediately replaced by an identical item. Let Nt be the number of failures till time t. Show that {Nt , t ≥ 0}
is a Poisson process. Find the mean and variance of the total time T when the fifth item fails.

Problem 2: Let A1,A2, . . . ,An be disjoint intervals on R+ and B = ∪n
k=1Ak. Let a1,a2, . . . ,an be their respective

lengths and b = ∑
n
k=1 ak. Then for k = k1 + k2, . . . ,kn, show for Nt a Poisson process

P{NA1 = k1,NA2 = k2, . . . ,NAn = kn|NB = k}= k!
k1!k2! . . .kn!

(a1

b

)k1
(a2

b

)k2
. . .
(an

b

)kn

Problem 3: A department has three doors. Arrivals at each door form Poisson process with rates λ1 = 110,
λ2 = 90 and λ = 160 customers/sec. 30% of the customers are male and 70% are female. The probability that a
male customer buys a item is 0.6. The probability that a female buys an item is 0.1. An average purchase is worth
Rs 4.50. Assume all the random variables are independent. What is the average worth of total sales in 10 hours?
What is the probability of the third female who also buys an item arrives during the first 15 minutes? What is the
expected time of her arrival?
Problem 4: The customers arrive at a facility as a Poisson process with rate λ . There is a waiting cost of c per
customer per unit time. The customers wait till they are dispatched. The dispatching takes place at times T,2T, . . ..
At time kT all customers in waiting will be dispatched. There is dispatching cost of β per customer.

1. What is the total dispatch cost till time t.

2. What is the mean total customer waiting time till time t.

3. What value of T minimizes the mean total customer and dispatch cost per unit time.

Problem 5: Let Nt be a Poisson process with rate λ and let the nth arrival epoch be Sn. Calculate E[S5|Nt = 3].
Problem 6: Let N(1)

t and N(2)
t be two Poisson processes with rates λ1 and λ2. Let the nth arrival epoch be S(1)n and

S(2)n respectively. Calculate

1. P{S(1)1 < S(2)1 }

2. P{S(1)2 < S(2)2 }
Problem 7: Shocks occur to a system according to a Poisson process Nt of intensity λ . Each shock causes some
damage to the system and these damages accumulate. Let Yi be the damage caused by the ith shock. Assume Yis
are independent of each other and Nt . Xt = ∑

Nt
k=1 Yk is the total damage till time t. Suppose the system fails when

Xt > α , where α > 0. If P{Yi = k}= (1− γ)k−1γ, k = 1,2, . . . Calculate the mean time till system failure.
Problem 8 (M/M/1 queue): A Poisson process Nt with rate λ form the arrivals to a queue. Each customer requires
an i.i.d. service time of exponential distribution with rate µ . Let qt be the number of customers at time t, Dt the
number of customers departed till time t. Then qt = Nt −Dt .

1. Calculate P{Dt = m|Nt = n}

2. Calculate P{qt = m|Nt = n}

3. Calculate P{qt = m}, E[qk
t ] for k = 1,2, . . .

4. Let qn be the queue length when the nth customer arrives excluding itself. Calculate P[qn = n|qn−1 = m].

Problem 9: Events occur according to a Poisson process with rate λ . These events are registered by a counter.
However, each time an event is registered, the counter is blocked for the next b units of time. Any new event that
occurs when the counter is blocked is not registered by the counter. Let Rt denote the number of registered events
that occur by time t (= number of events that occurred when the counter was not blocked).

1. Find the probability that the first k events are all registered.

2. For t ≥ (n−1)b, find P{R(t)≥ n}. 13
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2.1 Renewal Process: Introduction
We know that the interarrival times for the Poisson process are independent and identically distributed
exponential random variables. If we consider a counting process for which the interarrival times are
independent and identically distributed with an arbitrary distribution function on R+, then the counting
process is called a renewal process.

Let Xn be the time between the (n− 1)th and nth event and {Xn,n = 1,2, . . .} be a sequence of
nonnegative independent random varibales with common distribution F and Xn ≥ 0.

The mean time µ between successive events is given by

µ = EXn =
∫

∞

0
xdF(x).

We take µ > 0. Let S0 = 0 and Sn = ∑
n
i=1 Xi for n≥ 1, Sn indicating the time of nth event. The number of

events by time t, is given by

N(t) = sup{n : Sn ≤ t}.

Definition 2.1.1. The counting process {N(t), t ≥ 0} is called a renewal process.

Note that the number of renewals by time t is greater than or equal to n if, and only if, the nth renewal
occurs before or at time t. That is,

N(t)≥ n⇔ Sn ≤ t.

14



The distribution of N(t) can be written as P{N(t) ≥ n} = P{Sn ≤ t} and from this we can write
P{N(t) = n} as follows,

P{N(t) = n}= P{N(t)≥ n}−P{N(t)≥ n+1}
= P{Sn ≤ t}−P{Sn+1 ≤ t}.

By strong law of large numbers Sn
n → µ as n→ ∞ with probability 1. Hence Sn→ ∞ a.s. Also,

P{N(t)< ∞}= 1− lim
n→∞

P{N(t)≥ n}

= 1− lim
n→∞

P{Sn ≤ t}

= 1.

Proposition 2.1.2. E[Nr(t)]< ∞ for r > 0, t ≥ 0.

Proof. Construct a new process X ′k from Xk as follows,

X ′k =

{
0, Xk < α

α, Xk ≥ α

where Xk are the interarrival times of the original process. Let β = P{X1 ≥ α}.
Let {N′(t)} be constructed from {X ′k} as interarrival times. Then it is clear that X ′k ≤ Xk and N′(t)≥

N(t). Then,

P{N′(α

2
) = n}= P{X1 < α}P{X2 < α} . . .P{Xn−1 < α}P{Xn > α}

≤ (1−β )n
β .

Thus,

E[(N′(
α

2
))r] =

∞

∑
n=0

nrP{N′α
2
= n}

≤
∞

∑
n=0

nr(1−β )n
β < ∞.

E[(N′(t))r] = E
[ t

α
+1

∑
k=1

(Nk)
r]

≤
( t

α
+1
)r

E[N′(
α

2
)r]< ∞.

where Nk = N′
αk−N′

α(k−1).
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2.2 Limit Theorems
We have

lim
t→∞

P{Nt ≥ n}= lim
t→∞

P{Sn ≤ t}= 1.

Hence, limt→∞ N(t) = ∞ a.s.
Let us denote by SN(t), the time of the last renewal prior to or at time t and by SN(t)+1 the time of the

first renewal after time t.

Proposition 2.2.1. With probability 1,

lim
t→∞

N(t)
t
→ 1

µ
.

Proof. Since, SN(t) < t < SN(t)+1, we see that

SN(t)

N(t)
≤ t

N(t)
<

SN(t)+1

N(t)
.

By strong law of large numbers
SN(t)
N(t) → µ a.s. as t→ ∞ . Also,

SN(t)+1

N(t)
=

[
SN(t)+1

N(t)+1

][
N(t)+1

N(t)

]
→ µ a.s.

Definition 2.2.2. (Stopping Time) N a nonnegative integer valued random variable is a stopping time
w.r.t. sequence {Xk} if {N ≤ n} is a function of {X1,X2, . . . ,Xn}.

Theorem 2.2.3. (Wald’s Lemma) If N is a stopping time w.r.t. {Xk}, {Xk} is i.i.d. and E[X1] = µ < ∞,
E[N]< ∞ then

E[
N

∑
k=1

Xk] = E[N]E[X1].

Proof. Let

Ik =

{
1, N ≥ k
0, N < k

Then we can write the following

N

∑
k=1

Xk =
∞

∑
k=1

XkIk.

16



Hence,

E[
N

∑
k=1

Xk] = E[
∞

∑
k=1

XkIk] =
∞

∑
k=1

E[XkIk].

Since Ik is determined by X1,X2, . . . ,Xk−1, therefore Ik is independent of Xk. Thus we obtain

E[
N

∑
k=1

Xk] =
∞

∑
k=1

E[Xk]E[Ik]

= E[X1]
∞

∑
k=1

E[Ik]

= E[X1]
∞

∑
k=1

P{N ≥ k}

= E[X1]E[N].

Theorem 2.2.4 (Elementary Renewal Theorem).

lim
t→∞

E[N(t)]
t

=
1
µ
.

Proof. Let us denote E[N(t)] as m(t) and we prove the result for µ < ∞. We know that SN(t)+1 > t and
N(t)+1 is a stopping time. Taking expectations, by Wald’s lemma, we get,

µ(m(t)+1)> t.

This implies

liminf
t→∞

m(t)
t
≥ 1

µ
.

To get the other way, define a new renewal process from {X ′k,k = 1,2, . . .} where X ′k = min(M,Xk),
for a constant M > 0. Let S′n = ∑

n
1 X ′k and N′(t) = sup{n,S′n ≤ t}. The interarrival times for this truncated

renewal process are bounded by M. Therefore

S′N(t)+1 ≤ t +M.

Taking expectations on both sides we get,

µM(m′(t)+1)≤ t +M

where µM = E[X ′k]. Thus

limsup
t→∞

m′(t)
t
≤ 1

µM
.

Since m(t)≤ m′(t),

limsup
t→∞

m(t)
t
≤ 1

µM
.

for all M > 0. Taking M→ ∞, µM → µ then implies that limsupt→∞ m(t)/t ≤ µ .
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2.2.2 Blackwell’s Theorem
Theorem 2.2.5 (Blackwell’s theorem). Let F be the distribution of interarrival times.

1. If F is non-lattice

lim
t→∞

E[N(t +a)−N(t)] =
a
µ

for all a≥ 0.

2. If F is lattice with period d

lim
n→∞

E[N((n+1)d)−N(nd)] =
d
µ
.

Proposition 2.2.6. Blackwell’s theorem implies elementary renewal theorem.

Proof.

E
[

Nn

n

]
=

1
n

n

∑
k=1

(E[Nk]−E[Nk−1])

From Blackwell’s theorem and definition of limits, for every ε > 0, there exists n0 such that for n > n0

|E[Nk]−E[nk−1]−
1
µ
|< ε. (2.1)

Therefore for n > n0,

E
[

Nn

n

]
=

1
n

(
n0

∑
k=1

(E[Nk]−E[Nk−1])+
n

∑
k=n0+1

(E[Nk]−E[Nk−1])

)
.

≤ 1
n

(
n0

∑
k=1

(E[Nk]−E[Nk−1])+(n−n0−1)
(

ε +
1
µ

))
.

Thus, taking n→ ∞,

limsup
n→∞

E[Nn]

n
≤ 1

µ
+ ε.

Now take ε → 0.
Similarly, by taking the opposite sign of the modulus in Eq 2.1, we get

liminf
n→∞

E[Nn]

n
≥ 1

µ
.

Thus,

lim
n→∞

E[Nn]

n
=

1
µ
,

which is elementary renewal theorem.
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2.2.3 Renewal Equation
Definition 2.2.7 (Renewal Equation). A functional equation of the form

Z(t) = z(t)+F ∗Z(t)

where z(t) is a function on [0,∞) and ∗ denotes convolution is called a renewal equation. F and z are
known and Z is the unknown function.

The renewal equation arises in several situations. We need to know the conditions for existence and
uniqueness of the solution for renewal equation. The following theorem provides the answer.

Proposition 2.2.8. If F(∞) = 1, F(0)< 1 and z(t) : [0,∞)→ [0,∞) is bounded on bounded intervals the
renewal equation has a unique solution given by

Z(t) =U(t)∗ z(t)

where U(t) = E[N(t)] = ∑
∞
k=0 F∗n(t). Here, F∗n denotes n fold convolution of F with itself.

Proof. Define Un = ∑
n
k=0 F∗k. Now, Un→U monotonically. Let Zn(t) =Un ∗ z(t) = ∑

n
k=0 F∗k ∗ z(t). We

have

Zn+1 = z+
n

∑
k=1

F∗k ∗ z(t)

= z+F ∗Zn.

Let Z(t) :=U ∗z(t). Since, Un→U monotonically, from monotone convergence theorem, we get Zn→ Z.
Fixing t, we get from above equation

lim
n→∞

Zn+1(t) = z(t)+ lim
n→∞

Zn ∗ z(t)

=⇒ Z(t) = z(t)+Z ∗ z(t)

Thus, we see that Z(t) =U ∗ z(t) is a solution of the renewal equation.
Uniqueness: Let Z1 and Z2 be two solutions. We have Z1−Z2 = F ∗(Z1−Z2). Let V = Z1−Z2. Since

U and z are bounded on bounded intervals, so are Z1,Z2 and V . Iterating n times, we get V = Fn ∗V .
Therefore

|V |= |
∫ t

0
V (t− s)dFn(s)|

≤M1

∫ t

0
dFn(s)

= M1P{Sn ≤ t}
= 0 as n→ ∞.

where |V (s)| ≤M1 for all 0≤ s≤ t.

Example of renewal equation: Consider residual time of a renewal process {Bt}.

P{Bt ≤ x}= P{Bt ≤ x,X1 > t}+
∫ t

0
P{Bt ≤ x|X1 = s}F(ds)
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Letting Z(t) = P{Bt ≤ x}, z(t) = P{Bt ≤ x,X1 > t}, and noting that P{Bt ≤ x|X1 = s}= P{Bt−s ≤ x}, we
have

Z(t) = z(t)+F ∗Z(t),

which is a renewal equation whose solution is P{Bt ≤ x}.
Let A(t) be the age of the process. Then, we have {Bt ≤ x} = {At+x ≤ x}. If {Bt} is stationary we

have P{Bt+s ≤ x} = P{Bt ≤ x} ∀x, t,s. Thus, we get P{At+x+s ≤ x} = P{At+x ≤ x}. This means that
{At} is also stationary. We can similarly show that {At} is stationary implies that {Bt} is also stationary.
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2.2.4 Renewal theorems
Definition 2.2.9 (Directly Riemann Integrable (d.r.i.)). A function z : R+ → R+ is called directly
Riemann integrable if

lim
h→0

∞

∑
k=1

inf
(k−1)h≤t≤kh

z(t) = lim
h→0

∞

∑
k=1

sup
(k−1)h≤t≤kh

z(t).

Then the limit is denoted as
∫

∞

0 z(t)dt. For z :R+→R, define z+(t)=max(z(t),0) and z−(t)=−min(0,z(t)).
If both z+ and z− are d.r.i., then we say z is d.r.i. and write

∫
∞

0 z(t)dt =
∫

∞

0 z+(t)dt−
∫

∞

0 z−(t)dt.

Proposition 2.2.10. We take z≥ 0.

(1) A necessary condition for z to be d.r.i is z is bounded and continuous a.e.

(2) z is d.r.i. if (1) holds and any of the following holds.

(a) z is non-increasing and Lebesgue integrable.

(b) z≤ z′ and z′ is d.r.i.

(c) z has bounded support.

(d)
∫

∞

0 zhdt < ∞ for some h > 0.

Theorem 2.2.11 (Key Renewal Theorem). Let Z(t) = z(t)+F ∗Z(t) be the renewal equation. Then,
if z is directly Riemann integrable (d.r.i.) for the solution Z(t) = E[N(t)] ∗ z(t) and F is non-lattice, the
following limit holds

lim
t→∞

E[N(t)]∗ z(t) =
1
µ

∫
∞

0
z(t)dt.

Here, E[N(t)] = ∑
∞
k=0 F∗n(t).

Definition 2.2.12 (Delayed renewal process). Let Xk for k = 0,1, . . . be independent. Let X0 ∼ F ′ and
X1,X2, . . . i.i.d with distribution F . The renewal process defined using these r.v.s as interarrival times is
called a delayed renewal process.

Theorem 2.2.13. If µ < ∞ and F is non-lattice, for a renewal process (or a delayed renewal process with
aribitrary F ′), the following all hold and are equivalent.

(1) (Key Renewal Theorem): Let Z(t) = z(t)+F ∗Z(t) be the renewal equation and z be d.r.i. Then,

lim
t→∞

Z(t) =
1
µ

∫
∞

0
z(t)dt.

(2) P{At ≤ x}→ F0(x) as t→ ∞.
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(3) P{Bt ≤ x}→ F0(x) as t→ ∞.

(4) (Blackwell’s theorem):

E[Nt+a−Nt ]→
a
µ

as t→ ∞.

where

F0(x) =
1
µ

∫ x

0
F(t)dt.

If µ = ∞, the above results hold with F0(x) = 0 ∀x.

Proof.

• (1) =⇒ (2): Let Z(t) = P{At ≤ x}. Then, Z(t) satisfies the renewal equation with z(t) = P{At ≤
x,X1 > t}= 1{t ≤ x}P{Aa > t} is d.r.i. because it is bounded and continuous a.e. Thus, from key
renewal theorem (1) we have, as t→ ∞

P{At ≤ x}→ 1
µ

∫
∞

0
1{t ≤ x}P{A1 > t}dt

=
1
µ

∫ x

0
F(t)dt

= F0(x).

• (2) ⇐⇒ (3): We have the relationship for any t > 0, {Bt ≤ x}= {At+x ≤ x}. Taking the limit as
t→ ∞ we get the equivalence.

• (2) =⇒ (4):

E[Nt+a−Nt ] =
∫ a

0
E[Nt+a−Nt |Bt = s]dPBt (s)+

∫
∞

a
E[Nt+a−Nt |Bt = s]dPBt (s)

=
∫ a

0
E[Nt+a−Nt |Bt = s]dPBt (s)+0

=
∫ a

0
U(a− s)dPBt (s)

Now since P{Bt ≤ x}→ F0(x) and U is bounded and continuous a.e.,

lim
t→∞

∫ a

0
U(a− s)dPBt (s) = lim

t→∞

∫
∞

0
1{s≤ a}U(a− s)dPBt (s)

=
∫

∞

0
1{s≤ a}U(a− s)dF0(s)

=
∫ a

0
U(a− s)dF0(s)

=U ∗F0(a)

Noting that U(t) = ∑
∞
k=0 F∗n(t) and

d
dt

F0(t) =
1−F(t)

µ
,

22



we get U ∗F0 has density

=
1
µ

U ∗ (1−F)

=
1
µ
(U−U ∗F)

=
1
µ

(
∞

∑
k=0

F∗n)−
∞

∑
k=1

F∗n)

)

=
1
µ
.

Therefore, we get U ∗F0(a) = a/µ and hence

lim
t→∞

E[Nt+a−Nt ] =
a
µ
.

• (4) =⇒ (1): For small enough h and appropriate n such that nh < t ≤ (n+1)h, we write

Z(t) =U ∗ z(t)

=
∫ t

0
z(t−a)dU(a)

=
∫ t−nh

0
z(t−a)dU(a)+

∫ t

t−nh
z(t−a)dU(a)

Since z is d.r.i., and hence bounded, as h→ 0, the first term goes to zero. Taking

zh(k) = max
x∈[t−(k+1)h,t−(k)h]

z(x),

and noting that [U(t− kh)−U(t− (k+1)h]≤U(h), the second term∫ t

t−nh
z(t−a)dU(a)≤

n

∑
k=0

zh(k)[U(t− kh)−U(t− (k+1)h]

=
M

∑
k=0

zh(k)[U(t− kh)−U(t− (k+1)h]+
n

∑
k=M+1

zh(k)[U(t− kh)−U(t− (k+1)h].

≤
M

∑
k=0

zh(k)[U(t− kh)−U(t− (k+1)h]+U(h)
n

∑
k=M+1

zh(k).

Now take t→ ∞. Then, n→ ∞ also. Thus, by Blackwell’s theorem (4), the above converges to

h
µ

M

∑
k=0

zh(k)+U(h)
n

∑
k=M+1

zh(k).

Now, take M→ ∞. Since z is d.r.i., the second term goes to zero. Next, take h→ 0. Then, the first
term goes to

1
µ

∫
∞

0
z(t)dt.
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Therefore,

limsup
t→∞

U ∗ z(t)≤ 1
µ

∫
∞

0
z(t)dt.

