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Abstract—Energy harvesting sensor nodes are gaining popu-
larity due to their ability to improve the network life time a nd are
becoming a preferred choice supporting “green communication”.
In this paper we focus on communicating reliably over an
additive white Gaussian noise channel using such an energy
harvesting sensor node. An important part of this work involves
appropriate modeling of energy harvesting, as done via various
practical architectures. Our main result is the characterization
of the Shannon capacity of the communication system. The
key technical challenge involves dealing with the dynamic (and
stochastic) nature of the (quadratic) cost of the input to the
channel. As a corollary, we find close connections between the
capacity achieving energy management policies and the queueing
theoretic throughput optimal policies.

Keywords: Capacity, energy harvesting, sensor networks, fad-
ing channel, energy buffer, network life time.

I. I NTRODUCTION

SENSOR nodes are often deployed for monitoring a ran-
dom field. These nodes are characterized by limited bat-

tery power, computational resources and storage space. Once
deployed, the battery of these nodes are often not changed
because of the inaccessibility of these nodes. Nodes could
possibly use larger batteries but with increased weight, volume
and cost. Hence when the battery of a node is exhausted, it
is not replaced and the node dies. When sufficient number
of nodes die, the network may not be able to perform its
designated task. Thus the life time of a network is an important
characteristic of a sensor network ([1]) and it depends on the
life time of a node.

The network life time can be improved by reducing the
energy intensive tasks, e.g., reducing the number of bits to
transmit ([2], [3]), making a node to go into power saving
modes (sleep/listen) periodically ([4]), using energy efficient
routing ([5], [6]), adaptive sensing rates and multiple access
channel ([7]). Network life time can also be increased by
suitable architectural choices like the tiered system ([8]) and
redundant placement of nodes ([9]).

Recently new techniques of increasing network life time
by increasing the life time of the battery is gaining popular-
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ity. This is made possible by energy harvesting techniques
([10], [11]). An energy harvester harnesses energy from the
environment or other energy sources ( e.g., body heat) and
converts it to electrical energy. Common energy harvesting
devices are solar cells, wind turbines and piezo-electric cells,
which extract energy from the environment. Among these,
harvesting solar energy through photo-voltaic effect seems
to have emerged as a technology of choice for many sensor
nodes ([11], [12]). Unlike for a battery operated sensor node,
now there is potentially aninfinite amount of energy available
to the node. However, the source of energy and the energy
harvesting device may be such that the energy cannot be
generated at all times (e.g., a solar cell). Furthermore therate
of generation of energy can be limited. Thus one may want to
match the energy generation profile of the harvesting source
with the energy consumption profile of the sensor node. If the
energy can bestored in the sensor node then this matching
can be considerably simplified. But the energy storage device
may have limited capacity. The energy consumption policy
should be designed in such a way that the node can perform
satisfactorily for a long time, i.e., energy starvation at least,
should not be the reason for the node to die. In [10] such
an energy/power management scheme is calledenergy neutral
operation.

In the following we survey the relevant literature. Early
papers on energy harvesting in sensor networks are [13] and
[14]. A practical solar energy harvesting sensor node prototype
is described in [15]. In [10] various deterministic models for
energy generation and energy consumption profiles are studied
and provides conditions for energy neutral operation. In [16] a
sensor node is considered which is sensing certain interesting
events. The authors study optimal sleep-wake cycles such that
event detection probability is maximized. A recent survey on
energy harvesting is [17].

Energy harvesting can be often divided into two major ar-
chitectures ([15]). InHarvest-use(HU), the harvesting system
directly powers the sensor node and when sufficient energy is
not available the node is disabled. InHarvest-Store-Use(HSU)
there is a storage device that stores the harvested energy and
also powers the sensor node. The storage can be single or
double staged ([10], [15]).

Various throughput and delay optimal energy management
policies for energy harvesting sensor nodes are provided
in [18]. The energy management policies in [18] are ex-
tended in various directions in [19] and [20]. For example,
[19] also provides some efficient MAC policies for energy
harvesting nodes. In [20] optimal sleep-wake policies are
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obtained for such nodes. Furthermore, [21] considers jointly
optimal routing, scheduling and power control policies for
networks of energy harvesting nodes. Energy management
policies for finite data and energy buffer are provided in [22].
Reference [23] provides optimal energy management policies
and energy allocation over source acquisition/compression
and transmission. In a recent contribution, optimal energy
allocation policies over a finite horizon and fading channels
are studied in [24].

Information-theoretic capacity of an energy harvesting sys-
tem has been considered previously in [25] and [26] in-
dependently. It was shown that the capacity of the energy
harvesting Additive White Gaussian Noise (AWGN) channel
with an unlimited battery is equal to the capacity with an
average power constraint equal to average recharge rate. In
[26] the proof technique used is based on AMS sequences
([27]) which is different from that used in [25]. The outage
capacity of an energy harvesting source transmitting over a
fading channel is characterized in [28] and [29]. Relevant
work combining information theory and queuing theory is [30]
and [31]. Reference [32] characterizes the capacity when the
transmitter and the receiver probe the state of the channel.
The probing action is cost constrained. Very recently, the open
problem of finding the capacity of the system with a finite
buffer has been solved in [33].

System level power consumption in wireless systems in-
cluding energy expended in decoding is provided in [34].
Related literature for conserving energy but without the energy
harvester is [32], [35]. In [35] an explicit model for power
consumption at an idealized decoder is studied. Optimal con-
stellation size for uncoded transmission subject to peak power
constraint is given in [36].

Our main contributions are in considering significant ex-
tensions to the basic energy harvesting system by consider-
ing processing energy cost, energy inefficiencies and finally
channel fading. We compute the capacity when the energy
is consumed in other activities at the node (e.g., processing,
sensing, etc) than transmission. This issue of energy consumed
in processing in the context of the usual AWGN channel (i.e.,
without energy harvesters) is addressed in [37]. Finally we
provide the achievable rates when there are storage inefficien-
cies. We show that the throughput optimal policies provided
in [18] are related to the capacity achieving policies provided
here. We also extend the results to a scenario with fast fading.
Further we combine the information theoretic and queueing-
theoretic models for the above scenarios. Finally, we provide
achievable rates when the nodes have finite buffer to store
the harvested energy. Our results can be useful in the context
of green communication ([38], [39]) when solar and/or wind
energy can be used by a base station ([40]).

The paper is organized as follows. Section II describes the
system model. Section III provides the capacity for the AWGN
energy harvesting channel under idealistic assumptions. Sec-
tion IV takes into account the energy spent on sensing,
computation etc. and proposes capacity achieving sleep-wake
schemes. Section V obtains efficient policies with inefficien-
cies in the energy storage system. Section VI studies the
capacity of the energy harvesting system transmitting overa

fading AWGN channel. Section VII combines the information-
theoretic and queueing-theoretic formulations. Section VIII
provides achievable rates for the practically interestingcase
of finite buffer. Section IX concludes the paper.

II. M ODEL AND NOTATION

Energy Buffer
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Fig. 1. The model.