Similarly, we can show

liminf
t→∞

U ∗ z(t)≥ 1
µ

∫
∞

0
z(t)dt.

Discrete time versions and when F is lattice for the above theorems also hold.
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2.3 Regenerative Processes
Let {Xt} be a stochastic process and Y0,Y1,Y2, . . . be i.i.d with distribution F . Let Sn = ∑

n
k=0 Yk.

Definition 2.3.1. The process {Xt} is regenerative if there exists Y0,Y1, . . . i.i.d such that the process
Zn+1 = {XSn+t , t ≥ 0} is independent of Y0,Y1,Y2, . . . ,Yn and the distribution of Zn+1 does not depend on
n. {X} is a delayed regenerative process if distribution of Y0 is different from Y1.

Examples:

1. The process {Bt} corresponding to residual life in a renewal process is regenerative if we take
Yk = Xk where Xk is the kth inter-arrival time.

2. In a Markov chain the time instants when the Markov chain visits a particular state, say i0, the
process regenerates itself.

3. Consider a GI/GI/1 queue. The process {qt}, the queue length at time t is a continuous time
regenerative process which regenerates when an arrival sees empty queue. The process {Wn},
the waiting time of the nth customer is a discrete time regenerative process with the above arrival
epochs.

Theorem 2.3.2. Let {Xt , t ≥ 0} be a delayed regenerative process with µ = E[Y1] < ∞ and F is non-
lattice. Let f be a bounded, continuous function a.s. Then,

lim
t→∞

E[ f (Xt)] = Ee[ f (Xt)] =
1
µ
E0

[∫ Y1

0
f (Xs)ds

]
where Ee is the expectation w.r.t. equilibrium or stationary distribution and E0 is the expectation w.r.t the
process when S0 = 0.

Proof. We show for S0 = 0. Then,

E[ f (Xt)] = E[ f (Xt),Y1 > t]+
∫ t

0
E[ f (Xt)|Y1 = s]dF(s)

= E[ f (Xt),Y1 > t]+
∫ t

0
E[ f (Xt−s)]dF(s)

= E[ f (Xt),Y1 > t]+E[ f (X)]∗F(t)

This is a renewal equation. Since f is bounded and Xt is right continuous, it follows that E[ f (Xt),Y1 > t]
is d.r.i. Therefore,

lim
t→∞

E[ f (Xt)] =
1
µ

∫
∞

0
E0[ f (Xs),Y1 > s]dt

=
1
µ
E0

[∫
∞

0
f (Xs)1{Y1 > s}ds

]
=

1
µ
E0

[∫ Y1

0
f (Xs)ds

]
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The following theorem for lattice F can be proved in the same way.

Theorem 2.3.3.

1. For discrete time regenerative processes {Xn} and F is aperiodic,

lim
n→∞

E[ f (Xn)] = Ee[ f (Xn)] =
1
µ
E0

[
Y1

∑
k=1

f (Xk)

]
.

2. For discrete time regenerative processes {Xn} and F has period d,

lim
n→∞

1
d

d−1

∑
k=0

E[ f (Xn+k)] = Ee[ f (Xn)] =
1
µ
E0

[
Y1

∑
k=1

f (Xk)

]
.

�

Taking f (Xt) = 1{Xt ≤ x}, for the non-lattice case we have

lim
t→∞

P{Xt ≤ x}=
E
[∫ Y1

0 1{Xt ≤ x}
]

E[Y1]
.

Similar results hold for the lattice case.
Example (GI/GI/1 queue): If regenerative lengths τ of {Wn} in GI/GI/1 queue satisfies E[τ] < ∞

and it is aperiodic, then Wn has unique stationary distribution and Wn→W∞ where W∞ is a r.v. with the
stationary distribution. We can show that if E[A] < E[s], then the above conditions are satisfied. Also,
if the queue starts empty with an arrival, then, if τ is the regeneration length of {qt}, then τ = ∑

τ
0 Ak.

Since, τ is a stopping time w.r.t {An,sn} sequence, by Wald’s lemma, E[τ] = E[A1]E[τ] < ∞ whenever
E[τ]< ∞. Thus when E[A1]< E[s1], {qt} also has a unique stationary distribution and starting from any
initial distribution, it converges in distribution to the limiting distribution.

Theorem 2.3.4 (Strong law for regenerative processes).

• If F is non-lattice (with arbitrary distribution of Y0) and E[
∫ Y2

Y1
|H(Xt)|dt]< ∞,

lim
t→∞

1
t

∫ t

0
f (Xs)ds = E[Xe] a.s.

• If F is lattice, with similar conditions,

lim
n→∞

1
n

n−1

∑
k=0

f (Xk) = E[Xe] a.s.

Proof. We show only for the non-lattice case. The proof for other cases is similar.

1
t

∫ t

0
f (Xs)ds =

1
t

∫ S1

0
f (Xs)ds+

1
t

∫ S2

S1

f (Xs)ds+ · · ·+ 1
t

∫ SNt

SN−t−1

f (Xs)ds+
1
t

∫ t

SNt

f (Xs)ds

=
1
t
(U0 +U1 +U2 + · · ·+UNt +∆).
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where U1,U2, . . . are i.i.d. with Ui =
∫ si+1

si
f (Xs)ds, ∆ =

∫ t
sNt

f (Xs)and U0 < ∞ a.s. We have,

lim
t→∞

1
t
(U1 +U2 + · · ·+UNt ) = lim

t→∞

1
Nt

(U1 +U2 + · · ·+UNt )
Nt

t

=
E[U1]

E[Y1]
a.s.

by ordinary S.L.L.N. and elementary renewal theorem.
To complete the proof, we need to show that limt→∞ ∆/t→ 0 a.s. as t→ ∞. We have,

∆

t
≤ 1

t

∫ t

SNt

| f (Xs)|ds≤ 1
t

∫ SNt+1

SNt

| f (Xs)|ds.

Let

Vk =
∫ Sk+1

Sk

| f (Xs)|ds.

We have

VNt+1

t
=

VNt+1

Nt +1
Nt +1

t
.

Now, (Nt/t)→ 1/E[Y1] a.s. We need to show that limt→∞ VNt/Nt = 0. This will be true if Vn/n→ 0 a.s.
as n→ ∞. But,

P
{
∪∞

n=N

{
Vn

n
> ε

}}
≤

∞

∑
n=N

P
{

V1

ε
> n
}
→ 0

if
∞

∑
n=0

P
{

V1

ε
> n
}
< ∞.

This holds when E[V1]< ∞.
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2.4 Problems
Notation: (X1,X2, . . . ) iid non-negative random variables with distribution F . Sn = ∑

n
k=1 Xk. N(t) is num-

ber of arrivals till time t (excluding the one at 0). m(t) = E[N(t)]. µ = E[X1]

Problem 1: Show that p{XN(t)+1 ≥ x} ≥ F̄(x), also show that E[(XN(t)+1)
m] ≥ E[Xm] for any positive

integer m. Compute p{XN(t)+1 ≥ x} for Xi ∼ exp(λ ).
Note: This indicates that distribution of XN(t)+1 may be different from X1.

Problem 2: Prove the renewal equation

m(t) = F(t)+
∫ t

0
m(t− x)dF(x).

Problem 3: If F is uniform on (0,1) then show that for 0≤ t ≤ 1

m(t) = exp(t)−1.

Problem 4: Consider a single server bank in which potential customers arrive at a Poisson rate λ . How-
ever a customer only enters the bank if the server is free when the customer arrives. Let G denote the
service distribution.
a) What fraction of time the server is busy?
b) At what rate customers enter the bank?
c) What fraction of potential customers enter the bank?

Problem 5: Find the renewal equation for E[A(t)], then also find limt→∞E[A(t)].

Problem 6: Consider successive flips of a fair coin.
a) Compute the mean number of flips until the pattern HHT HHT T appears.
b) Which of the two patterns HHT T , HT HT requires a larger expected time to occur?

Problem 7: Consider a delayed renewal process {ND(t), t ≥ 0}, whose first interarrival time has dis-
tribution G and the others have distribution F . Let mD(t) = E[ND(t)].
a) Prove that

mD(t) = G(t)+
∫ t

0
m(t− x)dG(x),

Where m(t) = ∑
∞
n=1 F∗n(t).

b) Let AD(t) denote the age at time t. Show that if F is non-lattice with
∫

x2dF(x)< ∞ and tḠ(t)→ 0 as
t→ ∞, then

E[AD(t)]→
∫

∞

0 x2dF(x)
2
∫

∞

0 xdF(x)
.

Problem 8: Consider a GI/GI/1 queue: Interarrival times {An} are iid and service times {Sn} are iid
with E[Sn]<E[An]< ∞. Let V (t) be the virtual service time in the queue at time t , sum of the remaining
service time of all customers present in the system at time t. Show that
a)

v, lim
t→∞

1
t

∫ t

0
v(s)ds
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exists a.s. and is a constnat. Under condition E[S1]< E[A1] the mean regeneration length for this process
is finite.
b) Let Dn be the amount of time nth customer waits in the queue. Define

WQ = lim
n→∞

D1 +D2 + · · ·+Dn

n
.

Show WQ exists a.s and is constant.
c) Show V = λE[Y ]WQ +λE[Y 2]/2.
Where 1/λ = E[An] and Y has distribution of service time.
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3.1 Markov Chains: Definitions
Definition: Let S be a countable set. A discrete time stochastic process {Xk} is a Markov chain with state
space S if

P{Xn = j|Xn−1 = i,Xn−2 = in−2, . . . ,X1 = i1,X0 = i0}= P{Xn = j|Xn−1 = i}.

When P{Xn = j|Xn−1 = i} does not depend on n is called a homogeneous Markov chain. Now on-
ward, we assume all Markov chains are homogeneous, unless mentioned otherwise. The matrix P where
P(i, j) = P{Xn = j|Xn−1 = i} is called the transition matrix of the Markov chain {Xn}. We write Pn to
denote matrix multiplication of P with itself n times. We use Pi{.} to mean P{.|X0 = i}.

Strong Markov property: If τ is a stopping time and τ < ∞ with probability 1, then Markov chain
has strong Markov property if

P{Xτ+1 = j|Xτ = i,Xτ−1 = iτ−1, . . . ,X1 = i1,X0 = i0}= P{X1 = j|X0 = i}. ∀n ∈ N and i, j ∈ S.

Theorem 3.1.1. Every Markov chain has strong Markov property.
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Proof.

P{Xτ+1 = j|Xτ = i,Xτ−1 = iτ−1, . . . ,X1 = i1,X0 = i0}

=
m=∞

∑
m=1

P{Xτ+1 = j|Xτ = i,Xτ−1 = iτ−1, . . . ,X1 = i1,X0 = i0,τ = m}P{τ = m|Xτ = i,Xτ−1 = iτ−1, . . . ,X1 = i1,X0 = i0}

=
m=∞

∑
m=1

P{Xm+1 = j|Xm = i,Xm−1 = im−1, . . . ,X1 = i1,X0 = i0,τ = m}P{τ = m|Xτ = i,Xτ−1 = iτ−1, . . . ,X1 = i1,X0 = i0}

=
m=∞

∑
m=1

P{Xm+1 = j|Xm = i,Xm−1 = im−1, . . . ,X1 = i1,X0 = i0}P{τ = m|Xτ = i,Xτ−1 = iτ−1, . . . ,X1 = i1,X0 = i0}

=
m=∞

∑
m=1

P{X1 = j|X0 = i}P{τ = m|Xτ = i,Xτ−1 = iτ−1, . . . ,X1 = i1,X0 = i0}

= P{X1 = j|X0 = i}.

The finiteness of τ is used in the first equality to expand the probability as an infinite summation. The
fact that τ is a stopping time has been used in the third equality.

Classification of states: Let τi = min{n ≥ 1 : Xn = i}. τi is a stopping time. Let Ni be the total
number of times a state i is visited by the Markov chain.

If for a state i, Pi{τi < ∞}< 1, it is called a transient state. For a transient state, P{Ni = m}=
P{τ < ∞}m−1P{τ < ∞} and E[Ni] = 1/P{τ < ∞}< ∞. If Pi{τi < ∞}= 1, state i is called a recurrent
state. If further E[τi] < ∞, it is called a positive recurrent state. When i is recurrent but E[τi] = ∞, it is
called a null recurrent state.

For a recurrent state i, Pi{Ni =∞}= 1 and Ei[Ni] =∞. Since, Ei[Ni] =Ei [∑
∞
n=0 1(Xn = i)]=∑

∞
n=0 Pn(i, i),

an equivalent criterion for recurrence is ∑
∞
n=0 Pn(i, i) = ∞.

Periodicity: A state i is said to have period d if distribution of τi has period d. The period of state i
is denoted by d(i). If d(i) = 1, i is called aperiodic.

Communicating classes: A state j is said to be reachable from state i if there exists an n such that
Pn(i, j)> 0. We denote this by i→ j. If i→ j and j→ i, we say that states i and j are

communicating states and denote this by i↔ j. A subset A of state space is called closed if for all
j ∈ Ac, and i ∈ A, j is not reachable from i. A subset A of state space is called a closed communicating
set if it is closed and i↔ j,∀i, j ∈ A. Communication is an equivalence relation. A Markov chain with its
state space S a communicating class is called an irreducible chain.

Example: S = {0,1,2,3,4}.

P =


0.2 0.3 0 0.5 0
0 0.3 0.7 0 0
0 0.5 0.5 0 0
0 0 0 0.3 0.7
0 0 0 0 1


Here, {3,4} and {1,2} are closed sets. {1,2} is closed communicating set. {4} is an absorbing state and
{0,3} are transient states. {1,2} are recurrent states (positive).

3.2 Class Properties of Transience and Recurrence
Proposition 3.2.1 (Periodicity is a class property). If i↔ j, and i has period d, j also has period d.
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Proof. i→ j =⇒ ∃n : Pn(i, j)> 0 and j→ i =⇒ ∃m : Pm( j, i)> 0. We have

Pn+m( j, j) = ∑
k

Pn( j,k)Pm(k, j)≥ Pn( j, i)Pm(i, j)> 0

Pn+s+m( j, j)≥ Pn( j, i)Ps(i, i)Pm(i, j)> 0

The last inequality is true whenever Ps(i, i)> 0. From these two inequalities and definition of period, d( j)
divides n+m and n+ s+m. Therefore, d( j) divides s whenever Ps(i, i) > 0. In particular, d( j) divides
d(i). Using exactly the same argument with roles of i and j interchanged, we can show d(i) divides d( j).
Thus, d(i) = d( j).

Proposition 3.2.2 (Recurrence is a class property). If i↔ j, and i is recurrent, then j is also recurrent.

Proof. Since i is recurrent, ∑n Pn(i, i) = ∞. Since i↔ j,∃m,n : Pn(i, j)> 0,Pm( j, i)> 0. Therefore,

∑
k

Pm+k+n( j, j)≥ Pm( j, i)

(
∑
k

Pk(i, i)

)
Pn(i, j) = ∞.

This shows that state j is also recurrent.

If i is transient and j is recurrent, then as the above example shows, i→ j is possible but j→ i is not
possible, as we now show. If i→ j, then j→ i is ruled out by Prop 3.2.2. If i→ j is not true, but j→ i is
true, then there is m such that Pm( j, i)> 0 without j visiting itself. But then, Pj(τ j = ∞)≥ Pm( j, i)> 0.
Thus j will not be recurrent.

Thus, the state space S can be partitioned into disjoint sets where one set could include all the transient
states and then there are disjoint communicating closed classes. In the above example this partition is
{0,3}, {1,2} and {4}.

3.3 Limiting distributions of Markov chains
Let µ j j = E j[τ j]. The time periods at which the Markov chain enters state j are renewal epochs and µ j j
is the expected time between renewals. From regeneration process theorem,

lim
n→∞

Pn(i, j) =
1

µ j j
(when j is aperiodic),

lim
n→∞

Pnd( j, j) =
d

µ j j
(when j has period d > 1).

If the initial state i is positive recurrent and aperiodic, then visits to state i are regeneration epochs and we
have

lim
n→∞

Pn(i, j) =
Ei
[
∑

τi
k=1 1(Xk = j)

]
µii

.

In the above, if state j is transient or null recurrent, µ j j = ∞ and the corresponding limits equal zero.
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3.2 (Contd.) Limiting distributions of Markov chains
In the following, we assume that the Markov chain is irreducible and aperiodic.

Let π( j) = limn→∞ Pn(i, j). If j is a transient or null recurrent, π( j) = 0. When state j is positive
recurrent, π( j)> 0 and the Markov chain converges in distribution to the limiting distribution π .

Let the distribution X0 be π . The distribution of X1 is then πP. If π = πP, the distribution of Xn,n≥
1 is πPn = π . This suggests that the solution of π = πP such that ∑i π(i) = 1 could be a stationary
distribution of the Markov chain.

Proposition 3.2.1. The solution π of the equation π = πP such that ∑i πi = 1 is the stationary distribution
of the Markov chain {Xn} with transition probability matrix P.

Proof. We need to show that if X0 has the distribution π , then the distribution of Xn is also π and joint
distribution of {Xk+1,Xk+2, . . . ,Xk+m} does not depend on k. The distribution of Xn being equal to π has
been deduced in the discussion above. We now show the remaining. We have

P{Xk+1 = i1,Xk+2 = i2, . . . ,Xk+m = im}= ∑
i0

P(Xk = i0)×P(i0, i1)×·· ·×P(im−2, im−1)×P(im−1, im).

= ∑
i0

π(i0)×P(i0, i1)×·· ·×P(im−2, im−1)×P(im−1, im).

= Pπ{X1 = i1,X2 = i2, . . . ,Xm = im}

Proposition 3.2.2 (Positive recurrence is a class property). If i↔ j and i is positive recurrent, then j
is also positive recurrent.

Proof. Let i be positive recurrent. Then µii > 0 and i→ j implies that Ei
[
∑

τi
k=1 1(Xk = j)

]
> 0 because

there is a path with positive probability from i to j without visiting i. Thus,

lim
n→∞

Pn(i, j) =
Ei
[
∑

τi
k=1 1(Xk = j)

]
µii

=
1

µ j j
> 0.

Also, j is recurrent by Prop 3.1.2. Hence, limn→∞ Pn( j, j) = 1/µ j j > 0. This means that µ j j < ∞. Thus,
j is also a positive recurrent state.

Proposition 3.2.3. If S is finite and irreducible, then S is positive recurrent.

Proof. All the states in a finite state Markov chain cannot be transient because atleast one state will be
visited infinitely often with probability 1. Then, since, the Markov chain is irreducible, all states must be
either null recurrent or positive recurrent (Prop 3.2.2). Suppose that all the states are null recurrent. Then
we have

lim
n→∞

Pn(i, j) = 0 ∀i, j ∈ S (3.1)
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But, ∑ j Pn(i, j) = 1, ∀n. Therefore limn→∞ ∑ j Pn(i, j) = ∑ j limn→∞ Pn(i, j) = 1. This shows that Eq 3.1
cannot be true. Thus, all states are positive recurrent.

Let A be a subset of state space which is a closed communicating class. Let fi(A) be the probability
that Markov chain enters A starting in state i /∈ A. Then,

fi(A) = ∑
j∈A

P(i, j)+ ∑
j∈Ac

P(i, j) f j(A)

= ∑
j∈A

P(i, j)+ ∑
j=transient state

P(i, j) f j(A)

Here, we need to sum over only transient states in the second summand because f j for j ∈ Ac and not
transient is zero. This will result in a set of linear equations in fi(A) i ∈ S. If we want to compute
limn→∞Pi{Xn = j} for j ∈ A, we can regard A as an irreducible Markov chain and compute its stationary
distribution πA( j)∀ j ∈ A. Then, limn→∞Pi{Xn = j} = fi(A)πA( j). In general for a Markov chain, there
is one unique stationary distribution corresponding to every closed communicating class if the class is
positive recurrent. Any convex combination of these stationary distributions will also be a stationary
distribution.

Consider the example in previous class: S = {0,1,2,3,4}.

P =


0.2 0.3 0 0.5 0
0 0.3 0.7 0 0
0 0.5 0.5 0 0
0 0 0 0.3 0.7
0 0 0 0 1


In this example, A= {1,2} and B= {4} are two closed communicating classes. {0,3} are transient states.
{3,4} is a closed set but not a closed communicating class. Considering A as an irreducible Markov
chain, πA(1) = 7/13 and πA(2) = 6/13. f1(A) = f2(A) = 1 and f3(A) = f4(A) = 0. f0(A) = 0.2 f0(A)+
0.3 f1(A)+ 0 f2(A)+0.5 f3(A). The stationary distribution corresponding to A is [0,7/13,6/13,0,0] and
the stationary distribution corresponding to B is [0,0,0,0,1]. All the convex combinations of these form
the whole class of stationary distributions for the Markov chain.

34



Lecture 11

Course E2.204: Stochastic Processes and Queueuing Theory (SPQT) Spring 2019
Instructor: Vinod Sharma

Indian Institute of Science, Bangalore

3.4 Tests for transience, null recurrence and positive recurrence
Theorem 3.4.1. Let S be irreducible and f : S→ R.

1. Let f (i)→ ∞ as i→ ∞. If E[ f (X1)|X0 = i] ≤ f (i) for all i outside a finite set S0 ⊂ S, then the
Markov chain is recurrent.

2. Let f : S→ R+ and S0 ⊂ S be finite. If

(a) E[ f (X1)|X0 = i]< ∞ ∀i,
(b) For i /∈ S0, E[ f (X1)|X0 = i]− f (i)<−ε for some ε > 0

the Markov chain is positive recurrent.

3. Let f : S→ R and S0 ⊂ S be finite. The Markov chain is transient if

(a) f is bounded and E[ f (X1)|X0 = i]≥ f (i) ∀i ∈ S0

(b) f (i)> f ( j) ∀ j ∈ S0, for some i /∈ S0

The proof of this theorem requires Martingale methods. Thus we will prove it after we have studied
Martingales.

Example: Consider a slotted queuing system in which one service time is equal to one slot. Let qk
be the queue length at the end of kth slot. Let Ak denote the number of arrivals in the kth slot. Then,
qk+1 = (qk−1)++Ak and for i > 0

P{qk+1 = j|qk = i,qk−1 = ik−1, . . .q0 = i0}= P{Ak = j− i−1}.

Thus, {qk} is a Markov chain with state space S = {0,1,2, . . .}. If P{A1≤ 1}> 0, every state is aperiodic.
If further, P{A1 > 1}> 0, the Markov chain is also irreducible.

Consider f (i) = i. Let S0 = {0}. For i > 0, E[ f (q1)|q0 = i]− f (i) = E[A1]− 1. Thus, we see from
case (1) in Theorem 3.4.1, if E[A1] ≤ 1, {qk} is recurrent. From (2) in Theorem3.4.1, we have positive
recurrence if E[Ak]< 1.

3.5 Reversible Markov Chains
We can easily check that

P{Xk−1 = j|Xk = i,Xk+1 = ik+1,Xk+2 = ik+2, . . .}= P{Xk−1 = j|Xk = i}.
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Thus, the reversed Markov chain is also a Markov chain. For an irreducible stationary Markov chain {Xk}
with stationary distribution π ,

P{Xk−1 = j|Xk = i,Xk+1 = ik+1,Xk+2 = ik+2, . . .}= P{Xk−1 = j|Xk = i}

=
P{Xk−1 = j,Xk = i}

P{Xk = i}

=
P{Xk = i|Xk−1 = j}P{Xk−1 = j}

π(i)

=
P( j, i)π( j)

π(i)
.

Let us define

P∗(i, j) =
P( j, i)π( j)

π(i)

P∗ is the transition probability of the reversed Markov chain.
Reversible Markov Chain: The stationary irreducible Markov chain Xk is called reversible if P∗(i, j)=

P(i, j). In the other words, for a reversible Markov chain, we have, P(i, j)π(i) = P( j, i)π( j).

Proposition 3.5.1 (Test for reversibility). For an irreducible Markov chain with stationary distribution
π , for all paths i→ i1→ i2 · · · → ik→ i,

Pπ{i→ i1→ i2 · · · → ik→ i}= Pπ{i→ ik→ ik−1 · · · → i1→ i}

under stationarity is a necessary and sufficient condition for reversibility of the Markov chain.

Proof. Necessity: Assume P∗ = P. Then,

Pπ{i→ i1→ i2 · · · → ik→ i}
= π(i)P(i, i1)P(i1, i2) . . .P(ik−1, ik)P(ik, i)

= P(i1, i)π(ii)P(i1, i2) . . .P(ik−1, ik)P(ik, i)

= P(i1, i)P(i2, i1)π(i2) . . .P(ik−1, ik)P(ik, i)

. . .

= P(i1, i)P(i2, i1) . . .P(ik, ik−1)π(ik)P(ik, i)

= P(i1, i)P(i2, i1) . . .P(ik, ik−1)P(i, ik)π(i)

= Pπ{i→ ik→ ik−1 · · · → i1→ i}.

Sufficiency: Consider the path i→ i1→ i2 · · · → ik→ j→ i and its reverse path. Then,

∑
i1,i2...ik

Pπ{i→ i1→ i2 · · · → ik→ j→ i}= ∑
i1,i2...ik

Pπ{i→ j→ ik→ ik−1 · · · → i1→ i}

Thus,

Pk(i, j)P( j, i) = P(i, j)Pk( j, i)

Now, taking the limit as k→ ∞, we get π( j)P( j, i) = P(i, j)π(i), which is P∗ = P.

The idea of time reversal of Markov chains and revesibility will be considered in continuous time as
well. It will be extensively used at the end of the course to study queuing networks.
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3.6 Example: M/GI/1 queue
Consider an M/GI/1 queue. Let λ be the Poisson arrival rate, Sk the service time of the kth customer and
E[S] be the mean service time. Let

• qk = queue length just after the kth departure.

• q̂k = queue length just before the kth arrival.

• qt = queue length at arbitrary time t.

• Wk = waiting time of the kth customer.

The process {qk} satisfies qk+1 =(qk−1)++Ak+1 where Ak+1 is the number of arrivals during the service
of (k+ 1)th customer. Since {Ak} is i.i.d., {qk} is a Markov chain. The state space S = {0,1,2 . . .} and
it is easy to check that it is aperiodic and irreducible. By choosing f (i) = i, we can deduce using the test
for positive recurrence that {qk} is positive recurrent when E[A1] = λE[S] < 1. Thus, we conclude that
when λE[S] < 1, the process {qk} has a stationary distribution. We will see later that when λE[S] = 1,
{qk} is recurrent and when λE[S]> 1, it is transient.

The process {q̂k} however, is not a Markov chain if Sk is not exponentially distributed. But {q̂k} is a
regenerative process with regeneration epochs occurring when kth arrival sees an empty queue. That is,
regenerative epochs for {q̂k} occur when q̂k = 0. Let τ̂ be the regeneration length of {q̂k}.

To obtain the conditions for existence for stationary distribution for {q̂k}, we can relate it to the
process {qk}. The process {qk} is also a regenerative process with regeneration epochs occurring when a
departure leaves behind an empty queue. That is, the regeneration epochs correspond to qk = 0. Let τ be
the regeneration time of {qk}. Now, we can see that τ = τ̂ . Since, {qk} has stationary distribution when
λE[S]< 1, E[τ]< ∞. So, E[τ̂]< ∞. Therefore, the process {q̂k} is stationary iff {qk} is stationary.

The process {Wk} also has the same regeneration epochs as {qk} and hence has unique stationary
distribution when λE[S]< 1.

The process {qt} is also a regenerative process with regeneration epochs the arrival times that see an
empty queue. Let T be a regeneration length of {qt}. Then, considering one regenerative cycle, we can
write T = ∑

τ̂
k=1 ak where ak is the inter-arrival time between (k− 1)th and kth arrival. Now, τ̂ , which is

equal to the number of services in one regeneration cycle is a stopping time for {ak,Sk} where Sk is the
service time of the kth arrival. Thus, we can use Wald’s lemma to conclude that E[T ] = E[τ̂]E[a1]. Thus,
{qt} also has stationary distribution whenever λE[S]< 1.

3.7 Rate of convergence to the stationary distribution
The following results are stated without proofs.
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Definition 3.7.1 (Total Variation distance). The total variation distance between two probability distri-
butions µ and π on S,

||µ−π||TV =
1
2 ∑

x∈S
(µ(x)−π(x)).

The following results have been classically known. We consider an irreducible Markov chain.

• If E[τα ]< ∞ for some α > 1, then ||Xk−π||TV < c1k−α+1.

• If E[β τ ]< ∞ for some β > 1, then ||Xk−π||TV ≤ exp(−λk) for some 0 < λ < β .

These results have been extensively used in the literature to obtain rates of convergence to stationary
distributions for different queueing systems.

Now, we consider a finite state space S. Let

Kx
n(y) =

Pn(x,y)
π(y)

where P is the transition probability matrix of the Markov chain. Then, Kx
n(y)→ 1 as n→ ∞ ∀x,y ∈ S.

Definition 3.7.2. L p distance between distributions Pn(x,∗) and π ,

||Kx
n−1||pp,π = ∑

y∈S
|Kx

n(y)−1|pπ(y) for 1≤ p < ∞.

Also, L ∞(ν ,µ) = supx∈S |µ(s)−ν(s)|.

The following are known.

||ν−µ||TV =
1
2
|| ν

µ
−1||1,µ ≤

1
2
|| ν

µ
−1||2,µ . (3.2)

Definition 3.7.3 (Mixing times).

τ1(ε) = min{n : sup
x
||Pn(x, .)−π||TV ≤ ε}.

τ2(ε) = min{n : sup
x
||Kx

n−1||2,π ≤ ε}.

τ∞(ε) = = min{n : sup
x
|Pn(x,∗)−π|∞ ≤ ε}.

Let π∗ = minx π(x) and

||P∗||= sup
f :S→R:E[ f ]=0

||P∗ f ||2
|| f ||2

,

where P∗ is the complex conjugate of P.

Proposition 3.7.4.

τ2(ε)≤
1

1−||P∗||
log
(

1
ε
√

π∗

)
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Proposition 3.7.5.

τ2(ε)≤
2

λPP∗
log
(

1
ε
√

π∗

)
where λPP∗ = 1−λ amd λ is the largest eigenvalue of PP∗ less that 1.

These results provide an exponential rate of convergence to the stationary ditribution for a finite state
Markov chain. From τ2(ε) we get an upper bound on τ1(ε) through Eq (3.2). We also have

τ2(ε)≤ τ∞(ε)≤ τ2

(
ε

√
π∗

1−π∗

)
.

If the Markov chain is reversible, the upper bound can be tightened to 2τ2(
√

ε). Thus, for most applica-
tions getting τ2(ε) is sufficient.

Mixing times have recently been used in Markov chain Monte Carlo (MCMC) algorithms, random
graphs and many other applications.
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3.8 Problems
Problem 1: There are a total of N balls in urns A and B. At step k, one of the N balls is picked at random
(with probability 1/N). Then, one of the urns A or B is chosen. The probability of picking urn A is p.
The ball picked is put in the chosen urn. Let Xn denote the number of balls in urn A after step n. Show
that {Xn} is a Markov chain. Determine its state space and transition probability matrix. Find if it is
irreducible or not. Find limn→∞ Pn(i, j) for all i and j.
Problem 2: Show that for a finite state aperiodic irreducible Markov chain, Pn(i, j) > 0 ∀i, j for all n
large enough.
Problem 3: Let a Markov chain has r < ∞ states.

1. Show that if state j can be reached from state i, it can be reached in atmost r−1 steps.

2. If j is a recurrent state, show that ∃α such that for n > r, the probability that first return to state j
(from state j) occurs after n transistions is less than αn.

Problem 4: Let P be the transition probabbility matrix with additional requirement that ∑i P(i, j) = 1
(such a P is called a doubly stochastic matrix). Then, show that if P is finite state irreducible, then its
stationary probability satisfies π(i) = π( j) ∀i, j.
Problem 5: Consider a Markov chain with state space E = {0,1,2,3,4,5} and transition probability
matrix

P =


1/3 2/3 0 0 0 0
2/3 1/3 0 0 0 0

0 0 1/4 3/4 0 0
0 0 1/5 4/5 0 0

1/4 0 1/4 0 1/4 1/4
1/6 1/6 1/6 1/6 1/6 1/6


Find all the closed sets. Find all the transient states. Calculate limn→∞ Pn(5, i), i = {0,1,2,3,4,5}.
Problem 6: For a Markov chain prove that

1. P[Xn = j|Xn1 = i1,Xn2 = i2, . . . ,Xnk = ik] = P[Xn = j|Xnk = ik] whenever n1 < n2 < · · ·< nk < n.

2. P[Xk = ik|X j = i j ∀ j 6= k] = P[Xk = ik|Xk−1 = ik−1,Xk+1 = ik+1].

Problem 7: Consider a recurrent Markov chain starting at state 0. Let mi denote the expected number
of time periods it spends in state i before returning to state 0. Use Wald’s equation to show that m j =

∑i miPi j, j > 0,m0 = 1.
Problem 8: let X1,X2, . . . be independent r.v.s such that P[Xi = j] = α j, j≥ 1. Say that a record occurs at
time n if Xn > max(X1,X2, . . . ,Xn−1) where X0 = −∞. If a record occurs at time n, Xn is called a record
value. Let Ri denote the ith record value.

1. Argue that {Ri, i≥ 1} is a Markov chain and compute its transition probabilities.

2. Let Ti denote that time between ith and (i+ 1)th record. Is {Ti} a Markov chain? What about
{Ri,Ti}? Compute transition probabilites wherever appropriate.

3. Let Sn = ∑
n
i=1 Ti, n ≥ 1. Argue that {Sn} is a Markov chain. Compute its transition proability

matrix.
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4.1 Introduction
Consider a continuous-time stochastic process {X(t), t ≥ 0} taking values in a countable (can be finite)
set S. A process {X(t), t ≥ 0} is a Continuous-Time Markov Chain (CTMC) if for all s, t ≥ 0, and
i, j,x(u) ∈ S,0≤ u≤ s,

P{X(t + s) = j|X(s) = i,X(u) = x(u),0≤ u < s}= P{X(t + s) = j|X(s) = i}.

If in addition,

P{X(t + s) = j|X(s) = i}, Pt(i, j)

is independent of s, then the continuous-time Markov chain is said to have stationary transition probabil-
ities. All the Markov chains we consider will be assumed to have stationary transition probabilities.

Further, we will restrict to pure jump processes: the sample paths of the process are piecewise con-
stant, right continuous. We will see that such versions of the processes can usually be constructed.

By Markov property, for a pure jump process the sojourn time Ti in state i satisfies,

P{Ti > s+ t|Ti > s}= P{Ti > t}

for all s, t ≥ 0.Hence, the random variable Ti is memoryless and must thus be exponentially distributed,
say with parameter λi. If λi = 0 then

P[Ti ≥ t] = e−λit = 1

for all t and the state i is called absorbing. If λi = ∞ then

P[Ti ≥ t] = 0
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for all t and the state i is called instataneous. We will assume λi < ∞ for all states i. For a pure jump
process this will hold.

For a Markov jump process,

• the amount of time it spends in a state i before making a transition into a different state is exponen-
tially distributed with mean, say, 1

λi
, and

• when the process leaves state i, it next enters state j with probability Pi j.
Pi j satisfies, for i not an absorbing state,

Pii = 0, ∑
j

Pi j = 1, ∀i,

and if i is an absorbing state, Pii = 1.
In other words, a Continuous-Time Markov Chain (CTMC) is a stochastic process that moves from

state to state in accordance with a (discrete-time) Markov chain, but is such that the amount of time it
spends in each state, before proceeding to the next state, is exponentially distributed independently of the
next state visited.

4.2 Strong Markov property, Minimal construction
A random variable τ is a stopping time with minimal construction if the event {τ ≤ t} can be determined
completely by the collection {X(u) : u6 t}. A stochastic process X has strong Markov property if for
any almost surely finite stopping time τ ,

P{X(τ + s) = j|X(u),u≤ τ,X(τ) = i}= P{X(τ + s) = j|X(τ) = i}= Ps(i, j).

Lemma 4.2.1. A continuous time jump Markov chain X has the strong Markov property.

Proof. Let τ be an almost surely finite stopping time with conditional distribution F on the collection of
events {X(u) : u≤ s}. Then,

Pr{X(τ + s) = j|X(u),u≤ τ,Xτ = i}=
∫

∞

0
dF(t)Pr{X(t + s) = j|X(u),u≤ t,τ = t,Xτ = i}

= Pt(i, j)

We give a minimal construction of a CTMC with given λi,s and Pi j,s. Construct a DTMC Y0,Y1, . . . ,
with parameterse Pi, j and construct exponential random variables T1,T2, . . . independent of each other,
where Tn ∼ exp(λ (Yn)).

Let Sn = ∑
n
k=1 Tk and S0 = 0.

Define Xt = Yj if S j ≤ t < S j+1. If ω(∆) , supn Sn < ∞, then Xt = ∆ for t ≥ ω(∆), where ∆ is an
element which is not in the state space S. On the extended state space S∪{∆} we define Pt(∆,∆) = 1
for all t > 0 and P(∆,∆) = 1. There are other possibilies to define the MC after ω(∆) but the above
construction makes Pt(i, j), i, j ∈ S minimal. When ω(∆)< ∞ , we say the MC has explosion.

One can show that for any initial condition i,

R(ω) = {ω : ω(∆)< ∞}= {ω :
∞

∑
k=0

1
λ (Yk(ω))

< ∞} a.s

Easier to verify the conditions for non explosion of the MC are the following.
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Lemma 4.2.2. Any of the following conditions are sufficient for P{ω : ω(∆)< ∞}= 0:

1. supi λ (i)< ∞,

2. S is finite,

3. {Yn} is recurrent.

Proof. If ω(∆)< ∞, then 1
λ (Yk(ω)) → 0 as k→ ∞.

If (1) is true, λ (Yk(ω))≤ λ̄ . therefore, λ (Yk(ω))→ ∞ is not possible.
If (2) is true, since λ (i)< ∞ ∀i, supi λ (i)< ∞.
If (3) is true Yk(ω) = i for an infinite number of k w.p.1. Therefore,

λ (Yk(ω)) 6→ ∞, a.s.,

P[λ (Yk(ω))→ ∞] = 0.
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4.3 Chapman Kolmogorov equations
We define the generator matrix Q for MC {Xt} as Qii =−λi and Qi j = λiPi j for j 6= i. Also, the fact that
MC stays in state i with exp(λi), implies that

1−Pii(t)
t

→ λi as t→ 0,

and then,

lim
t↓0

Pi j(t)
t

= lim
t↓0

1−Pii(t)
t

Pi j = Qi, j for all i 6= j.

Theorem 4.3.1 (Backward equation). For a homogeneous CTMC with transition matrix P(t) and gen-
erator matrix Q, for the minimal construction,

dP(t)
dt

= QP(t), t > 0.

Proof. Using semigroup property of transition probability matrix P(t) for a homogeneous CTMC, we
can write

P(t +h)−P(t)
h

=
(P(h)− I)

h
P(t).

Taking limits h ↓ 0 and exchanging limits and summation, justified below, on the RHS we get

dPi j(t)
dt

= ∑
k 6=i

QikPk j(t)−λiPi j(t).