In this section we present our model for a single energy
harvesting sensor node.We consider a sensor node (Fig. 1)
which is sensing and generating data to be transmitted to a
central node via a discrete time AWGN channel. We assume
that transmission consumes most of the energy in a sensor
node and ignore other causes of energy consumption (this
is true for many low quality, low rate sensor nodes ([12])).
This assumption will be removed in Section IV. The sensor
node is able to replenish energy byYk at timek. The energy
available in the node at timek is Ek. This energy is stored
in an energy buffer with an infinite capacity. In this section
the fading effects are not considered; however this issue is
addressed in Section VI.

The node uses energyTk at timek which depends onEk

andTk ≤ Ek . The process{Ek} satisfies

Ek+1 = (Ek − Tk) + Yk. (1)

We will assume that{Yk} is stationary ergodic. This as-
sumption is general enough to cover most of the stochastic
models developed for energy harvesting. Often the energy
harvesting process will be time varying (e.g., solar cell energy
harvesting will depend on the time of day). Such a process
can be approximated by piecewise stationary processes. As in
[18], we can indeed consider{Yk} to be periodic, stationary
ergodic.

The encoder receives a messageS from the node and
generates ann-length codeword to be transmitted on the
AWGN channel. The channel outputWk = Xk + Nk where
Xk is the channel input at timek and Nk is independent,
identically distributed (iid) Gaussian noise with zero mean and
varianceσ2 (we denote the corresponding Gaussian density
by N (0, σ2)). The decoder receivesWn ∆

= (W1, ...,Wn) and
reconstructsS such that the probability of decoding error is
minimized.

We will obtain the information-theoretic capacity of this
channel. This of course assumes that there is always data to
be sent at the sensor node (this assumption will be removed
in section VII). This channel is essentially different fromthe
usually studied systems in the sense that the transmit power
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and coding scheme can depend on the energy available in the
energy buffer at that time.

A possible generalization of our model is that the energy
Ek changes at a slower time scale than a channel symbol
transmission time, i.e., in equation (1)k represents a time slot
which consists ofm channel uses,m ≥ 1. We comment on
this generalization in Section III (see also Section VII).

III. C APACITY FOR THE IDEAL SYSTEM

In this section we obtain the capacity of the channel with
an energy harvesting node under ideal conditions of infinite
energy buffer and energy consumption in transmission only.

The system starts at timek = 0 with an empty energy buffer
and Ek evolves with time depending onYk and Tk. Thus
{Ek, k ≥ 0} is not stationary and hence{Tk} may also not
be stationary. In this setup, a reasonable general assumption
is to expect{Tk} to be asymptotically stationary. Indeed we
will see that it will be sufficient for our purposes. These
sequences are a subset of Asymptotically Mean Stationary
(AMS) sequences, i.e., sequences{Tk} such that

lim
n→∞

1

n

n
∑

k=1

P [Tk ∈ A] = P (A) (2)

exists for all measurableA. In that caseP is also a probability
measure and is called thestationary meanof the AMS
sequence ([27]).

If the input{Xk} is AMS and ergodic, then it can be easily
shown that for the AWGN channel{(Xk,Wk), k ≥ 0} is also
AMS an ergodic ([27], chapter 9). In the following theorem
we will show that the channel capacity of our system is ([27])

C = sup
PX

I(X ;W ) = sup
PX

lim sup
n→∞

1

n
I(Xn;Wn), (3)

where{Xn} is an AMS sequence,Xn = (X1, ..., Xn) and
the supremum is over all possible AMS sequences{Xn}. In
other words, one can find a sequence of codewords with code
lengthn and rateR such that the average probability of error
goes to zero asn → ∞ if and only if R < C.

For the proof of the following theorem and others, we use
asymptotic equipartition property (AEP) for AMS sequences
which is reproduced below for easy reference.

Lemma 1 (AEP for AMS ergodic sequences [41]):
Suppose{Xn} is an AMS ergodic source with entropy rate
H . Given ǫ > 0 there is anN such that for alln > N the
set {xn : 2−n(H+ǫ) ≤ P (xn) ≤ 2−n(H−ǫ)} has probability
greater than1−ǫ. �

Lemma 1 holds also for jointly AMS ergodic sequences
[41].

Theorem 1: For the energy harvesting system, the capacity
C = 1

2 log
(

1 +
E[Y ]
σ2

)

.
Proof: See Appendix A. �

This result has also appeared in [25]. The achievability
proofs are somewhat different (both the scheme itself as well
as the technical approach to the proof).

Thus we see that the capacity of this channel is the same
as that of a node with average energy constraintE[Y ], i.e.,

the hard energy constraint ofEk at time k does not affect
its capacity. The capacity achieving signaling in the above
theorem is truncatediid Gaussian with zero mean and variance
E[Y ] − ǫ, whereǫ > 0 is an arbitrarily small constant, and
the truncation occurs due to the energy limitationEk at time
k. Using the truncatediid Gaussian signaling, the energy in
the buffer goes to infinity in the long term. The same capacity
is obtained for any other initial energyE0 (because then also
our signaling scheme leads to an AMS sequence with the same
stationary mean).

The scenario when there is no energy buffer to store the
harvested energy (Harvest-Use) was studied in [42], which
calculated the capacity to beC = maxPX

I(X ;W ) ≤
1
2 log(1+E[Y ]/σ2). We mention this result in some detail (and
variations) since this material will be used in developing later
sections. The last inequality is strict unlessXk is N (0, E[Y ])

andYk is also known at the receiver at timek. ThenX2 = Y
and henceYk is chi-square distributed with degree 1. If
Yk ≡ E[Y ] then the capacity will be that of an AWGN channel
with peak and average power constraint= E[Y ]. This problem
is addressed in [43], [44], [45] and the capacity achieving
distribution has finite support and is discrete. LetX(y) denote
a random variable having distribution that achieves capacity
with peak powery. Then, for the case when information about
Yk is also available at the decoder at timek, the capacity of
the channel when{Yk}k≥1 is iid is

C =

∫

I(X(y);W )dPY (y). (4)

For smally, X2(y) = y. This result can be extended to the
case when{Yk} is stationary ergodic. Then the right side of (4)
will be replaced by the information rate of{Xk(yk),Wk}. In
conclusion, having some energy buffer to store the harvested
energy almost always strictly increases the capacity of the
system (under ideal conditions of this section).

In [18], a system with a data buffer at the node which stores
data sensed by the node before transmitting it, is considered.
The stability region (for the data buffer) for the ‘no-buffer’ and
‘infinite-buffer’ corresponding to the harvest-use and harvest-
store-use architectures are provided. The throughput optimal
policies in [18] areTn = min(En;E[Y ] − ǫ) for the infinite
energy buffer andTn = Yn when there is no energy buffer.
Hence we see that the Shannon capacity achieving energy
management policies provided here are close to the throughput
optimal policies in [18]. Also the capacity is the same as
the maximum throughput obtained in the data-buffer case in
[18] for the infinite buffer architecture. In section VII we
will connect further this model with our information theoretic
model studied above.

Above we considered the cases when there is infinite energy
buffer or when there is no buffer at all. However, in practice
often there is a finite energy buffer to store. This case is
considered in Section VIII and we provide achievable rates.

Next we comment on the capacity results when (1) repre-
sentsEk+1 at the end of thekth slot where a slot represents
m channel uses. In this case energyEk is available not for
one channel use but form channel uses. This relaxes our
energy constraints. Thus ifE[Y ] still denotes mean energy
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harvested per channel use, then for infinite buffer case the
capacity remains same as in Theorem 1.

IV. CAPACITY WITH PROCESSINGENERGY COST

Till now we have assumed that all the energy that a node
consumes is for transmission. However, sensing, processing
and receiving (from other nodes) also require significant
energy, especially in recent higher-end sensor nodes ([12]).
We will now include the energy consumed by sensing and
processing only.

We assume that energyZk is consumed by the node (if
Ek ≥ Zk) for sensing and processing at time instantk. Thus,
for transmission at timek, only Ek −Zk is available.{Zk} is
assumed to be a stationary, ergodic sequence. The rest of the
system is as in Section II.

First we extend the achievable policy in Section III
to incorporate this case. The signaling schemeXk =

sgn(X ′
k)min(

√
Ek, |X ′

k|) where{X ′
k} is iid Gaussian with

zero mean and varianceE[Y ]− E[Z]− ǫ achieves the rate

RPE =
1

2
log

(

1 +
E[Y ]− E[Z]− ǫ

σ2

)

. (5)

If the sensor node has two modes: Sleep and Awake then the
achievable rates can be improved. The sleep mode is a power
saving mode in which the sensor only harvests energy and
performs no other functions so that the energy consumption
is minimal (which will be ignored). IfEk < Zk then we
assume that the node will sleep at timek. But to optimize its
transmission rate it can sleep at other times also. We consider a
policy calledrandomized sleep policyin [20]. In this policy at
each time instantk with Ek ≥ Zk the sensor chooses to sleep
with probability p independent of all other random variables.
We will see that such a policy can be capacity achieving in
the present context.

With the sleep option we will show that the capacity of this
system is

C = sup
PX :E[b(X)]≤E[Y ]

I(X ;W ), (6)

whereb(x) is the cost of transmittingx and equals

b(x) =

{

x2 + α, if |x| > 0,

0, if |x| = 0,

and α = E[Z]. Observe that if we follow a policy that
unless the node transmits, it sleeps, thenb is the cost function.
An optimal policy will have this characteristic. Denoting the
expression in (6) asC(E[Y ]), we can easily check that
C(E[Y ]) is a non-decreasing function ofE[Y ]. We also show
below thatC(E[Y ]) is concave. These facts will be used in
proving that (6) is the capacity of the system.

To show concavity, fors1, s2 > 0 and0 ≤ λ ≤ 1 we want
to show thatC(λs1 + (1 − λ)s2) ≥ λC(s1) + (1− λ)C(s2).
For si, let Ci be the capacity achieving codebook,i = 1, 2.
Use λ fraction of timeC1 and 1 − λ fraction C2. Then the
rate achieved isλC(s1) + (1 − λ)C(s2) while the average
energy used isλs1+(1−λ)s2. Thus, we obtain the inequality
showing concavity.

Theorem 2: For the energy harvesting system with process-
ing energy cost,

C = sup
PX :E[b(X)]≤E[Y ]

I(X ;W ) (7)

is the capacity for the system.
Proof: See Appendix B. �

It is interesting to compute the capacity (7) and the capacity
achieving distribution. Without loss of generality, the node
sleeps with probabilityp, (0 ≤ p ≤ 1) and with probability
(1−p) the node transmits with a distributionFt. We can write
the overall input distribution,Fin, as a mixture distribution

Fin = pu+ (1− p)Ft,

whereu denotes the unit step function, i.e.,u(x) = 1 if x ≥ 0

and zero otherwise. The corresponding output density function
fW (w;Ft) = pfN (w) + (1 − p)

∫

fN(w − s)dFt(s), is the
convolution ofFin andfN wherefN is N (0, σ2). The mutual
informationI(X ;W ) in (7) can be written as

I(Ft) , I(X ;W )

= ph(0;Ft) + (1− p)

∫

h(x;Ft)dFt(x)− h(N),

whereh(N) is the differential entropy of noiseN andh(x;Ft)

is the marginal entropy function defined as

h(x;Ft) = −
∫

fN (w − x) log(fW (w;Ft))dw.

Capacity computation can be formulated as a constrained
maximization problem,

sup
Ft∈Ω

I(Ft), (8)

where Ω , {Ft : Ft is a cdf and
∫

s2dFt(s) ≤ βp} and
βp ,

E[Y ]
(1−p)−α. Ω is the space of all distribution functions with

finite second moments and is endowed with the topology of
weak∗ convergence. This topology is metrizable with Prohorov
metric ([46]). It is easy to see thatΩ is a compact, convex
topological space. The compactness ofΩ is a consequence
of the second moment constraint of the distribution function
which makes it tight and Helly’s theorem. The objective
function I(Ft) is a strictly concave map fromΩ to R

+, the
positive real line. We can show thatI(Ft) is a continuous
function in the weak∗ topology andI(Ft) admits a weak
derivative [43]. Then there is a unique distributionFt0 that
optimizes (8). The weak derivative ofI(Ft) with respect to
Ft at the optimum distributionFt0 is

I ′Ft0
(Ft) = ph(0;Ft0) + (1 − p)

∫

h(x;Ft0)dFt(x)

− h(N)− I(Ft0).

Here, I(Ft0) is the capacity of the channel. Using Karush-
Kuhn-Tucker (KKT) conditions we get sufficient and neces-
sary conditions asI ′Ft0

(Ft) ≤ 0 and the conditions can be
simplified using the techniques in [43], [47] as

Q(x) , (1− p)h(x;Ft0) +K − λx2 ≤ 0, ∀x (9)
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and,

(1− p)h(x;Ft0) +K − λx2 = 0, ∀x ∈ S0, (10)

whereK = ph(0;Ft0)− h(N)− I(Ft0) + λβp, λ ≥ 0 is the
Lagrangian multiplier andS0 is the support set of the optimum
distribution.

The capacity achieving distribution is discrete and can be
proved using the techniques provided in [43] and is omitted
for brevity. A similar case is studied in [48] also. The key
steps of the proof include:

• Identify the functionQ(x) which gives a necessary and
sufficient condition for optimality.

• Show thatQ(x) has an analytic extensionQ(z) over the
whole complex plane.

• Prove by contradiction that the zero set ofQ(z) cannot
have limit points in its domain of definition and is at most
countable. In fact, it has been shown in [48] thatQ(z) is
countable.

Since any mass pointx of the optimum distribution function
satisfies the conditionQ(x) = 0 the number of mass points of
the optimum distribution is at most countable. Hence we find
that the optimum input distribution is not Gaussian whenever
0 < p ≤ 1.