Now we justify the exchange of limit and summation. For any finite subset F ⊂ S, we have

liminf
h↓0 ∑

k 6=i

Pik(h)
h

Pk j(t)≥ ∑
k∈F\{i}

liminf
h↓0

Pik(h)
h

Pk j(t) = ∑
k∈F\{i}

QikPk j(t).

Since, above is true for any finite set F ⊂ E, taking supremum over increasing sets F , we get the lower
bound. For the upper bound, we observe for any finite subset F ⊆ E

limsup
h↓0

∑
k 6=i

Pik(h)
h

Pk j(t)≤ limsup
h↓0

(
∑

k∈F\{i}

Pik(h)
h

Pk j(t)+ ∑
k/∈F\{i}

Pik(h)
h

)

= limsup
h↓0

(
∑

k∈F\{i}

Pik(h)
h

Pk j(t)+
1−Pii(h)

h
− ∑

k∈F\{i}

Pik(h)
h

)

= ∑
k∈F\{i}

QikPk j(t)+

(
λi− ∑

k∈F\{i}
Qik

)
.
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Now take F ↗ S, then the term
(
λi−∑k∈F\{i}Qik

)
goes to zero.

Theorem 4.3.2 (Forward equation). For a homogeneous CTMC with transition matrix P(t) and gener-
ator matrix Q, we have for the minimal construction,

dP(t)
dt

= P(t)Q.

Proof. Using semigroup property of transition probability matrix P(t) for a homogeneous CTMC, we
can write

P(t +h)−P(t)
h

= P(t)
(P(h)− I)

h
.

Taking limits h ↓ 0, if we can justify the interchange of limit and summation on RHS,

dPi j(t)
dt

= ∑
k 6= j

Pik(t)Qk j−λ jPi j(t).

Corollary 4.3.3. For a homogeneous CTMC with finite state space E, the transition matrix P(t) and
generator matrix Q, we have

P(t) = etQ = I + ∑
n∈N

tnQn

n!
, t > 0.

45



Lecture 15

Course E2.204: Stochastic Processes and Queueuing Theory (SPQT) Spring 2019
Instructor: Vinod Sharma

Indian Institute of Science, Bangalore

4.4 Irreducibility and Recurrence
Let {Xt} be a Markov chain, {Y0,Y1, . . .} be its jump Markov chain, {T0,T1, . . .} the sojourn times. Let P
be the transition matrix for {Yk}. P̂→ P,

• i→ j in {Yn} if ∃ n1 s.t Pn1
i j > 0,

• i→ j in {Xt} if ∃ t1 > 0 s.t Pt1(i, j)> 0.

Since Pt(i, i)→ 1 as t → 0 for all i, Pt(i, i) > ε for all t ∈ [0,δ ], for some ε > 0 and δ > 0. Then
Pnt(i, i) ≥ (Pt(i, i))n implies that Pt(i, i) > 0 for all t ∈ [0,δn] and hence Pt(i, i) > 0 for all t. This also
follows directly from Pt(i, i)≥ P[T0 > t]> 0 for T0 ∼ exp(λi).

Proposition 4.4.1. The following statements are equivalent, under minimal construction

1. i→ j in {Yn},

2. i→ j in {Xt},

3. Pt(i, j)> 0, ∀ t > 0.

Proof. (1)⇒ (2),(3)

∃ n1 s.t Pn1(i, j)> 0, therefore i
T0−→ i1

T1−→ i2→···→ in1−1
Tn−→ j where i, i1, . . . , in1−1 are not absorbing

states. Then, ∞ > λ (i),λ (i1), . . . ,λ (in1−1)> 0, λ ( j)< ∞.
T0 ∼ exp(λii) where ∞ > λii = λiqii > 0.
Pt(i, j)≥ P[∑n−1

k=0 Tk ≤ t
2 ,T ( j)> t

2 > 0]> 0, ∀ t > 0.
Hence Pt(i, j)> 0.

(3)⇒ (2) is clear from the definition itself.
(2)⇒ (1)

P(ω(∆) > t1) > Pt1(i, j) > 0. Therefore, there is a finite path i→ i1 → ··· → in → j, such that,
P(i→ i1→ ··· → in1 → j)> 0, Pii1 , . . . ,Pin1−1in1

,Pini > 0. This implies i→ j in Markov chain {Yn}.

In particular this also implies that closed irreducible classes are same in {Yk} and {Xt} and {Yn} is
irreducible⇔ {Xt} is irreducible.

Let ω(t) = inf{t > 0, s.t. Xt = i and lims↑t Xs 6= i}. This is the first time MC visits state i, after
exiting from i if X0 = i.

Definition 4.4.2. A state i is transient if Pi{ω(i) < ∞} < 1. It is recurrent if Pi{ω(i) < ∞} = 1. A
recurrent chain is positive recurrent if Ei[ω(i)]< ∞, otherwise null recurrent.

Theorem 4.4.3. State i is recurrent for {Yk} iff it is for {Xt} in a minimal construction.
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Proof. Let i be recurrent for {Yk}. Let τ(i) = inf{k > 0 s.t. Yk = i}.
Then P[τ(i)< ∞] = 1 and ω(i) = ∑

τ(i)−1
k=0 Tk, where Tk is the sojourn time of Xt in state Yk. Then

Pi[ω(i)< ∞] = Pi

[
τ(i)−1

∑
k=0

Tk < ∞

]

=
∞

∑
n=1

Pi

[
n−1

∑
k=0

Tk < ∞|τ(i) = n

]
P[τ(i) = n].

But

Pi

[
n−1

∑
k=0

Tk < ∞|τ(i) = n

]
= ∑

i1,i2,i3,...,in−1

Pi

[
n−1

∑
k=0

Tk < ∞|τ(i) = n,Yj = i j, j = 1,2, . . . ,n−1

]
P[Yj = i j, j = 1,2, . . . ,n−1|τ(i) = n]

= 1.

Thus

Pi[ω(i)< ∞] = 1.

Therefore, Pi[τ(i)< ∞] = Pi[ω(i)< ∞] = 1.

The above theorem implies that i is transient in {Xt} iff it is in {Yk}.
If {Xt} is irreducible then we have seen that Yk is irreducible. If i is recurrnet/transient in {Xt} then

so is it in {Yk}. Then in {Yk} every state is recurrent/transient. Thus it is so in {Xt}. Therefore, in {Xt}
also recurrence/transience is a class property. However positive recurrence of {Yk} does not imply {Xt}
and vice versa.

Let {Xt} be irreducible and i be recurrent in {Xt}. We take visit times to i as regenerative epochs
with ω(i) as a regeneration length. Then from delayed regenerative process limit theorem for a bounded
function f ,

E j[ f (Xt)]→ E[ f (X0],

where π is a stationary measure for X = {Xt}. Taking X0 = i,

Eπ [ f (X0)] =
Ei[
∫ ω(i)

0 f (Xt)dt]
E[ω(i)]

.

If i is null recurrent then E[ω(i)] =∞ and Eπ [ f (X0)] = 0. If i is positive recurrent then π can be normalized
to get a stationary (unique) distribution for X . Also, then

π( j) =
Ei[
∫ ω(i)

0 1{Xt= j}dt]
Ei[ω(i)]

> 0, ∀ j. (4.1)

Furthermore, as t→ ∞,

Pt(i, j)→ π( j)

and also, Pt(k, j)→ π( j) for all k and j. If i is null recurrent, then for all j , as t→ ∞

Pt(i, j)→ 0, Pt(k, j)→ 0 ∀ j,k.
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Proposition 4.4.4. If i is transient then Pt( j, i)→ 0 as t→ ∞ for any j ∈ S.

Proof. Now Pi[ω(i)< ∞], p < 1. Let N be number of times state i is visited. Then P[N = n] = pn(1− p)

and P[N < ∞] = 1. Let ω̃(i) d
= [ω(i)|ω(i)< ∞] a when X0 = i, and Zk be i.i.d. exp(λi).

Let ω̃k(i) i.i.d. ∼ ω̃(i). Then

Pt(i, i)≤ Pi[
N

∑
k=1

(ω̃k(i)+Zk)> t]→ 0 as t→ ∞.

Also, for j 6= i,

Pt( j, i)≤ Pj[ω̃(i)+
N

∑
k=1

(ω̃k(i)+Zk)> t]→ 0,

where ω̃(i) d
= [ω(i) | ω(i)< ∞] when X0 = j.

Now assume X is recurrent, irreducible, and Y = {Yk} is positive recurrent with the unique stationary
distribution µ . Let N( j) be the number of visits to state j between two visits of i. Let τ(i) be the intervisit
time to state i in (Yk). Then

µ( j) = E[N( j)]/Ei[τ(i)].

Also, from 4.1

=
Ei[∑

N( j)
k=1 Tk( j)]

Ei[∑k ∑
N(k)
k=1 Tk( j)]

(4.2)

where Tk( j) is the sojourn time in state j on kth visit to state j. The RHS of 4.2 is

E j[N( j)]/λ j

∑l Ei[N(l)]/λl
=

µ( j)E[τ(i)]/λ j

∑l µ(l)E[τ(i)]/λl

=
µ( j)/λ j

∑l µ(l)/λl
.

Thus, if ∑l µ(l)/λl < ∞ then π( j) > 0 for all j and X is positive recurrent. More directly, if E[τi] < ∞,
then Ei[ω(i)] = E[τi]∑l µ(l)/λl implies that if ∑l µ(l)/λl < ∞ then Ei[ω(i)]< ∞ and hence i is positive
recurrent. Thus, also X .

Take derivative at t = 0, we get πQ = 0. More generally we have

Proposition 4.4.5. An irreducible positive recurrent, nonexplosive MC X is positive recurrent iff we can
find a probability measure π s.t. πQ = 0. Then π is the unique stationary distribution of X.

More along the lines mentioned above, we also have

Proposition 4.4.6. A sufficient condition for positive recurrence of an irreducible chain X is that ∃ a
distribution π s.t. πQ = 0 and ∑i π(i)λi < ∞. Then {Yk} is also positive recurrent with the unique
stationary distribution µ( j) = π( j)λ j.

48



4.5 Time Reversibility
Let {Xt} be irreducible and positive recurrent and π is its stationary distribution. We consider {Xt} under
stationarity. For fixed T consider Yt = XT−t . It is a Markov chain with transition function,

P̃t(i j) = P[Yt = j|Y0 = i] = P[XT−t = j|XT = i]

=
P[XT−t = j,XT = i]

P[XT = i]

=
P[XT = i|XT−t = j]P[XT−t = j]

P[XT = i]

=
Pt( j, i)π( j)

π(i)
.

The stationary distribution of the reverse process is same as for the forward process, because the fraction
of the time spent by the MC in state i in both directions is same.

Definition 4.5.1. {Xt} is time reversible if

P̃t(i j) =
Pt( j, i)π( j)

π(i)
= Pt(i, j).

Taking derivative at t = 0,

Qi j =
π( j)
π(i)

Q ji, ∀i, j.

The above equation is called detailed balance.
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4.6 Birth-Death process
Consider a system whose state Xt at any time is represented by the number of people in the system at that
time. Suppose that whenever there are n people in the system, then (i) new arrivals enter the system at
an exponential rate βn, and (ii) people leave the system at an exponential rate δn. Such a system {Xt}
is called a birth-death process (B-D). The parameters {βn}∞

n=0 and {δn}∞
n=0 are called, respectively, the

arrival (or birth) and departure (or death) rates.
The state space of a birth-death process is {0,1, . . .}. The transitions from state n may go only to

either state n−1 (if n > 0) or state n+1. Thus, it is a Markov chain with its jump chain {Yn} having the
transition matrix,

P01 = 1

Pi,i+1 =
βi

βi +δi
, i > 0, Pi,i−1 =

δi

βi +δi
, i > 0.

An example of a birth-death process is the {qt} process of an M/M/1 queue.
We use conditions for transience of DTMC given earlier to give conditions for recurrence of a B-D
process.

Recurrence of {Xt}↔ Recurrence of {Yk}. Thus, we look for a bounded solution h : S\{0}→ R with

h( j) = ∑
k 6=0

Pjkh(k), j 6= 0,

Then,

h(1) =
β2

β2 +δ2
h(2).

Writing pi =
βi

βi+δi
and qi = 1− pi =

δi
βi+δi

,

(p j +q j)h( j) = q jh( j−1)+ p jh( j+1)

Solving this iteratively , we get

h(2)−h(1) =
q1

p1
,

h( j+1)−h( j) = h(1)
q jq j−1 . . .q1

p j p j−1 . . . p1
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For this to be a bounded function, we need

∞

∑
j=1

q jq j−1 . . .q1

p j p j−1 . . . p1
< ∞.

This is necessary and sufficient condition for {Yn} to be transient.
Therefore,

∞

∑
j=1

q jq j−1 . . .q1

p j p j−1 . . . p1
= ∞ ⇐⇒ {Yn} is recurrent ⇐⇒ {Xt} is positive recurrent.

Now we give conditions for positive recurrence of a B-D process. Solving the equation πQ = 0, we get

π(n) =
βnβn−1 . . .β1

δn+1δn . . .δ2
π(0)

From this we can conclude that

∑π(i)< ∞ ⇐⇒
∞

∑
k=1

βkβn−1 . . .β1

δk+1δn . . .δ2
< ∞.

This is a necessary and sufficient condition for positive recurrence of the birth-death process.

4.6.1 Reversibility of Birth-Death process
Proposition 4.6.1. A stationary birth-death process is reversible.

Proof. We need to show that

π(i)Qi j = π( j)Q ji

But

βiβn−1 . . .β1

δi+1δn . . .δ2
Qi,i+1 =

βi+1βn−1 . . .β1

δi+2δn . . .δ2
Qi+1,i

because,

Qi,i+1 = βi+1, Qi+1,i = δi+2.

4.6.2 Examples
Example 1: In the M/M/1 queue βn = λ ,δn = µ . For recurrence,

∞

∑
j=1

(
µ

µ+λ

) j

(
λ

µ+λ

) j =
∞

∑
j=1

(
µ

λ

) j
= ∞.

That is λ

µ
≤ 1 is the necessary and sufficient condition for an M/M/1 queue to be recurrent.
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For positive recurrence,

∞

∑
k=1

βkβn−1 . . .β1

δk+1δn . . .δ2
< ∞ ⇒

∞

∑
k=1

(
λ

µ

)k

< ∞,
λ

µ
< 1

Then,

π(n) =
(

λ

µ

)n

π(0) and
∞

∑
n=0

π(n) = 1

Therefore,

π(n) = ρ
n(1−ρ) where ρ =

λ

µ
.

Example 2: The M/M/∞ queue has an ∞ number of servers. Whenever a customer arrives it joins an
idle server and gets service with an exponential distribution exp(µ).After completion of service it leaves
the system. Let qt be the number of customers in the system at time t. Its Q matrix is given by

qi,i+1 = λ , qi,i−1 = iµ for i > 0.

For recurrence, we need

∑
j

q jq j−1 . . .q1

p j p j−1 . . . p1
= ∞.

∑
j

jµ( j−1)µ . . .µ

λ j = ∑
j

j!
( q

λ

) j

= ∞.

This holds if q
λ
6= 0. Positive recurrence also holds because

∞

∑
k=1

βkβk−1 . . .β1

δk+1δn . . .δ2
= ∑

k

λ k

(k+1)µkµ . . .µ

=
∞

∑
k=0

λ k

µk(k+1)!

< ∞.
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4.7 Problems
Problem 1: Consider a population in which each individual independently gives birth at an exponential
rate λ and dies at an exponential rate µ . In addition, new individuals enter according to a Poisson process
with rate θ . Let {X(t)} denote the number of individuals in the population at time t.

1. Show that {X(t)} is a Markov chain.

2. Find the generator matrix of {X(t)}.

3. Find the conditions for stationary distribution to exist. Also, find the stationary distribution under
these conditions.

4. Find E[X(t)|X(0)].

Problem 2: Let A be a subset of the state space of Markov chain {X(t)}. Let Ti(t) be the amount of
time spent in A in time [0, t] given that X(0) = i. Let Y1,Y2, . . . ,Yn be i.i.d. with exp(1/λ ) independent of
{X(t)}. Let ti(n) = E[Ti(Y1 +Y2 + · · ·+Yn)].

1. Derive a set of linear equations for ti(1),∀i.

2. Derive a set of linear equations for ti(n) in terms of t j(1) and ti(n−1).

3. When n is large, for what values of λ is ti(n) a good approximation of E[Ti(t)].

Problem 3: Consider a CTMC {X(t)} with stationary distribution π and generator matrix Q.

1. Compute the probability that its sojourn time in state i is greater that α > 0.

2. Consider the jump chain {Yn}. Compute its transition matrix P. Find the mean of the first time it
comes back to state i if X(0) is i.

3. Use the above two to find E[T |X(0) = i], where T is the first time {X(t)} has its sojourn time in
state i greater than α > 0.

Problem 4: Consider an M/M/1/2 queue. Arrival rate λ = 3 per hour and service times are i.i.d. exp(4).
Let q(t) be the number of customers in the system at time t.

1. Find the generator matrix for {q(t)}

2. Find the proportion of customers that enter the queue.

3. If the service rate is increased to 8, find (2) above.

4. Find the conditions for stationary distribution for {q(t)}.

5. Compute the mean queue length and mean delay of a customer entering the system.

Problem 5: If {X(t)} and {Y (t)} are independent, reversible Markov chains, show that {X(t),Y (t)} is
also a reversible Markov chain.

Problem 6: Customers move among r servers circularly (after completion of service at service i, the
customer moves to the server (i+1) mod r). Service times at server i is exp(µi). Consider the process
{q(0),q(1), . . . ,q(r−1)}where q(i) denotes the number of customers in server i for i∈{0,1, . . . ,(r−1)}.
Show this process is reversible. Find its stationary distribution.

Problem 7: Consider an M/M/∞ system with arrival rate λ and service rate µ .
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1. Let q(t) be the number of customers in the system at time t. Find the generator matrix. Find the
conditions for stationary distribution. Find the stationary distribution under these conditions.

Now, consider this system as follows: whenever a customer arrives, it joins the lowest numbered server
that is free. In other words, when a customer arrives, it enters server 1 if it is free. Otherwise, it enters
server 2 if it is free and so on.

1. Find the fraction of time server 1 is free under stationarity.

2. By considering the M/M/2 loss system, find the fraction of time server 2 is busy.

3. Find the fraction of time server c is busy for arbitrary c.

4. What is the overflow rate from server c to c+ 1. Is it a renewal process? Is it a Poisson process?
Show wherever applicable.

Problem 8: Consider an ergodic CTMC {X(t)} with generator matrix Q and stationary distribution π .
Let E be a subset of the state space. Let G = Ec. Under stationarity,

1. compute P{X(t) = i|X(t) ∈ B}, i ∈ B,

2. compute P{X(t) = i|X(t) ∈ B,X(t−) ∈ G}, i ∈ B and

3. show that

∑
i∈G

∑
j∈B

πiqi j = ∑
i∈B

∑
j∈G

πiqi j.
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5.1 Introduction
Martingales are a very versatile tool in stochastic processes. We will use it to get several useful results in
this course.

A discrete time stochastic process is {Xk,k≥ 0} is a martingale w.r.t. filteration Fn = {Y0,Y1, . . . ,Yn}
if

1. If Xk is a function of Y1,Y2, . . . ,Yk.

2. E[|Xk|]< ∞, ∀ k ≥ 0.

3. E[Xk+1|Y1,Y2, . . . ,Yk] = Xk a.s.

If the equality in third condition is replaced by ≤ or ≥, then the process is called a supermartingale or a
submartingale, respectively.

Example 5.1.1. Let Z1,Z2, . . . be i.i.d., and E[Zk] = 0, Sn = ∑
n
k=0 Zk,

E[Sn+1|Z1, . . . ,Zn] = E[Sn +Zn+1|Z1, . . . ,Zn]

= Sn +E[Zn+1|Z1, . . . ,Zn]

= Sn +E[Zn+1]

= Sn.