To get further insight, consider{Bk} to be iid binary ran-
dom variables withP [Bk = 0] = p = 1 − P [Bk = 1] and let
{Gk} beiid with distributionFt0. Then the capacity achieving
input with distributionFin can be written asX ′

k = BkGk.
Also,

I(X ′
k;X

′
k +Nk) = h(BkGk +Nk)− h(Nk),

= h(BkGk +Nk)− h(BkGk +Nk|Bk)

+ h(BkGk +Nk|Bk)− h(Nk),

= I(Bk;BkGk +Nk) + I(Gk;BkGk +Nk|Bk),

= I(Bk;BkGk +Nk) + (1− p)I(Gk;Gk +Nk). (11)

This representation suggests the following interpretation (and
coding theoretic implementation) of the scheme: the overall
code is a superposition of a binary ON-OFF code and aniid
code with distributionFt0. The position of the ON (and OFF)
symbols is used to reliably encodeI(B;BG + N) bits of
information per channel use, while the code with distribution
Ft0 (which is used only during the ON symbols) reliably
encodes(1− p)I(G;G+N) bits of information per channel
use.

It is interesting to compare this result with the capacity in
[37]. The capacity result in [37] is only the second term in
(11) evaluated withGk being Gaussian.

In Fig.2 we compare the optimal sleep-wake policy, a sleep
wake policy withF being mean zero Gaussian with variance
E[Y ]/(1− p)−α and no-sleep policy with the result in [37].
We takeE[Z] = 0.5 andσ2 = 1. We see that whenE[Y ] is
comparable or less thanE[Z] then the node chooses to sleep
with a high probability. WhenE[Y ] >> E[Z] the probability
of the node being awake is close to 1 (Fig. 3). Also it is found
that whenE[Y ] < E[Z], the capacity is zero when the node
does not have a sleep mode. However we obtain a positive
capacity if it is allowed to sleep. WhenE[Y ] >> E[Z], the
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optimal distributionF tends to a Gaussian distribution with
mean zero and varianceE[Y ]− α.

From the figure we see that our scheme improves the
capacity provided in [37]. This is due to the embedded binary
code and the difference is significant at low values ofE[Y ].
In the figure, “optimum distribution, optimum p”, is obtained
by first fixing p, finding the corresponding optimal rate and
then optimizing overp. Also the optimizingp for the optimum
distribution case and the Gaussian distribution case is different.
We plot the optimump for the capacity achieving distribution
and Gaussian distribution for various values ofE[Y ] in Fig. 3.
We see thatp tends to zero asE[Y ] increases.
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V. ACHIEVABLE RATE WITH ENERGY INEFFICIENCIES

In this section we make our model more realistic by taking
into account the inefficiency in storing energy in the energy
buffer and the leakage from the energy buffer ([15]) for HSU
architecture. For simplicity, we will ignore the energyZk used
for sensing and processing.

We assume that if energyYk is harvested at timek, then
only energyβ1Yk is stored in the buffer and energyβ2 gets
leaked in each slot where0 < β1 ≤ 1 and0 < β2 < ∞. Then
(1) become

Ek+1 = ((Ek − Tk)− β2)
+ + β1Yk. (12)

The energy can be stored in a supercapacitor and/or in a
battery. For a supercapacitor,β1 ≥ 0.95 and for the Ni-MH
battery (the most commonly used battery)β1 ∼ 0.7. The
leakageβ2 for the battery is close to 0 but for the super
capacitor it may be somewhat larger.

In this case, similar to the achievability of Theorem 1 we
can show that

RHSU =
1

2
log

(

1 +
β1E[Y ]− β2

σ2

)

(13)

is achievable. This policy is neither capacity achieving nor
throughput optimal [18]. An achievable rate of course is (4)
(obtained via HU). Now one does not even store energy and
β1, β2 are not effective. The upper bound12 log(1+E[Y ]/σ2)

is achievable ifY is chi-square distributed with degree 1.
Now, unlike in Section III, the rate achieved by the HU may
be larger than (13) for certain range of parameter values and
distributions.

Another achievable policy for the system with an energy
buffer with storage inefficiencies is to use the harvested energy
Yk immediately instead of storing in the buffer. The remaining
energy after transmission is stored in the buffer. We call
this Harvest-Use-Store(HUS) architecture. For this case, (12)
becomes

Ek+1 = ((Ek + β1(Yk − Tk)
+ − (Tk − Yk)

+)+ − β2)
+. (14)

Compute the largest constantc such thatβ1E[(Yk − c)+] >
E[(c − Yk)

+] + β2. This is the largestc such that taking
E[Tk] < c will make Ek → ∞ a.s. Thus, as in Theorem
1, we can show that rate

RHUS =
1

2
log

(

1 +
c

σ2

)

(15)

is achievable for this system. This is achievable by an input
with distributioniid Gaussian with mean zero and variancec.

Equation (12) approximates the system where we have only
rechargable battery while (14) approximates the system where
the harvested energy is first stored in a supercapacitor and
after initial use transferred to the battery.

When β1 = 1, β2 = 0, the capacity of the system is
provided in Section III. For the general case, its capacity is
an open problem.

We illustrate the achievable rates mentioned above via an
example.

Example 1

Let {Yk} be iid taking values in{0.25, 0.5, 0.75, 1} with
equal probability. We take the loss due to leakage,β2 = 0. In
Figure 4 we compare the various architectures discussed in this
section for varying storage efficiencyβ1. We use the result in
[45] for computing the capacity in (4). From the figure it can
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Fig. 4. Rates for various architectures.

be seen that if the storage efficiency is very poor it is better
to use theHU policy. This requires no storage buffer and has
a simpler architecture. If the storage efficiency is goodHUS
policy gives the best performance. Forβ1 = 1, the HUS
policy andHSU policy have the same performance. Thus, if
we judiciously use a combination of a supercapacitor and a
battery, we may obtain a better performance.

VI. FADING AWGN CHANNEL

In this section we extend the results of Theorem 1 to include
fading. Rest of the notation is same as in Section III. The
model considered is given in Figure 5.

Energy Buffer

Yk

S

Tk

Xk

Hk

Wk = HkXk +Nk

ŜEncoder Decoder

Nk

Ek

Fig. 5. The model.

The encoder receives a messageS from the node and
generates ann-length codeword to be transmitted on the fading
AWGN channel. We assume flat, fast, fading. At timek the
channel gain isHk and takes values inH. The sequence{Hk}
is assumediid, independent of the energy generation sequence
{Yk}. The channel output at timek is Wk = HkXk + Nk

whereXk is the channel input at timek and {Nk} is iid
Gaussian noise with zero mean and varianceσ2. The decoder
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receivesY n ∆
= (Y1, ..., Yn) and reconstructsS such that the

probability of decoding error is minimized. Also, the decoder
has perfect knowledge of the channel stateHk at timek.

If the channel input{Xk} is AMS ergodic, then it
can be easily shown that for the fading AWGN channel
{(Xk,Wk), k ≥ 0} is also AMS ergodic. Thus the channel
capacity of the fading system is ([27])

C = sup
PX

I(X ;W ) = sup
PX

lim sup
n→∞

1

n
I(Xn,Wn), (16)

where underPX , {Xn} is an AMS sequence,Xn =

(X1, ..., Xn) and the supremum is over all possible AMS
sequences{Xn}. For a fading AWGN channel, capacity
achievingXk is zero mean Gaussian with varianceTk where
Tk depends on the power control policy used and is assumed
AMS. Then E[T ] ≤ E[Y ] where E[T ] is the mean ofT
under its stationary mean. The following theorem shows that
one can find a sequence of codewords with code lengthn and
rateR such that the average probability of error goes to zero
asn → ∞ if and only if R < C whereC is given in (17).

Theorem 3: For the energy harvesting system with perfect
Channel State Information at the Transmitter (CSIT),

C =
1

2
EH

[

log(1 +
H2T ∗(H)

σ2
)

]

, (17)

where

T ∗(H) =

(

1

H0
− 1

H

)+

, (18)

andH0 is chosen such thatEH [T ∗(H)] = E[Y ].
Proof: See Appendix C. �

Thus we see that the capacity of this fading channel is same
as that of a node with average power constraintE[Y ] and the
instantaneous power allocated is according to ‘water filling’
power allocation. The hard energy constraint ofEk at timek
does not affect its capacity. The capacity achieving signaling
for our system isXk = sgn(X ′

k)min(
√

T ∗(Hk)|X ′
k|,

√
Ek),

where{X ′
k} is iid N (0, 1) andT ∗(H) is defined in (18).

When no Channel State Information (CSI) is available at
the transmitter (but perfect CSI is available at the decoder),
take Xk = sgn(X ′

k)min(|X ′
k|,

√
Ek) where {X ′

k} is iid
N (0, E[Y ]) and as in Theorem 1 this approaches the capacity
of 1

2EH [log(1 +H2E[Y ]/σ2)].
Similar to the non-fading case the throughput optimal

policies in [18] are related to the Shannon capacity achieving
energy management policies provided here for the infinite
buffer case. Also the capacity is the same as the maximum
throughput obtained in the data-buffer case in [18].

If there is no energy buffer to store the harvested energy
then at timek only Yk energy is available. ThusXk is peak
power limited toYk. The capacity achieving distribution for
an AWGN channel with peak power constraintYk = y is not
Gaussian. In general this distribution is discrete. The ergodic
capacity, when there is no buffer and perfect CSIT, is

C =

∫ ∫

I(X(y, h);W )dPY (y)dPH(h), (19)

whereX(y, h) is the distribution that maximizes the capacity
subject to peak power constrainty and fade stateh.

A. Capacity with Energy Consumption in Sensing and Pro-
cessing

In this section we extend the results in Section IV to the
fading case.

First we extend the achievable policies given above to
incorporate the energy consumption in activities other than
transmission. We assume perfect Channel State Informationat
the Receiver (CSIR) for the channel stateHk at the timek.
When there is perfect CSIT also, we use the signaling scheme
Xk = sgn(X ′

k)min(
√

T ∗(Hk)|X ′
k|,

√
Ek), where {X ′

k} is
iid N (0, 1) andT ∗(H) is the optimum power allocation such
thatE[T ∗(H)] = E[Y ]−E[Z]− ǫ. When no CSI is available
at the transmitter, we useXk = sgn(X ′

k)min(|X ′
k|,

√
Ek)

where{X ′
k} is iid N (0, E[Y ] − E[Z] − ǫ). The achievable

rates for CSIT and no CSIT respectively are,

RPE−CSIT =
1

2
EH

[

log

(

1 +
H2T ∗(H)

σ2

)]

, (20)

RPE−NCSIT =
1

2
EH

[

log

(

1 +
H2(E[Y ]− E[Z]− ǫ)

σ2

)]

.

(21)

When Sleep Wake modes are supported the achievable rates
can be improved as in Section IV.

Theorem 4: Let P(H) be the set of all feasible power
allocation policies such that forP (H) ∈ P(H), EH [P (H)] ≤
E[Y ]. For the energy harvesting system with processing en-
ergy cost, transmitting over a fading Gaussian channel,

C = sup
P (H)∈P(H)

sup
PX :E[b(X)]≤P (H)

E[I(X ;W )], (22)

is the capacity for the system.
Proof: : See Appendix D. �

We compute the capacity (22) and the capacity achieving
distribution. Let P ∗(h) be the power allocated in stateh.
Without loss of generality, underH = h, the node sleeps with
probability p, (0 ≤ p ≤ 1) and with probability(1 − p) the
node transmits with a distributionFt(.). As in Section IV, we
can show using KKT conditions that the capacity achieving
distribution for stateH = h is discrete and the number of
mass points are at most countable withE[b(X)] ≤ P (h). As
in the case without fading the distributionFt(.) underH = h
is not Gaussian.

The optimal power allocation policyP ∗(H) that maximizes
(22) is not ‘water filling’ but similar and uses more power
when the channel is better.

Example 2
Let the fade states take values in{0.5, 1, 1.2} with prob-

abilities {0.2, 0.7, 0.1}. We takeα = E[Z] = 0.5, σ2 = 1.
We compare the capacity for the cases with perfect and no
CSIT when there is no sleep mode supported (Equation (20),
(21)) and with the optimal sleep probability in Figure 6.

From the figure we observe that
• The randomized sleep wake policy improves the rate

significantly whenE[Y ] ≤ E[Z].
• As in the non fading case, whenE[Y ] >> E[Z], the

probability of node being awake is close to one.
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Fig. 6. Comparison of sleep wake policies.

B. Achievable Rate with Energy Inefficiencies

In this section we take into account the inefficiency in
storing energy in the energy buffer and the leakage from the
energy buffer. The notation is same as in Section V.

The energy evolves as

Ek+1 = ((Ek − Tk)− β2)
+ + β1Yk. (23)

In this case, similar to the achievability of Theorem 3 we can
show that the rates

RS−NCSIT =
1

2
EH

[

log

(

1 +
H2(β1E[Y ]− β2)

σ2

)]

, (24)

RS−CSIT =
1

2
EH

[

log

(

1 +
H2(β1T (H)− β2)

σ2

)]

, (25)

are achievable in the no CSIT and perfect CSIT case respec-
tively, whereT (H) is a power allocation policy such that (25)
is maximized subject toEH [T (H)] ≤ E[Y ]. This policy is
neither capacity achieving nor throughput optimal [18].

An achievable rate, when there is no buffer and perfect CSIT
is (19). A numerical method to evaluate the capacity with peak
power constraints is provided in [43]. It is also shown in [45]
that for

√
y < 1.05, the capacity has a closed form expression,

C(y) = y −
∫ ∞

−∞

e−x2/2 log cosh(y −√
yx)√

2π
dx. (26)

The capacity in (19) is without using buffer and henceβ1

and β2 do not affect the capacity. Hence unlike in Section
III, (19) may be larger than (24) and (25) for certain range of
parameter values. We will illustrate this in Example 3. When
there is no buffer and no CSIT the distribution that maximizes
the capacity cannot be chosen as in (19) and the capacity is
less than the capacity given in (19).