Hence, Sn is a martingale w.r.t. {Z1,Z2 . . . ,Zn}.
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Example 5.1.2. Let Z1,Z2, . . . be i.i.d., and E[Zk] = 0, var(Zk) = σ2 < ∞, Sn = ∑
n
k=1 Zk, S0 = 0, Z0 = 0,

Xn = S2
n−nσ2. Then

E[Xn+1|Z1, . . . ,Zn] = E[S2
n+1− (n+1)σ2|Z1, . . . ,Zn]

= E[(Sn +Zn+1)
2|Z1, . . . ,Zn]− (n+1)σ2

= S2
n−nσ

2

= Xn.

Hence, Xn is a martingale.

Example 5.1.3. Let Z0 = 0,Z1,Z2, . . . be i.i.d., and E[eθZ1 ] < ∞ for some θ > 0, Sn = ∑
n
k=0 Zk. Xn =

eθSn

E[eθZ1 ]n
,

E[Xn+1|Z1, . . . ,Zn] =
E[eθSn+1 |Z1, . . . ,Zn]

E[eθZ1 ]n+1

= eθSn
E[eθZn+1 |Z1, . . . ,Zn]

E[eθZ1 ]n+1

=
eθSn

E[eθZ1 ]n

= Xn.

Hence, Xn is a martingale.

Example 5.1.4. Y0 = 1,Y1,Y2, . . . independent, E[Yi] = 1, X0 = 1, Xn = ∏
n
k=1 Yk. Then

E[Xn+1|Y1,Y2, . . . ,Yn] = E[
n

∏
k=1

Yk|Y1,Y2, . . . ,Yn]

=
n

∏
k=1

YkE[Yk+1]

=
n

∏
k=1

Yk

= Xn.

Hence, Xn is a martingale.

Example 5.1.5. Let {Xk,k ≥ 0} be a martingale w.r.t. filteration Fn = {Y0,Y1, . . . ,Yn}. Let φ : R→ R,
Zn = φ(Xn),

E[Zn+1|Y0,Y1, . . . ,Yn] = E[φ(Xn+1)|Y0,Y1, . . . ,Yn]

If φ is a convex function, then by Jensen’s inequality

E[φ(Xn+1)|Y0,Y1, . . . ,Yn]≥ φ(E[Xn+1|Y1, . . . ,Yn]) = φ(Xn)

Hence, φ(Xn) is a submartingale.
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If {Xn} is a submartingle and φ convex, non decreasing,

E[Zn+1|Y0,Y1, . . . ,Yn] = E[φ(Xn+1)|Y1, . . . ,Yn]

≥ φ(E[Xn+1|Y1, . . . ,Yn])

≥ φ(Xn).

Hence, φ(Xn) is a submartingale.

5.2 Optional Sampling Theorem
If {Xk} is a martingale, w.r.t. {Yn} then, for n > k

E[Xn] = E[E[Xn|Y1,Y2, . . . ,Yk]] = E[Xk] = E[Xk−1] = · · ·= E[X0]

For a submartingale, E[Xk+1]≥ E[Xk]≥ ·· · ≥ E[X0].

Proposition 5.2.1. If {Xn} is a martingale w.r.t. {Yn}, T a stopping time w.r.t. {Yn}, then E[XT∧n] =E[X0]
for all n≥ 0.

Proof.

XT∧n+1−XT∧n = (Xn+1−Xn)1{T>n}

Taking expectations,

E[XT∧n+1−XT∧n] = E[(Xn+1−Xn)1{T>n}] = E[E[(Xn+1−Xn)1{T>n}|Fn]]

Since T is a stopping time {T ≤ n} is a function of (Y1,Y2, . . . ,Y n) =Fn. Thus, {T ≤ n}c is also a function
of Fn.

Thus,

E[E[(Xn+1−Xn)1{T>n}|Fn]] = E[1{T>n}E[(Xn+1−Xn)|Fn]] = 0.

Therefore,

E[XT∧n+1] = E[XT∧n] = · · ·= E[XT∧0] = E[X0].

For a submartingale, the above proof gives

E[XT∧n+1]≥ E[XT∧n]≥ ·· · ≥ E[XT∧0]≥ E[X0].

Since,

lim
n→∞

T (ω)∧n = T (ω),

lim
n→∞

XT∧n(ω)(ω) = XT (ω)(ω) a.s..

If

E[XT∧n]→ E[XT ] as n→ ∞, (5.1)

then from above proposition

E[X0] = E[XT ]. (5.2)

Conditions for Eq (5.1) to hold are,
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• T ≤ n0 a.s. for some n0 < ∞. Then XT∧n = XT a.s. when n≥ n0. Thus E[XT∧n] = E[XT ], ∀ n≥ n0.

• Xn ≤ Z a.s. ∀ n≥ n0 and E[z]< ∞. Then XT∧n ≤ Z a.s. ∀ n. Thus XT∧n→ XT a.s., and dominated
convergence theorem, implies E[XT∧n]→ E[XT ].

Proposition 5.2.2. If {Xn} is a martingale, E[|Xn−Xn−1| | Fn] ≤ c < ∞, ∀ n ≥ 1 and E[T ] < ∞ then
E[XT ] = E[X0].

Proof. Define Z = |X0|+ |X1−X0|+ · · ·+ |XT −XT−1|. We have

XT∧n = (XT∧n−X(T∧n)−1)+(X(T∧n)−1−X(T∧n)−2)+(X1−X0)+X0

≤ |XT∧n−X(T∧n)−1|+ |X(T∧n)−1−X(T∧n)−2|+ |X1−X0|+ |X0| ≤ Z

Thus if we show E[Z]< ∞, we will have the proof from the above result. But,

E[Z] = E[|X0|]+E[|X1−X0|]+ · · ·+E[|XT −XT−1|]

= E[|X0|]+E[
∞

∑
k=1
|Xk−Xk−1|1{T≥k}]

= E[|X0|]+
∞

∑
k=1

E[E[|Xk−Xk−1|1{T≥k}|Fk−1]]

= E[|X0|]+
∞

∑
k=1

E[1{T≥k}]E[|Xk−Xk−1|Fk]

≤ E[|X0|]+ cE[T ]
< ∞.
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5.2 (Contd.) Optional Sampling Theorem:Example
Example 5.2.1. Let Y0 = 0,Y1,Y2, . . . i.i.d., E[|Y1|]< ∞ , E[Yi] = 0, S0 = 0, Sn = ∑

n
i=1 Yi, T stopping time

w.r.t. {Y0,Y1,Y2. . . .}, and E[T ]< ∞. Then

E[|Sn+1−Sn|Fn] = E[|Yn+1|Fn] = E[|Yn+1|]< ∞.

hence from previous optional sampling theorem

E[ST ] = E[S0].

5.3 Martingale inequalities
Theorem 5.3.1. (Doob’s inequality for submatingales) If {Xn} is a submartingale, Mn = sup0≤k≤nXk,
then for α > 0

P[Mn ≥ α]≤ E[Xn]

α
.

Proof. Let T be a stopping time defined as T = n∧ in f{k : Mk ≥ α}.

E[Xn] =
n

∑
k=0

E[Xn1{T=k}]

=
n

∑
k=0

E[E[Xn1{T=k}|Fk]]

=
n

∑
k=0

E[1{T=k}E[Xn|Fk]]

≥
n

∑
k=0

E[1{T=k}Xk]

= E[XT ].

Thus,

P{Mn ≥ α}= P{XT ≥ α} ≤ E[XT ]

α
≤ E[Xn]

α
.

If {Xk} is a martingale, E[|Xk|β ]< ∞, ∀k, for some β ≥ 1, then {|Xk|β} is also a submartingale. Thus
from the above theorem

P

[
sup

1≤k≤n
|Xk| ≥ α

]
= P

[
sup

1≤k≤n
|Xk|β ≥ α

β

]
≤ E[|Xn|β ]

αβ

59



Example 5.3.2. Y0,Y1,Y2, . . . , E[Y1] = 0, E[|Y1|< ∞]. Then Sn is a martingale. Thus, from above theorem

P[ sup
0≤k≤n

|Sk| ≥ α]≤ E[|Sn|]
α

.

If E[|Y1|β ]< ∞, β ≥ 1 , then P[sup0≤k≤n |Sk| ≥ α]≤ E[|Sn|β ]
αβ

.
For β = 2,

E[|Sn|2]
α2 =

nσ2

α2 where σ
2 = var(Y1).

This is called Kolmogorov’s inequality.

Lemma 5.3.3. Let E[X ] = 0, and P[|X−a| ≤ b] = 1 for some constants a and b. Then

E[eθX ]≤ exp
(

θ 2b2

2

)
.

Theorem 5.3.4 (Azuma inequality). Let Yn be a martingale, P[|Yn−Yn−1| ≤ dn] = 1, then

P[|Yn−Y0| ≥ α]≤ 2exp
(
−α2

2∑
n
i=1 d2

i

)
.

Proof. Since E[e(θ(Yn−Y0))]< ∞ for all θ ,

P[Yn−Y0 ≥ α]≤ E[e(θ(Yn−Y0))]

e(θα)
. (5.3)

Also,

E[exp(θ(Yn−Y0))] = E[E[e(θ(Yn−Yn−1)+θ(Yn−1−Y0))]|Fn−1]

= E[eθ(Yn−1−Y0)E[eθ(Yn−Yn−1)|Fn−1]]

≤ E[θ(Yn−1−Y0)]e

(
θ2d2

n
2

)
.

by the above lemma, iterating,

E[exp(θ(Yn−Y0))]≤ e
(

θ2
2 ∑

n
i=1 d2

i

)
(5.4)

From 5.3, 5.4,

P[|Yn−Y0| ≥ α]≤ e
(

θ2
2 ∑

n
i=1 d2

i

)
e(θα)

holds for any θ > 0.

Choosing θ = α

∑
n
i=1 d2

i
, we get the tighest upper bound,

P[|Yn−Y0| ≥ α]≤ 2exp
(
−α2

2∑
n
i=0 d2

i

)
.
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Consider independent random variables X1,X2, . . . ,Xn, E[Xi] = µ , Sn = ∑
n
i=1 Xi.

Definition 5.3.5. F : Rm→ R is called Lipschitz-c if

|F(x1,x2, . . . ,xi−1,xi,xi+1, . . . ,xm)−F(x1,x2, . . . ,xi−1,yi,xi+1, . . . ,xm)| ≤ c, ∀i,∀x1,x2, . . . ,xm,yi.

Proposition 5.3.6 (McDiarmid’s Inequality). Under above conditions, if F is Lipschitz-c,

P[|F(X1,X2, . . . ,Xm)−E[F ]| ≥ α]≤ 2e(
−2α2

mc2 )
.

Proof. Let Z = f (X1,X2, . . . ,Xm), Zi = E[Z|X1,X2, . . . ,Xi]. Then {Zi} is a martingale.
Also,

|Zi+1−Zi|=|E [ f (x1,x2, . . . ,xi+1,Xi+2,Xi+3, . . . ,Xn)|X1 = x1, . . . ,Xi = xi,Xi+1 = xi+1]

−E [ f (x1,x2, . . . ,xi,Xi+1, . . . ,Xn)|X1 = x1, . . . ,Xi = xi]|
≤ E [| f (x1,x2, . . . ,xi+1,Xi+2,Xi+3, . . . ,Xn)− f (x1,x2, . . . ,xi,Xi+1,Xi+2,Xi+3, . . . ,Xn)|]
≤ c.

Thus,

P[|Zi+1−Zi| ≤ c|Fi] = 1.

and the result follows by Azuma’s inequality,because Z0 = E[F(X1,X2, . . . ,Xm)].
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5.4 McDiarmid’s Inequality:Applications
Example 5.4.1 (Machine learning:Classification problem). Let the training samples (X1,Y1), . . . ,(Xn,Yn)
be iid. Xi ∈ Rd , Yi ∈ {1,2, . . . ,N}. h is the classifier, h(x)→{1,2, . . . ,N}. 1{h(Xi)6=Yi} denotes the error.
The probability of error for a given classifier is given by

R(h) = P[h(X) 6= Y ]

and its estimate from the training sample is

R̂n(h) =
1
n

n

∑
i=1

1{h(Xi)6=Yi}.

Define

f ((x1,y1), . . . ,(xn,yn)) =
1
n

n

∑
i=1

1{h(xi)6=yi}.

Removing ith component and replacing with another,

| f ((x1,y1), . . . ,(xi,yi), . . . ,(xn,yn))− f ((x1,y1), . . . ,(x′i,y
′
i), . . . ,(xn,yn))| ≤

1
n
.

Then by McDiarmid’s Inequality,

P[|R̂n(h)−E[R̂n(h]| ≥ λ ]≤ 2exp

(
−2λ 2

n 1
n2

)
= 2exp

(
−2λ

2n
)
,

where E[R̂n(h)] = R(h).

Example 5.4.2. If X1,X2, . . . ,Xn ∼ P. We want an estimate of P. We estimate P by

P̂n(A) =
1
n

n

∑
i=1

1{Xi∈A},

Since,

E[P̂n(A)] = P(A),

it is an unbiased estimate. Define

f (x1,x2, . . . ,xn) =
1
n

n

∑
i=1

1{Xi∈A}.

Since | f (x1,x2, . . . ,xn)− f (x1, . . . ,yi,xi+1, . . . ,xn)| ≤ 1
n , by McDiarmid’s Inequality,

P[| f (x1,x2, . . . ,xn)−E[ f ]| ≥ ε] = P[|P̂n(A)−P(A)| ≥ ε]

≤ 2exp
(
−2ε

2n
)
.
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Hoffding’s inequality
Let X1,X2, . . . ,Xn i.i.d., a≤ |Xi| ≤ b a.s., and S0 = X1 +X2 + · · ·+Xn, µ = E[X1].
Define

f (x1,x2, . . . ,xn) = X1 +X2 + · · ·+Xn.

Since,

| f (x1,x2, . . . ,xn)− f (x1, . . . ,yi, . . . ,xn)|= |xi− yi| ≤ |b−a|,

by McDiarmid’s Inequality,

P[|Sn−nµ| ≥ ε]≤ 2exp
(
−2

ε2n
n(b−a)2

)

P[|Sn−nµ| ≥ ε

n
] = P[|Sn−nµ| ≥ δ ]≤ 2exp

(
−2

δ 2n
(b−a)2

)
.

5.5 Martingale Convergence Theorem
Let {Xn} be a submartingale and α < β . Let Un denotes the number of times Xk goes from below α to
above β in time n. We will need the following equality.

Lemma 5.5.1 (Upcrossing inequality).

E[Un]≤
E[|Xn|]+α

β −α
.

Proof. Let Yn = max(0,Xn−α). Yn is also a submartingale.
Let Un be the number of times Yn goes from 0 to above β −α . This number is same as of {Xn} upcrossing
from α to β . Let T1 be the first time when Yk = 0, T2 = min{k > T1 such that Yk ≥ β −α}. Similary,
define Tk as the sequence of stopping times upto time n, with Tn the maximum possible.

E[Yn] = E[YTn ] = E[
n

∑
k=0

(YTk −YTk−1)]

= ∑
k:even

E[YTk −YTk−1 ]+ ∑
k:odd

E[YTk −YTk−1 ].

All are bounded stopping times, Yn is a submartingale, Tk < Tk+1 < · · · ≤ n. Also E[YTk ]≥ E[YTk−1 ] for k
odd and E[YTk −YTk−1 ]≥ β −α for k even. Therefore,

E[Yn]≥ E[Un](β −α).

Hence,

E[Un]≤
E[Yn]

(β −α)
=

E[max(0,Xn−α)]

(β −α)

≤ E[|Xn−α|]
(β −α)

≤ E[|Xn|]+α

(β −α)
.
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Theorem 5.5.2. {Xn} submartingale and supk E[|Xk|]≤M <∞. Then Xn→X almost surely and E[|X |]<
∞.

Proof. Take α < β . Let liminfXn(ω) = X∗(ω), limsupXn(ω) = X∗(ω). If X∗(ω) < α < β < X∗(ω),
then this sequence will not converge.

Let Un be the number of upcrossings of {Xn} from below α to above β in time n. Thus, from the
above lemma,

E[Un]≤
E[|Xn|]+α

(β −α)
≤ M−α

(β −α)
.

Un(ω) increases as n increases, and it will converge to U(ω)< ∞ or reach ∞. Thus,

E[Un]↗ E[U ]≤ M−α

(β −α)
< ∞.

Therefore, P[U(ω)< ∞] = 1, and P[X∗ < α < β < X∗] = 0. Hence, for rational α,β ,

P[X∗ < X∗]≤ P[∪α<β{X∗ < α < β < X∗}]≤ ∑
α<β

P[X∗ < α < β < X∗] = 0.

This implies Xn→ X a.s.. Also,

M ≥ liminfE[|Xn|]≥ E[|X |], by Fatou’s lemma.

If Xn is a martingale, then {|Xn|} is also a submartingale and E[|Xn|] = E[E[|Xn||Fn−1]] ≥ E[|Xn−1|].
Therefore,

sup
k
E[|Xk|] = lim

n→∞
E[|Xn|].

Lemma 5.5.3. If {Xk} is submartingale. then for X+
k = max(0,Xk),

sup
k
E[|Xk|]< ∞ ⇐⇒ sup

k
E[X+

k ]< ∞.

Proof. [⇒] X+
k ≤ |Xk|, hence

sup
k
E[X∗k ]≤ sup

k
E[|Xk|].

[⇐] |Xk|= 2X+
k −Xk. Thus,

E[|Xk|] = 2E[X+
k ]−E[Xk]≤ 2E[X+

k ]−E[X0].

sup
k
E[|Xk|]≤ 2sup

k
E[X+

k ]−E[X0].

If RHS is finite, then LHS is finite.

Thus, if a submartingale is upper bounded, Xk ≤M1 < ∞ a.s., then X+
k ≤M1 ⇒ supk E[X+

k ] ≤M1 .
Therefore, if a submartingale is upperbounded then it converges a.s..

If Xk is a supermartingale, then−Xk is submartingle. Therefore, if supk(−Xk)≤M1, Xk≥−M1, ∀k.
Therefore, if Xk is a supermartingale and lower bounded then it converges.

If Xk is a martingale then it is a supermartingale and a submartingale. Therefore an upper or lower
bounded martingle converges a.s..
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Example 5.5.4. Let Z be a random variable with E[|Z|] < ∞, and {Yn} a sequence of random variables.
Define X0 = 1, Xn = E[Z|Y0,Y1, . . . ,Yn], Then E[Xn+1|Y0,Y1, . . . ,Yn] = E[Z|Y0,Y1, . . . ,Yn] = Xn. Also,

E[|Xn|] = E[|E[Z|Y0,Y1, . . . ,Yn]|]
≤ E[E[|Z||Y0,Y1, . . . ,Yn]]

= E[|Z|]
< ∞ for all n≥ 1.

Hence {Xn} is a martingale w.r.t. {Yn} (called Doob’s Martingale). Also, Xn→ X∞ = E[Z|Y0,Y1, . . . ].

Example 5.5.5. Let {Xn} be a MC with transition matrix P. If h is a function such that

h(i) = ∑
j∈S

pi jh( j) = E[h(X1)|X0 = i].

Define Yn = h(Xn). Then,

E[Yn+1|X0,X1, . . . ,Xn] = E[h(Xn+1)|X0,X1, . . . ,Xn]

= E[h(Xn+1)|Xn]

= h(Xn) = Yn.

Therefore {Yn} is a martingale w.r.t. {Xn} . If the equality is replaced with ≤ then it is submartingale.