For the Harvest-Use-Store(HUS) architecture, (23) be-
comes

Ek+1 = ((Ek + β1(Yk − Tk)
+ − (Tk − Yk)

+)+ − β2)
+. (27)

Find the largest constantc such thatβ1E[(Yk−c)+] ≥ E[(c−
Yk)

+]+β2. Of coursec < E[Y ]. When there is no CSIT, this
is the largestc such that takingTk = min(c − δ, Ek), where
δ > 0 is any small constant, will makeEk → ∞ a.s. and
henceTk → c a.s. Then, as in Theorem 3, we can show that

RUS−NCSIT =
1

2
EH

[

log

(

1 +
H2c

σ2

)]

(28)

is an achievable rate.
When there is perfect CSIT, ‘water filling’ power allocation

can be done subject to average power constraint ofc and the
achievable rate is

RUS−CSIT =
1

2
EH

[

log

(

1 +
H2T ∗(H)

σ2

)]

, (29)

where T ∗(H) is the ‘water filling’ power allocation with
E[T ∗(H)] = c.

We illustrate the achievable rates mentioned above via an
example.

Example 3
Let the process{Yk} be iid taking values in{0.5, 1}

with probability{0.6, 0.4} . We take the loss due to leakage
β2 = 0. The fade states areiid taking values in{0.4, 0.8, 1}
with probability {0.4, 0.5, 0.1}. In Figure 7 we compare
the various architectures discussed in this section for varying
storage efficiencyβ1. The capacity for the no buffer case with
perfect CSIT is computed using equations (19) and (26).
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Fig. 7. Rates for various architectures.

From the figure we observe the following:

• Unlike the ideal system, theHSU (which uses infinite
energy buffer) performs worse than theHU (which uses
no energy buffer) when storage efficiency is poor for the
perfect CSIT case.

• When storage efficiency is high,HU policy performs
worse compared toHSU and HUS for perfect CSIT
case.

• HUS performs better thanHSU for No/Perfect CSIT.
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Fig. 8. Model of an energy harvesting point to point channel.

• For β = 1, the HUS policy andHSU policy are the
same for both perfect CSIT and no CSIT.

• The availability of CSIT and storage architecture plays
an important role in determining the achievable rates.

VII. C OMBINING INFORMATION AND QUEUING THEORY

In this section we consider a system with both energy
and data buffer, each with infinite capacity (see Fig. 8). We
consider the simplest case: no fading, no battery leakage and
storage inefficiencies. The system is slotted. During slotk
(defined as time interval[k, k + 1], i.e., a slot is a unit of
time), Ak bits are generated. Although the transmitter may
generate data as packets, we allow arbitrary fragmentationof
packets during transmission. Thus, packet boundaries are not
important and we consider bit strings (or just fluid). The bits
Ak are eligible for transmission in(k + 1)st slot. The queue
length (in bits) at timek is qk. We assume that transmission
consumes most of the energy at the transmitter and ignore
other causes of energy consumption. We denote byEk the
energy available at the node at timek. The energy harvesting
source is able to replenish energy byYk in slot k.

In slot k we will use energy

Tk = min(Ek, E[Y ]− ǫ), (30)

where ǫ is a small positive constant. It was shown in [18]
that such a policy is throughput optimal (and it is capacity
achieving in Theorem 1).

There aren channel uses (mini slots) in a slot, i.e., the
system uses ann length code to transmit the data in a slot.
The lengthn of the code word can be chosen to satisfy
certain code error rate. The slot lengthn and Rk are to be
appropriately chosen. We use codewords of lengthn and rate
Rk = 1

2 log(1 + Tk/nσ
2) in slot k with the following coding

and decoding scheme:
1) An augmented message set{1, ..., 2nRk} ∪ {0}.
2) An encoder that assigns a codewordxn(m) to each

m ∈ {1, ..., 2nRk} ∪ {0} wherexn(m) is generated as aniid
sequence with distributionN (0, Tk/n − δ1) and δ1 > 0 is a
small constant. The codewordxn(m) is retained if it satisfies
the power constraint

∑n
i x

2
i ≤ Tk. Otherwise error message 0

is sent.
3) A decoder that assigns a messagem̂ ∈ {1, ..., 2nRk}∪{0}

to each received sequencewn in a slot such that(xn(m̂), wn)

is jointly typical and there is no otherxn(m′) jointly typical
with wn. Otherwise it declares an error.

In slot k, nRk bits are taken out of the queue ifqk ≥ nRk.
The bits are represented by a messagemk ∈ {1, ..., 2nRk}
andxn(mk) is sent. Ifqk < nRk no bits are taken out of the
queue and “0 message”xn(0) is sent.

Hence the processes{Ek} and{qk} satisfy

qk+1 = qk − nRk1{qk≥nRk} +Ak, (31)

Ek+1 = (Ek − Tk) + Yk. (32)

With Tk in (30), Ek → ∞ a.s. andTk → E[Y ] − ǫ a.s.

Also, Rk = 1
2 log(1 + Tk

nσ2 ) → 1
2 log(1 +

E[Y ]−ǫ
nσ2 ). Thus we

obtain
Theorem 5: The random data arrival process{Ak} can

be communicated with arbitrarily low average probability of
block error, by an energy harvesting sensor node over a
Gaussian channel with a stable queue if and only ifE[A] <
1
2n log(1+

E[Y ]
nσ2 ). �

In Theorem 5, ‘stability’ of the queue has the following in-
terpretation. If{Ak} is stationary, ergodic thenP [qk → ∞] =

0 and with probability 1,{qk} visits the set{q : q < nR}
infinitely often. Also the sequence{qk} is tight ([49]). If {Ak}
is iid then {qk, Ek} is a Markov chain. WithTk in (30),
asymptotically,Tk → E[Y ] − ǫ a.s. and we can ignore the
Ek component of the process and think of{qk} as a Markov
chain withTk = E[Y ] − ǫ. It has a finite number of ergodic
sets. The process{qk} eventually enters one ergodic set with
probability 1 and then approaches a stationary distribution.
If {qk} is irreducible and aperiodic then{qk} has a unique
stationary distribution and{qk} converges in distribution to it
irrespective of initial conditions.

Although the capacity achieved in each slot is as per
Theorem 1, the set-up used here is somewhat different. In
Theorem 1, the time scale of the dynamics of the energy
process{Ek} is mini slots, but in this section we have taken
it at the time scale of slots (which one is the right model
depends on the system under consideration). Thus, in Theorem
1 we used the theoretical tool of AMS sequences. But in
our present setup, in a slot we can useX1, X2, ...., Xn iid
GaussianN (0, Tk/n−δ) and use a codeword only if it satisfies
X2

1 + .... + X2
n ≤ Tk and qk ≥ nRk; otherwise an error

message is sent. Of course, if the physical system demands
that we should use for the energy dynamics the time scale of
a channel use then we can use the framework of Theorem 1.

VIII. F INITE BUFFER

In this section we find achievable rates when the sensor node
has a finite buffer to store the harvested energy. This case is
of more practical interest. We consider the simplest case: no
fading, no battery leakage and storage inefficiencies and no
data queue. The node has an energy buffer of sizeΓ < ∞. By
this we mean that the energy buffer can store a finite number
of energy units of interest.

We use the HUS architecture where the energy harvested
is used and only the left over energy is stored. The energy
available at the buffer at timek is denoted byÊk. At time
k, the node uses energyTk with Tk ≤ Êk + Yk

∆
= Ek. We

assume that̂Ek andYk take values in finite alphabets. Also,
{Yk}k≥1 is assumediid.
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We assume that the buffer state information (BSI),Ek, is
perfectly available at the encoder and the decoder at timek.
Xk denotes the codeword symbol used at timek andX2

k ≤ Tk.
Of courseTk ≤ Ek and Êk ≤ Γ. In generalTk is a function
of E0, ..., Ek. An easily tractable class of energy management
policies is

Tk = f(Ek), (33)

wheref defines the energy management policy. The codeword
symbolXk is picked with a distribution that maximizes the
capacity of a Gaussian channel with peak power constraint
Tk (we quantize this such that{Ek} takes values in a finite
alphabet). Hence the process{Ek}k≥1 satisfies,

Ek+1 = (Ek −X2
k) + Yk+1 (34)

and is a finite state Markov chain with the transition matrix
decided byf . If Ê0 = 0 then the Markov chain will either
enter only one ergodic set or possibly in a finite number of
disjoint components which depend onf . If I∗ and I denote
the Pinsker and Dobrushin information rates ([27]), since we
have finite alphabets,I∗ = I. In particular,

I∗
(

X ;W
)

= I
(

X ;W
)

= lim
n→∞

1

n
I(X(n);W (n)). (35)

Also, AEP holds for{Xk,Wk}.
The following theorem provides achievable rates.
Theorem 6: A rate R is achievable if an en-

ergy management policyf exists, such thatR <
I
(

X ;W ). �

The proof is similar to the achievability proof given in
Theorem 1. The rates (35) can be computed via algorithms
available in [50] and [51]. Using stochastic approximation
([52]) we can obtain the Markov chains that optimize (35).
If initial energy Ê0 is not zero, then the Markov chain can
enter some other ergodic sets and the achievable rates can be
different. If f is such that{Ek} is an irreducible Markov chain
then the achievable rates will be independent of the initialstate
Ê0.

Theorem 6 can be generalized to include the case where
{(Ek, Xk)} is a k−step finite state Markov chain. In fact
if {(Ek, Xk)} is a general AMS ergodic finite alphabet
sequence then AEP holds andI∗ = I. Thus, R <
limn→∞ n−1I(Xn;Wn) is achievable.

The capacity of our system can be written as ([53])

C = supP- lim inf
1

n
log

p(xn, wn)

p(xn)p(wn)
, (36)

where P- lim inf of a sequence of random variables{An}
is defined as the infimumα such that for all ǫ > 0,
limn→∞ P [An < α − ǫ] = 0 ([53]) and sup is over all
input distributionsXn which satisfy the energy constraints
X2

k ≤ Ek for all k ≥ 0. An interesting open problem is: can
(36) be obtained by limiting{Xn} to AMS ergodic sequences
mentioned above?

Example 4
We consider a system with a finite buffer withΓ = 15

units in steps of size 1. TheYk process has three mass points
and provided in Table 1. We compute the optimal achievable
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Fig. 9. Achievable rate for finite buffer.

rate using simultaneous perturbation stochastic approximation
algorithm [52]. The achievable rate is also compared with a
greedy policy, where the rate is evaluated using algorithms
provided in [50] and [51]. In the greedy policy, at any instant k,
an optimum distribution for an AWGN channel peak amplitude
constrained to

√
Ek =

√

Êk + Yk is used. We have also
obtained the optimal rates using a 1-step Markov policy (33)
where the optimal Markov chain is obtained via stochastic
approximation. Then achievable rates are compared with the
capacity with infinite buffer and no-buffer in Figure 9.

TABLE I
Yk PROCESS

E(Y) Mass points Probabilities
0 0 0 0 1 0 0

1.0142 0 1 2 0.3192 0.3474 0.3334
2.1030 1 2 3 0.2303 0.4364 0.3333
3.3078 2 3 4 0.1794 0.3334 0.4872
4.1991 3 4 5 0.2338 0.3333 0.4329
5.0855 4 5 6 0.3333 0.2479 0.4188
5.8739 5 6 7 0.3964 0.3333 0.2703
6.7168 6 7 8 0.4749 0.3334 0.1917
8.2533 7 8 9 0.2067 0.3333 0.4600
9.0332 8 9 10 0.3167 0.3334 0.3499
9.9136 9 10 11 0.3333 0.4198 0.2469

From the figure we observe that, for a given buffer size, the
greedy policy is close to optimal at higherE[Y ]. Also, the
optimal achievable rates for finite buffer case are close to the
capacity for infinite buffer for smallE[Y ] but becomes close
to the greedy at highE[Y ].

IX. CONCLUSIONS

In this paper the Shannon capacity of an energy harvesting
sensor node transmitting over an AWGN channel is provided.
It is shown that the capacity achieving policies are relatedto
the throughput optimal policies. Also, the capacity is provided
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when energy is consumed in activities other than transmission.
Achievable rates are provided when there are inefficiencies
in energy storage. We extend the results to the fast fading
case. We also combine the information theoretic and queuing
theoretic formulations. Finally we also consider the case when
the energy buffer is finite.
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APPENDIX A
PROOF OFTHEOREM 1

Codebook Generation :Let {X ′
k} be an iid Gaussian

sequence with mean zero and varianceE[Y ] − ǫ where
ǫ > 0 is an arbitrarily small constant. For each message
s ∈ {1, 2, ..., 2nR}, generaten length codewords according
to the iid distributionN (0, E[Y ] − ǫ). Denote the codeword
by X ′n(s). Disclose this codebook to the receiver.

Encoding: When S = s, choose the channel codeword to
be Xk = sgn(X ′

k(s))min(
√
Ek, |X ′

k(s)|) wheresgn(x) = 1

if x ≥ 0 and = −1 if x < 0. Then Tk = X2
k ≤ Ek and

E[Tk] = E[X2
k ] ≤ E[Y ] − ǫ. Thus, from standard results

on G/G/1 queues ([54], chapter 7),Ek → ∞ a.s. and hence
|Xk −X ′

k| → 0 a.s. Also (Xk,Wk) converges almost surely
(a.s.) to a random variable with the distribution of(X ′

k,W
′
k)

and{(Xk,Wk, X
′
k)} is AMS ergodic whereW ′

k = X ′
k +Nk.

Decoding:The decoder obtainsWn and finds the codeword
X ′n(ŝ) such that (X ′n(ŝ),Wn) ∈ T n

ǫ where T n
ǫ is the

set of weaklyǫ-typical sequences of the joint AMS ergodic
distributionPX′W ′ . If it is a uniqueŝ then it declareŝs as the
message transmitted; otherwise declares an error.

Analysis of error events
Let s has been transmitted. The following error events can

happen
E1: {(X ′n(s),Wn) /∈ T n

ǫ }. The probability of eventE1
goes to zero as,{X ′

k,Wk} is AMS ergodic and AEP holds
for AMS ergodic sequences (Lemma 1), because{X ′

k,Wk}
has a density with respect toiid Gaussian measure on an
appropriate Euclidean space.