Suppose h is bounded. Since Yn = h(Xn) is a submartingale, Yn → Y∞ a.s. and E[Y∞] < ∞. Assume,
{Xn} is irreducible and recurrent. Consider i, j ∈ S, i 6= j. State-i occurs infinitely often w.p.1 and state- j
also occurs infinitely often w.p.1. Thus, Yn = h(Xn) = h(i) and h( j) infinitely often with w.p.1. Therefore,
for Yn to converge a.s.,

h(i) = h( j), ∀i, j ∈ S.

5.6 Applications to Markov chain
In this section we use martingale convergence theorems to get conditions for recurrence and transience
of Markov chains.

Theorem 5.6.1. Let {Xn} be an irreducible, MC with state space S and transition matrix P. It is transient
if and only iff ∃ a state-i and h : S\{i}→ R, h is bounded, non-zero and satisfies

h( j) = ∑
k 6=i

p jk(h(k)) ∀ j 6= i.

Proof. Suppose {Xn} is transient. Fix a state i. Let T (i) be the first time chain enters state i. Define
h( j) = Pj[T (i) = ∞]. It is bounded. Since {Xn} is transient, Pj[T (i) = ∞]> 0. Also,

Pj[T (i) = ∞] = ∑
k 6=i

PjkPk[T (i) = ∞].
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Now we assume that such an h exists and we show that MC is transient.
Define, h̃ on S such that h̃( j) = h( j) ∀ j 6= i, h̃(i) = 0. Thus, when j 6= i,

E[h̃(X1)|X0 = j] = ∑
k

Pjkh̃(k) = ∑
k 6=i

Pjkh(k) = h( j) = h̃( j) = h̃(X0).

When j = i,

E[h̃(X1)|X0 = i] = ∑
k 6=i

Pikh(k)≥ h̃(i).

Therefore,

E[h̃(X1)|X0]≥ h̃(X0).

Thus from the previous example, h̃(Xn) = Yn is a submartingale and it is bounded. Hence, it converges to
Y∞ a.s..

If {Xn} is recurrent then as shown above, h̃ is a constant. But h̃(i) = 0 and h̃ is non-zero. Therefore it
cannot be recurrent.

Theorem 5.6.2. Let {Xn} be irreducible. If ∃ h : S→ R such that h(i)→ ∞ as i→ ∞ and there is a finite
set E0 ⊂ S such that E[h(Xi)|X0 = i]≤ h(i), ∀i /∈ E0, then {Xn} is recurrent.

Proof. We can if needed add a constant to make h≥ 0. Let T be entrance time to set E0. X0 = i, i /∈ E0.
Yn = h(Xn)1{T>n}, Fn = {X0,X1, . . . ,Xn}.

Then,

E[Yn+1|Fn] = E[h(Xn+1)1{T>n+1}|Fn]

≤ E[h(Xn+1)1{T>n}|Fn]

= 1{T>n}E[h(Xn+1)|Fn]

≤ 1{T>n}h(Xn)

= Yn.

Therefore, Yn is a nonnegative supermartingale and Yn→ Y∞ a.s. with P[Y∞ < ∞] = 1.
Suppose Xn is transient. Then Xn will be out of any finite set {i : h(i)≤ a} after some time. Thus,

h(Xn)→ ∞ a.s..

But Y∞ < ∞ a.s.. Therefore,

Pi[T < ∞] = 1, ∀i /∈ E0.

Thus, finite set E0 is being visited infinitely often w.p.1. Since E0 is a finite set, at least one of the states
i ∈ E0 is being visited infinitely often w.p.1., That state is recurrent. Then {Xn} is recurrent. Hence a
contradiction.

Under slightly stronger conditions, we get positive recurrence of the MC.

Theorem 5.6.3. Let {Xn} be irreducible. h : S→ R s.t. h is lower bounded (make it ≥ 0 by adding a
constant) and E0 is finite such that E[h(X1)|X0 = i]≤ h(i)−ε ∀i /∈E0, for some ε > 0, and E[h(X1)|X0 =
i]< ∞, ∀i ∈ E0. Then {Xn} is positive recurrent.
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Proof. Let T be the entrance time to set E0, X0 = i, i /∈ E0, Yn = h(Xn)1{T>n}. Then

E[Yn+1|Fn] = E[h(Xn+1)1{T>n+1}|Fn]

≤ E[h(Xn+1)1{T>n}|Fn]

= 1{T>n}E[h(Xn+1)|Fn]

≤ 1{T>n}[h(Xn)− ε]

= Yn− ε1{T>n}.

Take expectaions on both sides,

E[Yn+1]≤ E[Yn]− εP[T > n]

≤ E[Yn−1]− εP[T > n−1]− εP[T > n]

. . .≤ E[Y0]− ε

n

∑
k=0

P[T > k].

Take n→ ∞,

0≤ E[Y0]− ε

∞

∑
k=0

P[T > k] = E[Y0]− εEi[T ].

Thus,

Ei[T ]≤
E[Y0]

ε
=

h(i)
ε

< ∞, ∀i /∈ E0.

For i ∈ E0,

Ei[T ] = ∑
j∈E0

pi j + ∑
j/∈E0

pi jE j[T +1]

= 1+ ∑
j/∈E0

pi jE j[T ]

≤ 1+ ∑
j/∈E0

1
ε

pi jh( j)

≤ 1+
1
ε
Ei[h(X1)]

< ∞.

Therefore, starting from any initial state, mean time to reach the finite set E0 is finite. We can show
that this implies that {Xn} is positive recurrent.

Theorem 5.6.4. {Xn} is irreducible, ∃ a bounded function h : S→ R and a finite set E0 ⊂ S s.t.

E[h(X1)|X0 = i]≥ h(i), i /∈ E0

and h(i)> h( j) for some i /∈ E0 and all j ∈ E0. Then {Xn} is transient.

Proof. Take Yn = h(Xn∧T ), T the entrance time to E0, X0 = i /∈ E0.We can show that Yn is a submartingale.
Since h is bounded, Yn→ Y∞ a.s.. Also,

E[Y∞]≥ E[Y0] = h(i).

and the fact that Y∞ < h(i) on {T < ∞} ⇒ Pi[T = ∞]> 0 . Therefore, {Xn} is transient.
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Example 5.6.5. Consider a discrete time queue with Xn the number of requests in the queue in the
beginning of slot n. Then Xn+1 = (Xn +Yn)

+ where Yn = An−Sn, An is the number of arrivals in slot n,
Sn is number of requests we can serve in slot n. Then Yn is i.i.d., integer valued. Taking h(i) = i we show
that if E[Yn]< 0 then we have positive recurrence.

We have

E[X1|X0 = i]− i = E[(i+Y0)
+]− i.

As i→∞, |E[(i+Y0)
+]−E[i+Y0]| →∞. Therefore if E[Y0]<−ε for some ε > 0 then E[X1|X0 = i]− i <

ε/2 for all i large enough. Then we get positive recurrence of {Xk} from theorem 5.6.3.
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5.7 Problems
Problem 1: Let δ1,δ2, . . . be independent with E[δi] = 0 Let X1 = δ1 and Xn+1 =Xn+δn+1 fn(X1,X2, . . .Xn).
Suppose Xn are integrable. Show that {Xn} is a martingale.

Problem 2: Let {Xn} be a martingale with E[X1] = 0 and E[X2
n ]< ∞.

1. Show that E[(Xn+r−Xn)
2] = ∑

r
k=1E[(Xn+k−Xn+k−1)

2].

2. Assume ∑nE[(Xn−Xn−1)
2]< ∞. Prove that Xn converges with probability 1.

Problem 3: If {Xn} is martingale bounded either above or below, then show that supnE[|Xn|]< ∞.

Problem 4: Let {Yn} be i.i.d. with P{Yn = 1} = p = 1− q = P{Yn = −1}. Let S0 = 0, Sn = Y1 +Y2 +
· · ·+Yn, T = inf{Sn =−a or Sn = b}. When p 6= q show that

E[T ] =
b

p−q
− a+b

p−q
1− (p/q)b

1− (p/q)a+b .

Problem 5: Suppose {Xn} is martingale. Let for some α , E[|Xn|α ]< ∞ for all n. Show that

E
[

max
0≤k≤n

|Xn|
]
≤ α

1−α
E[|Xn|α ]

1
α .

Problem 6: Show that a submartingale {Xn} can be represented as Xn = Yn +Zn where {Yn} is a martin-
gale and 0≤ Z1 ≤ Z2 ≤ . . . . Hint: Take X0 = 0, δn = Xn−Xn−1 and Zn = ∑

n
k=1E[δk|Fk−1].

Problem 7: Let {Xi} be i.i.d. with P{Xi = 0} = P{Xi = 2} = 1/2. Check if {Xi} is a martingale and if
we can apply martingale stopping theorem.

Problem 8: There are n red balls, n yellow balls and m boxes. A red ball is kept in box j with probability
p j and a yellow ball with probability q j independently. Let X be the number of boxes with one red and
one yellow ball. Calculate E[X ] = µ and an exponential upper bound for P[|X−µ|> b].
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6.1 Definitions
Definition 6.1.1 (Random Walks). Let X1,X2, . . . be i.i.d., S0 = 0 and Sn = ∑

n
k=1 Xk. Then, Sn is called

random walk.

If µ =E[X1] (−∞≤E[X1]≤∞) is defined, then by strong law of large numbers (SLLN) Sn/n→E[X1]
a.s. as n→ ∞. According to law of iterated logarithms (LIL), if Var(X1) = σ2 < ∞,

limsup
n→∞

Sn−nµ

σ
√

n log logn
=+1 a.s.

liminf
n→∞

Sn−nµ

σ
√

n log logn
=−1 a.s.

We can use martingales theory to analyze Sn. Sn is also a Markov chain. So we can use Markov chain
theory (although it may not have countable state space). If Xk ≥ 0, we can use renewal theory. In this
chapter, we use random walk theory and will also show how to use renewal theory when X1 takes positive
as well as negative values.

There are three possibilities

(1) Sn→−∞ a.s. as n→ ∞.

(2) Sn→ ∞ a.s. n→ ∞.

(3) limsupn→∞ Sn = ∞ a.s. and liminfn→∞ Sn =−∞ a.s.

If E[X1] exists (−∞≤ E[X1]≤ ∞), then by SLLN, (1) holds if µ < 0 and (2) holds if µ > 0. By LIL, (3)
holds if σ2 < ∞ and µ = 0.
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Definition 6.1.2. If for all finite intervals I ⊂ R, ∑
∞
n=0P{Sn ∈ I} = ∑

∞
n=1E[1{Sn ∈ I}] < ∞, then the

random walk Sn is called transient. Otherwise, it is called recurrent.

When µ < 0 or µ > 0, the random walk is transient. When µ = 0, the random walk is recurrent.

6.2 Ladder Heights, Maxima, GI/GI/1 Queue
Definition 6.2.1 (Ladder epochs and heights). Let T1 = inf{n : Sn > 0} and Tk = inf{n > Tk−1,Sn >
STk−1}. The process {Tk} is called strictly ascending ladder epochs and {STk} is called strictly ascending
ladder heights.

Let T−1 = inf{n : Sn ≤ 0} and T−k = inf{n > T−k−1,Sn ≤ ST−k−1
}. The process {T−k } is called weakly

descending ladder epochs and {ST−k
} is called weakly descending ladder heights.

When Sn→∞ a.s., then after some time Sn will not go below 0 and hence P[T− < ∞]< 1. Also, when
Sn→−∞ a.s. then P{T < ∞}< 1.

Ladder heights and ladder epochs form renewal processes. Let Mn = sup1≤k≤n Sk and mn = inf1≤k≤n Sk.
Since, Mn ≥ Sn and is monotonically increasing,

1. If Sn→ ∞ a.s., then Mn ↑ ∞ a.s. but mn ↓ m >−∞ a.s.

2. If Sn→−∞ a.s., then Mn ↑M < ∞ a.s. and mn→−∞ a.s.

3. If Sn oscillates, then Mn ↑ ∞ a.s. and mn ↓ −∞ a.s.

Proposition 6.2.2. For GI/GI/1 queue, Wn ∼Mn.

Proof. Let Xk = Sk−Ak.

Wk+1 = (Wk +Xk)
+

= max(0,Wk +Xk))

= max(0,max(0,Wk−1 +Xk−1)+Xk))

. . .

= max(0,Xk,Xk +Xk−1,Xk +Xn−1 +Xk−2, . . . ,X1)

∼max(0,X1,X1 +X2,X1 +X2 +X3, . . . ,Sk)

= max(0,S1,S2,S3, . . . ,Sk)

= Mk.

We should note that Mn 6= Wn a.s. and Mn is montonically increasing, but Wn is not. Moreover,

(Wn+1,Wn)
d
6= (Mn+1,Mn) even though Wn+1 ∼Mn+1. Now,

(S0,S1, . . . ,Sn)∼ (0,X1,X1 +X2, . . . ,X1 +X2 + · · ·+Xn)

∼ (0,Xn,Xn +Xn−1, . . . ,Xn +Xn−1 + · · ·+X1)

= (0,Sn−Sn−1,Sn−2 . . . ,Sn−S0)

max{0,Sn−Sn−1,Sn−2 . . . ,Sn−S0}
d
= Sn−mn. This shows that (Mn,Mn−Sn)∼ (Sn−mn,−mn).

We can also write Mn = SN(n) where N(n) is number of ascending ladder epochs till time n. Let
Zk = STk −STk−1 . If µ > 0, then we will show that E[T1]< ∞.
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Proposition 6.2.3. If µ > 0,then

Mn

n
→ E[X1] a.s. as n→ ∞.

Proof. From renewal theory N(n)/n→ 1/E[T1] a.s. Thus,

lim
n→∞

Mn

n
= lim

n→∞

∑
N(n)
k=1 Zk

n

= lim
n→∞

∑
N(n)
k=1 Zk

N(n)
N(n)

n

=
E[Z1]

E[T1]
a.s.

=
E[∑T1

k=1 Xk]

E[T1]
a.s.

= E[X1] a.s.

Similarly, if µ < 0, mn/n→ E[X1] a.s.

GI/GI/1 queue: Take Xk = sk −Ak. If µ = E[X1] = E[s1−A1] > 0, Mn ↑ ∞ a.s. Therefore, since
Wn ∼Mn, limn→∞P{Wn ≤ x}= 0 for all x. Also, Wn/n→ E[X1] a.s.

When µ < 0, Mn→M a.s. where M is a proper r.v. and P{Wn ≤ x}→ P{M ≤ x}. Then, the queue is
stable. Also, N(n)→ N a.s. where N is a finite r.v. and

M d
=

N

∑
k=1

zk,

and P{N = n}= pn(1− p) where p = P{T1 < ∞}< 1. Also, conditioned on N ≥ k, z1,z2, . . . ,zk are i.i.d.
and do not depend on k.
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6.2 (Contd.) Ladder Epochs
Let T be the first strictly ascending ladder epoch and T− be the first weakly descending ladder epoch.

Lemma 6.2.1. If µ > 0, E[T ]< ∞.

Proof.

E[T ] =
∞

∑
k=0

P{T > k}

=
∞

∑
k=0

P{S1 ≤ 0,S2 ≤ 0,S3 ≤ 0, . . . ,Sk ≤ 0}

=
∞

∑
k=0

P{X1 ≤ 0,X1 +X2 ≤ 0,X1 +X2 +X3 ≤ 0 . . . ,X1 +X2 + · · ·+Xk ≤ 0}

=
∞

∑
k=0

P{Xk ≤ 0,Xk +Xk−1 ≤ 0,Xk +Xk−1 +Xk−2 ≤ 0 . . . ,Xk +Xk−1 + · · ·+X1 ≤ 0}

=
∞

∑
k=0

P{Sk−Sk−1 ≤ 0,Sk−Sk−2 ≤ 0,Sk−Sk−3 ≤ 0 . . . ,Sk ≤ 0}

=
∞

∑
k=0

P{Sk ≤ Sk−1,Sk ≤ Sk−2,Sk ≤ Sk−3 ≤ 0 . . . ,Sk ≤ 0}

=
∞

∑
k=0

P{k is a weakly descending ladder epoch}

= E

[
∞

∑
k=0

1{k is a weakly descending ladder epoch}

]
= E [N]

=
1
p

where N is the number of weakly descending ladder epochs and p = P{T− = ∞}> 0 when µ > 0.

The following is a good application of martingale theory to random walks, which will then be used to
obtain a useful result in queuing theory.

Assume there exists a θ 6= 0 such that E [exp(θX1)] = 1. Then, E [exp(θSn+1)|Fn] = exp(θSn) where
Fn = {X1,X2, . . . ,Xn}. Thus, exp(θXn) is a martingale. Let T = inf{Sn ≤−b or Sn ≥ a} for some a > 0
and b > 0. We want to show E[exp(θST )] = 1. We can use optional sampling theorem if E[T ] < ∞ and
supnE[|exp(θSn+1)− exp(θSn)||Fn]< ∞.
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We show the conditions now. We have

E
[
|eθSn+1 − eθSn | |Fn

]
= eθSnE

[
|eθXn+1 −1|

]
≤ eθSnE

[
|eθXn+1 −1|

]
= 2eθSn ≤ 2eθa < ∞,

for n < T .
Next, we show that E[T ]< ∞ when X1 is not degenerate. Let c = a+b. Since, X1 is not degenerate,

there exists an integer N and δ > 0 such that P{|Sn|> c}> δ . Define S′1 = SN ,S′2 = S2N−SN , . . . Then,

P{T ≥ kN} ≤ P{|S′1| ≤ c}P{|S′2| ≤ c} . . .P{|S′n| ≤ c}
= (1−δ )k.

Thus,

E[T ] =
∞

∑
n=0

P{T > n}

≤ N
∞

∑
k=0

P{T > kN}

because P{T > k} is deccreasing with k. Thus, E[T ]< ∞.
If pa = P{ST ≥ a}, by optional sampling theorem,

1 = E[eθST ]

= E[eθST |ST ≤−b](1− pa)+E[eθST |ST ≥ a]pa

≥ E[eθST |ST ≥ a]pa

≥ eθa pa.

Thus, pa = P{ST ≥ a} ≤ exp(−θa). This upper bound is independent of b. Taking b→ ∞, we obtain
that P{supk≥0 Sk ≥ a} ≤ exp(−aθ).

Application to GI/GI/1 queue. If µ < 0, the waiting times Wn →W∞ in distribution and W∞ has
the distribution of M = supk≥0 Sk. Therefore, P{W∞ > a} ≤ exp(−θa) if there exists a θ 6= 0 such that
E[exp(θX1)] = 1.
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7.1 GI/GI/1 Queue
Consider GI/GI/1 queue. Let {An} be i.i.d interarrival times and {sn} be i.i.d. service times. Let
µ = E[s1]−E[A1]. Let the waiting time of nth arrival be Wn. The process {Wn} is a regenerative process
in which the arrivals seeing the queue empty are the regeneration epochs. Let τ be the regeneration
length. If µ < 0, we have seen that Wn converges to a stationary distribution and hence E[τ] < ∞. Also,
P{τ = 1} = P{s0 < A1} > 0. Therefore, τ is aperiodic. If µ ≥ 0, Wn → ∞ as n→ ∞ and E[τ] = ∞. If
µ = 0, then E[τ] = ∞ but P{τ < ∞}= 1.

Let Vt = total work (service times) of the customers in the queue, including the residual service time
of the custmoer in service. The customers seeing the empty queue are regeneration epochs. Let τ be
the regeneration length. We have E[τ] = E[τ]E[A1]. If µ < 0, then also, P{τ = 1} > 0. Thus, If A1 is
non-lattice, τ is also non-lattice. Thus, Vt →V∞ in distribution as t→ ∞ if µ < 0.

Furthermore,

E[V∞] =
E[
∫

τ

0 Vtdt]
E[τ]

=
1
2
E[s2

1]+E[W1]E[s1]

E[A1]
.

The last line follows from Figure 7.1. The quantity
∫

τ

0 Vtdt is the area under the curve which can be split
into several traingles and parellelogram as shown.

Let the time between consecutive regeneration epochs of {Vt} be called a cycle. During this time,
the duration when the queue is empty is called an idle period and the rest is called busy period. Then,
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Figure 7.1: Work in queue: V(t)

E[busy period] = E[∑τ−1
k=0 sk] if t = 0 is a regeneration epoch. Hence,

P{V∞ = 0}=
E[
∫

τ

0 1{Vt = 0}dt]
E[τ]

=
E[τ]−E[BusyPeriod]

E[τ]

=
E[τ]E[A1]−E[τ]E[s1]

E[τ]E[A1]

= 1− E[s1]

E[A1]
.

Let qt be the queue length at time t. If µ = E[X1] = E[s1]−E[A1] < 0, qt → q∞ in distribution as
t → ∞. Let Sk be the sojourn time of the kth customer and 0 be a regeneration epoch. Then, Wk and the
sojourn time Sk =Wk + sk also have stationary ditributions and have the same regeneration epochs. Also,
the regeneration epochs of Vt and qt are the same with length τ . Then, (assuming Eπ [q∞] and Eπ [s1] are
finite, this requires E[s2

1]< ∞)

Eπ [q∞] =
E
[∫

τ

0 qtdt
]

E[τ]

=
E
[
∑

τ−1
k=0 Sk

]
E[τ]E[A1]

=
Eπ [S1]

E[A1]

= λEπ [S1].
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Figure 7.2: Evolution of queue length

where λ is the arrival rate and Eπ [S1] is the mean sojourn time under stationarity. Figure 7.2 shows the
evolution of queue length in one regeneration cycle.

∫
τ

0 qtdt is the area under the curve for q(t). This is
equal to ∑

τ−1
k=0 Sk as the break of the area in the Figure 7.2 shows.

The above is an example of a general result called Little’s law. Eπ [Number in the system] = (Arrival rate)∗
Eπ [So journ time]. This holds for a general queuing system with the same proof if

∫
τ

0 qtdt = ∑
τ−1
k=0 Sk is

valid in that system. We will see many examples of this in next few lectures.

GI/GI/1-Last Come First Serve (LCFS): When a new custmorer arrives, the service of the current
customer is stopped and servicing of the latest customer begins. After completion of a service, the server
resumes service of the customer it was serving before to complete the remaining service.

An example of this type of queueing is a stack in a computer system.
Priority queues: There are different classes of customers and each class is assigned a priority. The

custmoer with the highest priority in the queue is served before others.
All the above schemes have an important property - work conservation:

1. The server is never idle when there is work in the system.

2. Workload will never be increased by policies and queuing schemes.

Irrespective of the policy the queue becomes empty and gets an arrival to the empty queue, at the same
time in all the work-conserving queues. Thus, the regeneration epochs for Wn, qt or Vt in the different
queues remain same. Hence, E[τ] < ∞, E[τ] < ∞ and has stationary distributions for all these processes
for any of the work conserving policy if E[X1] < 0. But, the stationary distribution of w, q etc. may be
different for different queues. All these queuing systems satisfy Little’s law.

Restriction of Markov chain to a subset of states:
Consider M/M/1/N queue with finite buffer of length N. The queue length process {qt} is a finite
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state space, irreducible Markov chain. It is always positive recurrent with stationary distribution πN . The
stationary distribution satisfies πNQ = 0 where Q is the rate matrix given by Q(i, i+1) = λ for 0≤ i < N,
Q(i, i− 1) = µ for 0 < i ≤ N and Q(0,1) = λ . Its stationary distribution can also be obtained from that
of M/M/1 queue as

πN(n) =

{
π(n)

∑
N
k=0 π(k)

for n ∈ {1,2, . . . ,N}.

0 otherwise

using the following argument.
In general, if S is the state space of a Markov chain {Xt} with rate matrix Q and stationary distribution

π , we can limit the Markov chain to a subset A⊂ S (by modifying the Q matrix such that the chain is not
allowed to exit A as in the M/M/1/N queue above) and obtain the corresponding stationary distribution
as

πA(i) =

{
π(i)

∑ j∈A π( j) if i ∈ A,

0 if i /∈ A.
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7.2 Palm Theory, PASTA
Consider a GI/GI/1 queue. Let Tn be the nth arrival epoch, {Vt} the workload process and Wn the waiting

time of the nth arrival. Then Wn = VT−n a.s. But, W∞

d
6= V∞ in general. Also, in renewal processes, we

have seen inspection paradox where XN(t)

d
6= Xn. This shows that the distribution of the process sampled

at some random points may be different from the distribution of the process. In the following, we relate
the two distributions.

Let X = {Xt ,−∞ < t < ∞} be a stochastic process and T = {. . . ,T−1,T0,T1, . . .} with · · ·< T−1 < 0≤
T0 < T1 < .. . be a point process. Let N(t) be the number of points of T in the interval (0, t]. Let Z =(X ,T )
and θs be the shift operator defined as θsZ = (θsX ,θsT ) where (θsX)t = Xt+s and (θsT )n = TN(s)+n− s.
Z is a stationary process if θsZ does not depend on s: P{Z ∈ A}= P{θsZ ∈ A} for all measurable A.

Now, we ask the question if Z is stationary, is {XTk} stationary? If yes, when is the distribution of
{XTk} same as that of {Xt}? This is answered in the following theorem called Poisson Arrivals See Time
Averages (PASTA).

Theorem (PASTA). If Xt is right continuous, {Xs,s < t} and {Ns−Nt ,s≥ t} are independent and {Nt}
is a Poisson process, XT−k

is stationary and has the same distribution as Xt .

We will prove this theorem later in this lecture. Let us consider an application of PASTA to {Vt} in
M/G/1 queue. The arrival process is Poisson and the conditions of the theorem hold. Thus, Wn and Vt
have the same distribution under stationarity.

Consider the following quantity:

λ (t) =
E[N(t, t +h]]

h
.

For a Poisson process λ (t) = λ = rate of the Poisson process.

Proposition 7.2.1. If the process is stationary, λ (t) does not depend on t or h.

Proof. Let φ(h) = E[N(t, t +h]]. By stationarity, φ does not depend on t. We have

φ(h1 +h2) = E[N(t, t +h1 +h2]]

= E[N(t, t +h1]]+E[N(t +h1, t +h1 +h2]]

= φ(h1)+φ(h2).

This shows that φ is linear for a stationary process. So, φ(h) = hφ(1). Thus, we have λ (t) = hE[N(t, t +
1)].

With h = 1, we can interpret λ as the mean number of arrivals in unit time. Hence, λ is called the
intensity of the process N.
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Define a probability measure P0 as

P0{Z ∈ F}=
E
[
∑t<Ti≤t+h 1{θTiZ ∈ F}

]
λh

.

The distribution P0 is called the Palm distribution of Z.

Proposition 7.2.2. The process {Z} under P0 is event stationary: P0{θT1Z ∈ F}= P0{Z ∈ F}.

Proof. We have

P0{θT1Z ∈ F}=
E
[
∑t<Ti≤t+h 1{θTi(θT1Z) ∈ F}

]
λh

=
E
[
∑

N(h)
i=1 1{θTi+1Z ∈ F}

]
λh

≤
E
[
∑

N(h)+1
i=1 1{θTiZ ∈ F}

]
λh

≤
E
[
∑

N(h)
i=1 1{θTiZ ∈ F}

]
λh

+
1

λh

= P0{Z ∈ F}+ 1
λh.

Letting h→ ∞, we get P0{θT1Z ∈ F} ≤ P0{Z ∈ F}. Similarly, for Fc we get, P0{θT1Z ∈ Fc} ≤ P0{Z ∈
Fc} which implies P0{θT1Z ∈ F} ≥ P0{Z ∈ F}. Thus, we have the result.

This proposition shows that under P0, the process Z is event stationary.

Next, define a probability measure P1 from P0 as

P1{Z ∈ A}=
E0[
∫ Tk

0 1{θtZ ∈ A}]
kE0[T1]

,

where E0 is the expectation with respect to P0. By event stationarity, this does not depend on k. If P0
is the Palm distribution of Z under P, then P1 = P. This is called the Palm inversion formula. This is
generalization of the formula for regenerative processes.

Proposition 7.2.3. The process Z is time stationary under P1.

Proof. We want to show P1{θsZ ∈ A}= P1{Z ∈ A} ∀s.

P1{θsZ ∈ A}=
E0[
∫ Tk

0 1{θt(θsZ) ∈ A}]
kE0[T1]

=
E0[
∫ Tk

0 1{θt+sZ ∈ A}]
kE0[T1]

=
E0[
∫ Tk+s

s 1{θtZ ∈ A}]
kE0[T1]

≤
E0[
∫ Tk+s

0 1{θtZ ∈ A}]
kE0[T1]

≤
E0[
∫ Tk

0 1{θtZ ∈ A}]
kE0[T1]

+
s

kE0[T1]
.
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By taking k→∞, we get P1{θsZ ∈A}≤P1{Z ∈A}. Similarly for Ac, we get P1{θsZ ∈Ac}≤P1{Z ∈Ac}
which implies P1{θsZ ∈ A} ≥ P1{Z ∈ A}. This shows P1{θsZ ∈ A}= P1{Z ∈ A}.

Lemma 7.2.4. P0{T0 = 0}= 1.

Proof. We have

P0{T0 = 0}=
E[∑0<Ti≤1 1{(θTiT )0 = 0}]

λ

=
E[N(1)]

λ
(θTiT )0 = 0 always by definition of shift

=
λ

λ
= 1

Lemma 7.2.5. E0[T1] =
1
λ

.

Proof.

λE0[T1] = E

[
N(1)

∑
k=1

(Tk+1−Tk)

]
= E[(TN(1)+1−T0)1{T0 ≤ 1}]
= 1

Lemma 7.2.6.

lim
h→0

P{T0 ≤ h}
h

= λ

Proof.

P{T0 ≤ h}
h

=
E0[
∫ T1

0 1{(θtT )0 ≤ h}]
hE0[T1]

= lim
h↓0

λE0[min(T1,h)]
h

= λ

We can also show that P{T1 ≤ h}/h→ 0 as h ↓ 0. Thus,

P0{Z ∈ F}= lim
h↓0

E
[
∑0<Ti≤h 1{θTiZ ∈ F}

]
hλ

= lim
h↓0

E
[
1{θT0Z ∈ F};T0 ≤ h

]
P{T0 ≤ h}

= lim
h↓0

P{1{θT0Z ∈ F}|T0 ≤ h}

This justifies the heuristic interpretation of P0{Z ∈ F} as P{Z ∈ F |T0 = 0}.
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7.2.1 Rate conservation laws
Let {Xt} be a stochastic process whose sample paths have jumps at {. . . ,T−2,T−1,T0,T1,T2, . . .} with
intensity λ . The jump size at Tk is Uk (Uk = 0 is allowed) and between the jumps, {Xt} is differentiable
with dXt/dt = Yt (sample pathwise). The rate conservation law states that

Proposition 7.2.7. λE0 [U0]+E[Y0] = 0.

Proof. Sample pathwise

X1−X0 = ∑
i:0<Ti≤1

Ui +
∫ 1

0
Ytdt.

Taking expectation and by stationarity,

0 = E[X1]−E[X0] = λE[U0]+E
[∫ 1

0
Ytdt

]
Again, by stationarity of Yt , E[

∫ 1
0 Ytdt] = E[Y0].

Example: GI/GI/1 queue: Let qA
n be the queue length seen by nth arrival and qD

n be the queue length
left behind by nth departure. If E[A1] > E[s1], then P{qA

∞ ≤ k} = P{qD
∞ ≤ k}. This follows from rate

conservation law as follows: Define Xt = 1{qt ≥ k}. We have Ut =+1 or −1 and Yt = 0 a.s. Therefore,
λE0[U0]+0 = 0. Thus, P0{U0 = 1}= P0{U0 =−1}, which implies P0{qA

∞ ≤ k}= P0{qD
∞ ≤ k}.

7.2.2 PASTA
Theorem 7.2.8. Let {Xt} be a stochastic process with Xt ∈Rd and right continuous sample paths. Let Nt
be a Poisson process with rate λ such that {Xs,s < t} is independent of {Ns,s≥ t} for all s and t. Then,

(time stationary) P{X0 ∈ A}= P0{X0− ∈ A} (event stationary) .

Proof.

P0{X0− ∈ A}=
E
[
∑0<Ti≤1 1{(θTiX)0− ∈ A}

]
λ

=
E
[∫ 1

0 1{(θtX)0− ∈ A; t is an event time}dt
]

λ

=

∫ 1
0 P{Xt− ∈ A; t is an event time}dt

λ

=

∫ 1
0 P{Xt− ∈ A|t is an event time}P{t is an event time}dt

λ

=

∫ 1
0 P{Xt− ∈ A}λdt

λ

(
Xt− is independent
of {Xs,s≤ t}

)
=
∫ 1

0
P{Xt ∈ A}λdt

(
right continuity and
stationarity of {Xt}

)
= P{X0 ∈ A}. (stationarity of {Xt})
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7.3 Product-form Networks
In this section, we study queueing networks that have explicit closed form expression for stationary
distribution. Also, the stationary distribution of the whole network is the product of margnial stationary
distributions of the individual queues.

7.3.1 M/M/1 queue:
Let qt be the queue length of an M/M/1 queue with arrival rate λ and service rate µ . It is a birth-death
(B-D) process. If the arrival rate λ < µ then qt is positive recurrent and its stationary distribution π is
given by

π(n) = (1−ρ)ρn,

where ρ = λ/µ . Every B-D process under stationarity is time reversible. Therefore {qt} is time reversible
when ρ < 1. We consider this queue under stationarity.

Define the reversed process q̂t = qT−t for some T . By reversibility, it has the same distribution as that
of qt . Therefore, it can also be considered as the queue length process of an M/M/1 queue with arrival
rate λ and service rate µ . In q̂t the departure epochs are the arrival epochs in qt . Also, the arrival epochs
are the departure epochs of qt . Thus, the departure process of a stationary M/M/1 queue is also a Poisson
process with rate λ . Also, because of Poisson arrivals in qt , arrivals from time t onward are independent
of the qt− . This implies (applying to q̂t ) the departures till time t in qt are independent of qt .

These results are rather counter-intuitive.

7.3.2 Tandem Queues
Consider a tandem of N queues. External arrivals enter queue 1 according to a Poisson process of rate λ .
After service in queue i, a customer enters queue i+1, i < N. A customer departs from the system after
completing service at queue N. The service times at queue i are i.i.d. with exp(µi). Let qt(i) denote the
queue length at queue i at time t. If λ < µ1, queue 1 is stable. Thus, as seen above, under stationarity, the
departure process from queue 1 is also a Poisson process of rate λ . So, qt(2) is also ergodic if λ < µ2.
Continuing this way, each of the queue is stable if λ < mini(λi) and the stationary distribution of qt(i) is
given by

πi(n) = ρ
n
i (1−ρi).

Also as explained above, qt(1) is independent of the departures till time t (past departures). Therefore,
it is independent of arrivals to queue 2 till time t. Hence, qt(2) is independent of qt(1). Thus, extending
this way to other queues, the joint distribution qt = (qt(1),qt(2), . . . ,qt(N)) is given by

P[qt(1) = n1,qt(2) = n2, . . . ,qt(N) = nN ] =
N

∏
i=1

ρ
n
i (1−ρi)
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and qt(1),qt(2), . . . ,qt(N) are independent of each other. However, for t1 < t2, qt1(1) is not independent
of qt2(2).

7.3.3 Open Jackson Networks
In this system, there are N nodes. Each node i consists of 1 server with exponential (i.i.d.) service times
at rate 0 < µi < ∞. At each node, there is an external arrival process according to a Poisson process with
rate λi, 0≤ λ < ∞. After completion of service at queue i, with probability pi j a customer goes to queue j
independently of routing of other customers. The customer leaves the network with probability pi0 from
node i

Pi0 = 1−
N

∑
i=1

pi j.

This is called Markovian routing.
Let qt(i) be the queue length at ith node at time t. Then, qt = (qt(1),qt(2), . . . ,qt(N)) is a Markov

chain with qt(i) ∈ {0,1,2, . . .}. We observe that qt is irreducible.
Let λ̄i be the total arrival rate to node i. Then,

λ̄i = λi +
N

∑
j=1

p jiλ̄ j.

There is a unique solution to this set of N equations denoted by (λ 1,λ 2, . . . ,λ N). Let

ρi =
λ̄i

µi
.

We show below that if ρi < 1, for i = 1,2,3, . . . ,N, then {qt} is positive recurrent and has a unique
stationary distribution

π[qt(1) = n1,qt(2) = n2, . . . ,qt(N) = nN ] =
N

∏
i=1

ρ
n
i (1−ρi) (7.1)

Hence, qt(1),qt(2), . . . ,qt(N) are also independent of each other.
This MC is non-explosive and irreducible. If for πQ = 0, a solution exists with π(i)> 0, ∑i π(i) = 1,

then MC is positive recurrent and π is its unique stationary distribution. We can easily check that Eq.
(7.1) satisfies πQ = 0.

If Q is time reversible,

π(i)qi j = π( j)q ji ∀i, j

Generally, this MC is not time reversible. But we can reverse as

q̃t = qt−T , T a fixed constant.

This corresponds to a queue length process of a Jackson network, with external input to queue i as Poisson
with rate λ̄i pi0 and service times i.i.d. exp(µi) with routing probabilities,

p̃i j = pi j
λ̄ j

λ̄i
.

Therefore, the departures at each node in {qt} that exit the system form a Poisson process independent of
departures at other nodes that exit the system.

Also, qt is independent of future arrivals implies that qt is independent of past departures from the
network.
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7.3.4 Closed queueing networks
In this system, there are no arrivals from outside the network and no departures from the network. A
fixed number of M < ∞ customers move around in the network. The service times and routing are same
as that of a Jackson network. The queue length qt = (qt(1),qt(2), . . . ,qt(N)) is a MC. It is a finite state
irreducible MC with state space S = {(n1,n2, . . . ,nN) : ∑

N
i=1 ni = M}. It is always stable and has a unique

stationary distribution.
The total arrival rate at each node i is

λ̄i =
N

∑
j=1

p jiλ̄ j.

By solving these N equations we can get a unique solution upto a constant. The stationary distribution is
given by

π(n1,n2, . . . ,nN) = K
N

∏
i=1

ρ
ni
i , for

N

∑
i=1

ni = M, (7.2)

where ρi = λ̄i/µi and K is a normalizing constant. It can be checked that Eq (7.2) is a solution for πQ= 0.
This network has the following bottleneck property. Let ρ1 = maxi(ρi). If M→ ∞, qt(1)→ ∞ in

distribution. For other queues

π(qt(2) = n2, . . . ,qt(N) = nN) =
N

∏
i=2

ρ
n
i (1−ρi).
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7.4 Product-Form Networks: Quasireversible networks
Till now we studied queuing networks with Markovian routing and exponential service times. Now, both
of these assumptions will be generalized.

7.4.1 Quasireversible Queues
Consider an M/M/1 queue with multiple classes of customers. Let C denote the set of classes, λc be the
Poisson arrival rate for class c, µc be the service rate of class c. The arrival process for different classes
are independent. The traffic intensity of class-c is ρc =

λc
µc

. Its total traffic intensity is ρ = ∑i∈C ρi.
Let qt be the number of customers in the queue. If ρ < 1, then it has a unique stationary distribution

π(n) = (1−ρ)ρn. The probability that a customer is of class-c is ρc/ρ , independent of others. Let {Xt}
be the process which gives the class of each cutomer in the queue at time t. {Xt} is a Markov chain. The
state space S is countable. Its stationary distribution is

P[Xt = (c1,c2, . . . ,cn)] = (1−ρ)ρn
n

∏
i=1

ρci

ρ
. (7.3)

Although it is not reversible, its reversed process X̃(t) also represents a multiclass M/M/1 queue, where
the last customer cn leaves the queue first. Its service distributions and arrival processes are same as in
the original process. Thus, the departure process of Xt is again Poisson with rate λc for class c and the
Poisson departure processes of different classes are independent. Also, arrivals from t onward, Xt and
departures till time t are independent of each other.