E2: There existŝs 6= s such that{(X ′n(ŝ),Wn) ∈ T n
ǫ }.

Let H(X ′), H(W ′) be the entropy rates of{X ′
k} and{W ′

k}.
Next we show thatP (E2) → 0 asn → ∞. We have

P (E2) ≤
∑

ŝ6=s

P ((X ′n(ŝ),Wn) ∈ T n
ǫ )

≤ 2nR
∑

(xn,wn)∈Tn
ǫ

P (xn, wn)

≤ 2nR
∑

(x′n,w′n)∈Tn
ǫ

P (x′n)P (w′n)

≤ |T n
ǫ |2nR2−(nH(X′)−ǫ)2−(nH(W ′)−ǫ)

≤ 2(nH(X′,W ′)+ǫ)2nR2−(nH(X′)−ǫ)2−(nH(W ′)−ǫ).

Also, since {X ′
k,W

′
k} are iid vectors with {X ′

k} iid

N (0, E[Y ] − ǫ), I(X ′,W ′) = 1
2 log(1 +

E[Y ]−ǫ
σ2 ). Therefore,

P (E2) → 0 andn → ∞ if R < I(X ′;W ′) = 1
2 log(1+

E[Y ]
σ2 ).

Converse Part: For the system under consideration
1
n

∑n
k=1 Tk ≤ 1

n

∑n
k=1 Yk → E[Y ] a.s. Hence, if

{Xk(s), k = 1, ..., n} is a codeword for message
s ∈ {1, ..., 2nR} then for all large n we must have
1
n

∑n
k=1 Xk(s)

2 ≤ E[Y ] + δ with a large probability for any
δ > 0. Hence by the converse in the AWGN channel case,
lim supn→∞

1
nI(X

n;Wn) ≤ 1
2 log(1+(E[Y ] + δ)/σ2). Now

takeδ → 0.
Combining the direct part and converse part completes the

proof. �

APPENDIX B
PROOF OFTHEOREM 2

Codebook Generation : For each message
s ∈ {1, 2, ..., 2nR}, generaten length codewords according to
an iid distributionP ′

X with constraintE[b(X ′)] = E[Y ]− ǫ,
where ǫ > 0 is a small constant. Denote the codeword by
X ′n(s). Disclose this codebook to the receiver.

Encoding: WhenS = s, choose the channel codeword as

Xk(s) =

{

min{X ′
k(s),

√

(Ek − Zk)+}, if X ′
k ≥ 0,

max{X ′
k(s),−

√

(Ek − Zk)+}, if X ′
k < 0.

Then to transmitXk(s) we need energyTk = (X2
k(s) +

Zk)1{Xk 6=0} andEk+1 = (Ek − Tk) + Yk. Also,

E[Tk] = E[X2
k ] + E[Zk]P{Xk 6= 0}

≤ E[X ′2
k ] + αP{X ′

k 6= 0} = E[Y ]− ǫ.

Thus, from standard results on G/G/1 queues ([54], chapter
7), Ek → ∞ a.s. and hence|Xk −X ′

k| → 0 a.s. Also finite
dimensional distributions of{(Xm+k,Wm+k, X

′
m+k), k ≥

0} converge a.s. to that of {(X ′
k,W

′
k, X

′
k)}. Thus

{(Xk,Wk, X
′
k)} is AMS ergodic with limiting distribution

(X ′
k,W

′
k, X

′
k) whereW ′

k = X ′
k+Nk. Furthermore the energy

constraints are also met.
If the chosen codeword isǫ−weakly typical and

∑n
i=1 b(xi)/n ≤ E[Y ]− ǫ, then transmit it; otherwise send an

error message. By AEP for AMS sequences, the probability
that an error message is sent goes to zero asn → ∞.

Decoding: The decoder obtainsWn. If it finds a unique
codewordX ′n(ŝ) such that{(X ′n(ŝ),Wn) ∈ T n

ǫ } where,T n
ǫ

is the set ofǫ-typical sequences for the distributionPX′W ′ , it
declaresŝ as the transmitted message. Otherwise it declares
an error.

By the usual methods as in Theorem 1 with the above
coding-decoding scheme, we can show that the probability of
error for this scheme goes to zero asn → ∞. Now the fact
thatC is non-decreasing inE[Y ] provides the capacity (7) as
ǫ → 0.

Converse: The converse follows via Fano’s inequality
as in Theorem 1. For that proof to hold here,
we need that C(.) is concave (as for example in
the converse for the AWGN channel capacity in
[55]). �
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APPENDIX C
PROOF OFTHEOREM 3

Achievability: Let T ′
k = T ∗(Hk) with T ∗ defined in (18)

with E[T ∗(H)] = E[Y ]− ǫ whereǫ > 0 is a small constant.
Since{Hk} is iid, {T ′

k} is alsoiid.
Let {X ′

k} beiid Gaussian with zero mean and variance one.
The channel codewordXk = sgn(X ′

k)min(
√

T ′
k|X ′

k|,
√
Ek)

where sgn(x) = 1, if x ≥ 0 and −1 otherwise. Define
Tk = X2

k . Thus, as in the proof of Theorem 1, from standard
results on G/G/1 queues ([54], chapter 7),Ek → ∞ a.s.
Therefore, asT ∗(H) is upper bounded,limn→∞ supk≥n |Tk−
T ∗(Hk)| → 0 a.s. This implies that{Xk} is an AMS ergodic
sequence with the stationary mean being the distribution of
√

T ∗(Hk)X
′
k. Then since the AWGN channel under consid-

eration is AMS ergodic ([27]),(X,W )
∆
= {(Xk,Wk), k ≥ 1}

is AMS ergodic.
By using the techniques in Theorem 1, we can show that

we can have an encoding and decoding scheme to provide any
R ≤ I(X,W ) = 1

2EH [log(1 +H2T ∗(H))/σ2)].
Converse Part: Let there be a sequence of codebooks for

our system with rateR and average probability of error going
to 0 asn → ∞. If {Xk(s), k = 1, ..., n} is a codeword
for messages ∈ {1, ..., 2nR} then 1/n

∑n
k=1 Xk(s)

2 ≤
1/n

∑n
k=1 Yk ≤ E[Y ] + δ for any δ > 0 with a large

probability for all n large enough. Hence by the con-
verse in the fading AWGN channel case ([56]),R <
lim supk→∞ I(Xk;W k)/k ≤ 1

2EH [log(1 + H2T ∗(H)/σ2)]

for T ∗(H) given in (18).
Combining the direct and the converse part completes the

proof. �

APPENDIX D
PROOF OFTHEOREM 4

Fix the power allocation policyP ∗. Under P ∗(h),
the achievability ofsupPX :E[b(X)]≤P∗(h) I(X ;W ), whenever
Hk = h, is proved using the techniques provided in Theorem
2 for the non-fading case. Using this along with finding
the expectation w.r.t. the optimum power allocation scheme
completes the achievability proof.

The converse follows via Fano’s inequality. �
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