It so turns out that the above properties of a multiclass M/M/1 queue are the key features needed for
product-form stationary distributions of Xt . Thus, we abstract these out to study more general classes of
queuing systems.

Definition 7.4.1. A system is called quasireversible if the future arrival processes from time t onward, Xt
and past departure processes till time t are independent. These are also independent for different classes.

The reversed process X̃t is quasireversible if {Xt} is quasireversible. Let Nc
+(t) be arrival process of

class-c and Nc
−(t) be the departure process of class-c from the system.

Proposition 7.4.2. For a quasireversible system,

(1) the arrival processes of different classes are independent Poisson process and

(2) the departure processes of different classes are also independent Poisson processes.

Proof. For a point process to be Poisson, it should have independent stationary increments. Let (t0, t1],
(t1, t2], . . . ,(tn−1, tn] be time intervals with t0 < t1 < t2 < · · · < tn. Let zi be number of arrivals of class-c
during interval (ti, ti+1]. We want to show, for any contiuous and bounded f ,

E[ f0(z0), f1(z1), . . . , fn−1(zn−1)] =
n−1

∏
i=0

E[ fi(zi)].
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We have

E[ f0(z0), f1(z1), . . . , fn−1(zn−1)] = E[E[ f0(z0), f1(z1), . . . , fn−1(zn−1)|Ft1 ]]

= E[ f0(z0)E[ f1(z1), . . . , fn−1(zn−1)|Ft1 ]]

= E[ f0(z0)E[ f1(z1), . . . , fn−1(zn−1)|Xt1 ]] (Xt is a Markov chain)

= E[ f0(z0)]E[ f1(z1), . . . , fn−1(zn−1)]

Xt is quasireversible,
z1,z2, . . . ,zn−1 are in-
dependent of xt1 .


Continuing this way by conditioning on Ft2 ,Ft2 , . . . ,Ftn , we obtain the result. We can show the other
claim similarly.

Examples (Single queue):

(1) M/M/1/FCFS is quasireversible.

(2) M/GI/1/FCFS is not quasireversible unless service times are exponential.

(3) M/GI/∞ is quasireversible.

(4) M/GI/1/PS is quasireversible.

(5) M/GI/1/LCFS is quasireversible.

In (2)− (4), qt is not a Markov chain. However, Xt = (qt ,rt) is a Markov chain, where rt is residual
service time of the customers in service, a real number. But, this is not a countable state Markov chain
which we have been assuming so far. To overcome this problem, we use phase type distributions.
Phase type distribution:
Let Rt be a finite state Markov chain with state space {1,2,3, . . . ,m+1} and generator matrix

Q =

[
Qm qo
q1 q2

]
,

where Qm is an m×m matrix.
Define τ = inf{t : Rt = m+1}. This will be a service time of a customer. Now, Xt = (qt ,Rt) is a finite

state Markov chain. We have,

P[τ > t] = α expQmt 1,

where α is the distribution of R0 and 1 = [1,1, . . . ,1]T . This is called phase type distribution with param-
eters (α,Qm).

Any distribution on R+ can be arbitrarily closely approximated by a phase type distribution. In the
following, we will take the general distribution of service times as a phase type distribution. Then, (qt ,Rt)
will be a countable state Markov chain.

Consider Xt in M/GI/1/LCFS. The arrival process is a Poisson process. Thus, Xt and future arrivals
are independent of each other. Let X̃t be the reversed process.

Proposition 7.4.3. In M/GI/1/LCFS system, the reversed process X̃t also represents a M/GI/1/LCFS
system. �

Thus, Xt and past departures are independent. Hence, M/GI/1/LCFS is a quasireversible system.
Similarly, we can show that other queues in the above example are quasireversible.

For M/M/1, M/GI/1/LCFS and M/GI/PS, if ρ < 1, {qt} has a unique stationary distribution

π(n) = (1−ρ)ρn, ∀n≥ 0.
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For a multiclass queue, we have Eq (7.3) as stationary distribution. For M/GI/∞, for any 0 < ρ < ∞,

π(n) =
ρn

n!
e−ρ , ∀n≥ 0.

For all these cases, we observe that the stationary distribution depends on service distribution only through
its mean. This property is called insensitivity.

All the examples given above for quasireversible queues are special cases of a quasireversible queue
called the symmetric queue.

The above results are shown for phase type service types. Using continuity arguments, these results
can be extended to general service times.

7.4.2 Networks of Quasireversible Queues
We now consider a multiclass queueing network of queues where each queue is quasireversible in isola-
tion with Poisson input. Let C be a countable set of classes of customers. Arrivals of different classes are
independent Poisson processes. Let λ c

i be the external arrival rate of class c customers at node i. Let pcd
i j

be the probability that a class c customer after service from node i goes to node j as a customer of class
d. Denote by λ̄ c

i the total arrival rate of customers of class c at node i. Then,

λ̄
c
i = λ

c
i +∑

j
pdc

ji λ̄
d
j . (7.4)

Let 1/µc
i be the mean service time for a class c customer at node i. Let ρc

i = λ̄ c
i /µc

i . The total traffic
intensity at node i is ρi = ∑c ρc

i . Then, if ρi < 1, ∀i, the system has product form distribution as in Eq
(7.3) with corresponding λ̄ c

i and µc
i . The proof for this can be obtained by verifying that the ditribution

in Eq (7.3) solves πQ = 0. We can also show that the system is quasireversible by verifying Eq (7.6) and
(7.7) below.

Now, we provide conditions to verify quasireversibility of general Markovian queueing systems. The
state of the system Xt is a Markov chain. Let S denote the state space and Q the generator matrix of {Xt}.
Let N+

c (t) be the arrival process of class c and N−c (t) be the departure process of class c from the network.
Let µ+

c and µ−c be the arrival rate and the departure rate of class c customers respectively.
Define for i, j ∈ S

Ac = {(i, j) s.t i→ j represents an arrival for class c}, and
Dc = {(i, j) s.t i→ j represents a departure of class c}

For example, in an M/M/1 queue with C classes, Xt = (c1,c2, . . . ,cn), an arrival of class c is

(c1,c2, . . . ,cn)→ (c1,c2, . . . ,cn,c) ∈ Ac

and a departure of class c1 is

(c1,c2, . . . ,cn)→ (c2, . . . ,cn) ∈ Dc1 .

Then, if Xt = i, i ∈ S, arrival rate of class c = ∑ j:(i, j)∈Ac qi j. Arrival rate of class c under stationarity (π is
the stationary distribution) is

∑
i

π(i) ∑
j:(i, j)∈Ac

qi j. (7.5)
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But, {Xt} is a quasi reversible process. Therefore, Xt is independent of future arrivals. Thus, ∑ j:(i, j)∈Ac qi j
does not depend on i. Thus Eq (7.5) equals

∑
j:(i, j)∈Ac

qi j ∑
i

π(i) = ∑
j:(i, j)∈Ac

qi j = µ
+
c . (7.6)

This is independent of i.
Now, consider the reversed process X̃t . This is also quasireversible. Its stationarity distribution is also

π with Q̃ given by

q̃i j =
π( j)q ji

π( j)
.

The arrival rate of the class c customers in X̃t is

∑
j:(i, j)∈Ãc

q̃i j = ∑
j:(i, j)∈Dc

π( j)q ji

π( j)
= µ

−
c . (7.7)

This also does not depend on i.
We can show that if Eq (7.6) and (7.7) hold for a Markovian queueing system, then it is quasire-

versible.
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7.4.2 Networks of quasireversible queues (contd.)
Let Xt = (Xt(1),Xt(2), . . . ,Xt(N)) denote the state of the network with N quasireversible queues and Xt(i)
denotes the state of the ith queue at time t. The queues can be of different type as long as they are
quasireversible in isolation.

In the last lecture, we showed the following.
If ρi < 1 ∀i ∈ 1,2, . . . ,N (if the queue needs it for stability, e.g., M/G/∞ does not), then Xt has the

stationary distribution

π(x(1),x(2), . . . ,x(N)) =
N

∏
i

πi(x(i))

where πi is the stationary distribution of queue i.
Now, we claim that Xt itself is a quasireversible process by showing that future arrivals, Xt and past

departures are independent. Consider the reversed process X̃t =XT−t for some fixed time T with generator
matrix Q̃. We have

π(i)Q̃(i, j) = π( j)Q( j, i).

Here, Q̃ corresponds to the another quasireversible system with parameters

p̃cd
i j =

λ
d
j

λ
c
i

pdc
ji .

This shows that future arrivals, Xt and the past departures are independent. Also, the departures of all
classes from the network form independent Poisson processes.

Sojourn times:
We can compute the mean queue length or the mean number of customers in the system under sta-

tionarity from π . The mean sojourn time E[S] can be deduced by applying Little’s law to the whole
system: E[S] = λE[q], where E[q] is the mean number of customers in the system and λ = ∑i λi is the
total external arrival rate into the system. Further, Little’s law can be applied to each class of customers
individually. The mean sojourn time of a class c customer E[Sc] = λcE[qc] where E[qc] is the mean
number of customers of class c in the system.

Next, consider a tandem of N M/M/1 queues with service rate µi at queue i and arrival rate λ under
stationarity. Let the random variable Si denote the sojourn time of a customer in queue i. Under sta-
tionarity, we know that the departure process of queue 1 is Poisson with rate λ . This is also the arrival
process of queue 2. Thus, the second queue is also an M/M/1 queue. This way we can show that the
arrival and departure processes for all queues are Poisson with rate λ . If an arriving customer at queue i
sees n customers already in the queue, then Si = ∑

n+1
k=1 sk where sk are the service times, which are i.i.d.

with exponential distribution with mean 1/µi. By PASTA, the probability that an arriving customer sees
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n customers already in the queue is equal to the stationary probability of qt(i) = n. Therefore,

P{Si ≤ x}=
n=∞

∑
n=0

P{Si ≤ x|qi = n}Pπ{qi = n}

=
n=∞

∑
n=0

P

{
n+1

∑
k=1

sk ≤ x

}
ρ

n
i (1−ρi).

We can show (e.g., by taking moment generating function) that the above quantity is an exponential
distribution with mean 1/(µi− λ ). This is applicable to all the queues. The total sojourn time is S =

∑
N
i=1 Si. Furthermore, it can also be shown that S1,S2, . . . ,SN are independent random variables.

The above results hold for a general network of quasireversible queues. This is summarized below.
Let µi be the service rate and λ i be the total arrival rate at queue i.

Definition 7.4.4. An overtake free path for a class c is a path 1→ 2→ ...→ N1 of queues it can pass
through sequentially with a positive probability such that if any customer can go through its two queues
with positive probability, then it must pass through the all intermediate nodes as well in the same order.

Theorem 7.4.5. For a network of quasireversible queues, the sojourn times {S1,S2, . . . ,SN1} under sta-
tionarity of customers of a class c on an overtake free path 1→ 2→ ...→ N1 are independent and Si is
exponentially distributed with mean 1/(µi−λ i). �

Total arrival process at a queue:
Consider an M/M/1 queue with feedback. A customer after service re-enters the queue with proba-

bility p and exits the system with probability 1− p. Let the external arrival rate be λ and the aggregate
arrival rate (including from feedback) be λ . We have the relation λ = λ + pλ from which we find

λ =
λ

1− p
.

We show that the aggregate arrival process is not a Poisson process. Let Nt denote the aggregate
arrival process. For small enough ε > 0,

P{Nt+ε ≥ Nt +1}= λε +o(ε)+ pµεPπ{qt > 0}

where µεPπ{qt > 0} is the probability of a customer finishing service at time t. We also have

P{Nt+ε ≥ Nt +1|Nt ≥ Nt−ε +1}= λε +o(ε)+ pµε.

The above equation follows from the fact that the event {Nt ≥ Nt−ε + 1} implies {qt > 0}. From these
two equations, we see that P{Nt+ε ≥ Nt + 1|Nt ≥ Nt−ε + 1} 6= P{Nt+ε ≥ Nt + 1}. This shows that Nt is
not an independent increment process and hence cannot be Poisson.

As a generalization of this result, we get

Theorem 7.4.6. In an open quasireversible network, the aggregate arrival process at a node is not
Poisson if there is non-zero probability of a customer entering that node.

Queue lengths seen by an arriving customer:
Consider again an M/M/1 queue. Define

qt = queue length at time t

qA
n = queue length just before nth arrival

qD
n = queue length just after nth departure

q̃A
n = queue length just after nth arrival
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Figure 7.3: A network of quasirevesible queues with deterministic routing for class 1

Under stationarity, we have shown that for an M/GI/1 queue qA
n

d
= qt (PASTA) and qD

n
d
= qA

n (rate conser-
vation law) for GI/GI/1 queue. But, P{q̃A

n = 0}= 0 as there is always atleast one customer soon after a
new arrival. Also, P{qt = 0}= 1−ρ > 0. Thus, P{q̃A

n = 0} 6= P{qt = 0}.
Now, consider a tandem of two M/M/1 queues. Let Sn(i) be the time instant of an arrival into queue i.

qD
Sn(2)+

(1) denotes the length of queue 1 just after a departure from queue 1. qA
Sn(2)−(2) denotes the length

of queue 2 just before nth arrival into queue 2. An argument as in preceding paragraph shows that the
stationary distribution of qA

Sn(2)
(2) is not the same as that of qt(2). But, we can show that the distribution

of
(

qD
Sn(2)+

(1),qA
Sn(2)−(2)

)
under stationarity is

π(n1,n2) = ρ
n1
1 (1−ρ1)ρ

n2
2 (1−ρ2).

The above discussion is true in an open network of quasireversible queues.

Theorem 7.4.7. Let Xt = (Xt(1),Xt(2), . . . ,Xt(N)) be the state of an open network of N quasireversible
queues. Let π be the stationary distribution of Xt . Under stationarity, for a customer moving from queue
i to queue j at time Sn,

(XSn(1), . . . ,XSn(i), . . . ,XSn−( j), . . . ,XSn(N))
d
=π. �

Non-Markovian routing:
We give an example to show how non-Markovian routing can be taken care of in this framework.

Consider a network of 4 quasireversible queues in Figure 7.3. Class 1 customers enter queue 1 and class
2 customers enter queue 2. After service in queue 4, the class 2 customers exit the system with probability
p and with probability 1− p re-enter queue 2. The class 1 customers follow deterministic routing - they
enter the network in queue 1 and after service in queue 4, they re-enter queue 1 exactly 3 times before
exiting the system. This kind of routing cannot directly be modeled in a way we have been doing so far.
However, it is possible to bring the network into our framework by introducing additional classes. We
introduce new classes 3 and 4 as follows: after service in queue 4 for the first time, a class 1 customer
changes to class 3 and the second time, the same customer changes to class 4 (from class 3). With this,
p13

41 = 1, p34
41 = 1 and p44

40 = 1 satisfies the constraints of class 1 customers. We can now use the same
theory to obtain the stationary distribution by finding total arrival rate at each node and computing ρi s
and multiplying distributions for individual queues.
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7.5 Problems
Problem 1: (Random Walks) {Xn} iid, EX1 = µ , 0 < µ < ∞, S0 = 0, Sn = ∑

n
k=1 Xk,

v(t) = min{n : Sn > t}, Mn = max1≤k≤n{Sk}, M0 = 0.

1. Show P[v(t)< ∞] = 1 for all 0 < t < ∞.

2. Show {v(t)> n}= {Mn ≤ t} and v(t)→ ∞ a.s as t→ ∞

3. Using strongly ascending ladder heights, show v(t)
t →

1
µ

a.s.

4. Show
Sv(t)

t → 1 a.s.

Problem 2: (GI/M/1 queue) Let {An} i.i.d. interarrival time to a queue with a general distribution. The
service times are i.i.d. exp(µ).

1. Consider qn = the queue length just before nth arrival. Study the stability conditions for it.

2. Using (1) obtain the stability conditions for the waiting time process. Also for qt and Vt .

Problem 3: (Queue with priority) Consider a queue with two classes of traffic. Class-1 gets Poisson
arrivals with rate λ1 and class-2 with rate λ2. All the service times are i.i.d. with a general distribution
and mean 1

µ
. Class-1 has preemptive resume priority over class-2.

1. Study the stability (Existence of stationary distribution etc.).

2. Find probability under stationarity that customer of class-i, i = 1,2 experiences zero delay in the
queue.

3. Find the mean delay of each class under stationarity.

Problem 4: Consider two queues in tandem with Poisson arrivals with rate λ to Q1. The service times
are exponential i.i.d. with rate µi in Qi. Let λ < µi, i = 1,2.

1. Compute the stationary distribution of queue length seen by arrivals to Q2. Buffer length of each
queue is infinite.

2. Assume Q1 has infinite buffer but Q2 has finite buffer of size N. Find the stationary probability of
buffer overflow at Q2.

3. Let Qi has finite buffer Ni < ∞, i = 1,2. Compute the stationary probability of buffer overflow in
Qi, i = 1,2. Also compute the mean sojourn time Eπ Si in Qi, i = 1,2. Also compute stationary
distribution of Si.

Problem 5: Consider a single queue with Poisson arrivals with rate λ , Processor sharing, mean service
time 1

µ
. After completion of service a customer is fed back with probability p and leaves the system with

probability 1-p. Assume the system is under stationarity.

1. Find the distribution of queue length seen by an external arrival. Also find distribution of its sojourn
time.

2. Find the distribution of queue length seen by a customer fed back.

3. Which of the following flows are Poisson:

• Fed back customers.
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• Customers completing service at the server.

• Customers leaving the network.

4. Solve (1)-(3) if the queue length buffer is of length N. In part-3 also check the flow of external
customers entering the queue. Also compute the probability of external arrivals getting lost at the
queue and the probability of a fed back customer getting lost.

Problem 6: Consider an open Jackson network with three nodes with exogenous arrivals to each queue
as Poisson with rate λi, i = 1,2,3 and exponential i.i.d. service rates µi, i = 1,2,3. The Markovian routing
probabilities are p12 + p13 = 1, p21 + p23 = 1, p30 = 1.

1. Find conditions for q(t) = (q1(t),q2(t),q3(t)) to be a stable Markov chain.

2. On which arcs in the network the flows are Poisson under stationarity.

3. Find the mean sojourn time in the network under stationarity.

4. Find distribution of sojourn time in Q3 under stationarity.

5. Find the distribution of sojourn time on a visit of a customer from Q1 to Q2.

6. Answer all above if Q3 has a general service time distribution with Process sharing.

Problem 7:(Window flow control) A source transmits its packets through a queue (router) to the desti-
nation via a window flow control mechanism. The window size is N. Packets from the source enter Q1
and are served in i.i.d. exp(µ1) in FCFS fashion. Whenever the destination receives a packet, it immedi-
ately releases an acknowledgement in Q2. Service times in Q2 are i.i.d. exp(µ2). At any time the sum of
packets and acks in the system is N. Whenever an ack reaches source, it releases the next packet to Q1.
(This models a simplistic version of TCP and is a closed queueing network.)

1. Find conditions for stationary distribution of queue lengths in network.

2. Find rate at which packets are released by source.

3. Find the mean sojourn time of packets in Q1.

Problem 8: Consider a GI/GI/1 queue with last come first serve preemptive resume discipline. When-
ever a customer arrives, server leaves other customers and starts serving a new one. Whenever a server
completes a service it goes back to previous customer to complete its service. Find conditions for its
stability. Show its mean sojourn time equals busy period of GI/GI/1 with FCFS.
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