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Abstract—Energy harvesting sensor nodes are gaining popu- ity. This is made possible by energy harvesting techniques
larity due to their ability to improve the network life time a nd are ([10], [11]). An energy harvester harnesses energy from the
becoming a preferred choice supporting “green communicatin”. environment or other energy sources ( e.g., body heat) and
In this paper we focus on communicating reliably over an - . ’ .
additive white Gaussian noise channel using such an energyconyerts it to electrical Qnergy. Qommon gnergy harvesting
harvesting sensor node. An important part of this work involves ~ devices are solar cells, wind turbines and piezo-electlisc
appropriate modeling of energy harvesting, as done via vadus which extract energy from the environment. Among these,
practical architectures. Our main result is the characterization harvesting solar energy through photo-voltaic effect seem
of the Shannon capacity of the communication system. The to have emerged as a technology of choice for many sensor

key technical challenge involves dealing with the dynamicand .
stochastic) nature of the (quadratic) cost of the input to tte nodes ([11], [12]). Unlike for a battery operated sensorejod

channel. As a corollary, we find close connections betweenah NOW there is potentially amfinite amount of energy available
capacity achieving energy management policies and the queing to the node. However, the source of energy and the energy

theoretic throughput optimal policies. harvesting device may be such that the energy cannot be
Keywords: Capacity, energy harvesting, sensor networks, fagénerated at all times (e.g., a solar cell). Furthermoreate
ing channel, energy buffer, network life time. of generation of energy can be limited. Thus one may want to

match the energy generation profile of the harvesting source
with the energy consumption profile of the sensor node. If the
o energy can bestoredin the sensor node then this matching
SENSO_R nodes are often deployed for monitoring a raigy phe considerably simplified. But the energy storage devic
dom field. These.nodes are characterized by limited b%‘ay have limited capacity. The energy consumption policy
tery power, computational resources and storage spac& Oo|d be designed in such a way that the node can perform
deployed, the battery of these nodes are often not chan@@fstactorily for a long time, i.e., energy starvation east,

because of the inaccessibility of these nodes. Nodes codld \id not be the reason for the node to die. In [10] such

possibly use larger batteries but with increased weightime | energy/power management scheme is caltegtgy neutral
and cost. Hence when the battery of a node is eXhaUStedoﬁ%ration

is not replaced and the node dies. When sufficient number, yhe following we survey the relevant literature. Early

of nodes die, the network may not be able to perform itg,hors on energy harvesting in sensor networks are [13] and

designated task. Thus the life time of a network is an imprrt 14]. A practical solar energy harvesting sensor node pypto

characteristic of a sensor network ([1]) and it depends @n ty gescriped in [15]. In [10] various deterministic modeds f

life time of a ”00!9- ) ) ) energy generation and energy consumption profiles areestudi
The network life time can be improved by reducing thenq provides conditions for energy neutral operation. B] L

energy intensive tasks, e.g., reducing the number of bits 4gnqor node is considered which is sensing certain inegest

transmit ([2], [3]), making a node to go into power savingyents. The authors study optimal sleep-wake cycles swath th
modes (sleepl/listen) periodically ([4]), using energyaiint oot getection probability is maximized. A recent survey o
routing ([5], [6]), adaptive sensing rates and multiple essc energy harvesting is [17].

channel ([7]). Network life time can also be increased by gnergy harvesting can be often divided into two major ar-

suitable architectural choices like the tiered system) @id hitectures ([15]). IrHarvest-usgHU), the harvesting system

redundant placement of nodes ([9]). . directly powers the sensor node and when sufficient energy is
Recently new techniques of increasing network life img. o aijaple the node is disabled.Harvest-Store-UsgHSU)

by increasing the life time of the battery is gaining populagnere is a storage device that stores the harvested enedgy an
Preliminary versions of parts of this paper appear in ISIT120Asilomer also powers the sensor node. The storage can be single or
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obtained for such nodes. Furthermore, [21] considersljoinfading AWGN channel. Section VIl combines the information-

optimal routing, scheduling and power control policies fotheoretic and queueing-theoretic formulations. Sectidil V

networks of energy harvesting nodes. Energy managemprivides achievable rates for the practically interestiage

policies for finite data and energy buffer are provided in][220f finite buffer. Section I1X concludes the paper.

Reference [23] provides optimal energy management pslicie

and energy allocation over source acquisition/comprassio 1. MODEL AND NOTATION

and transmission. In a recent contribution, optimal energy

allocation policies over a finite horizon and fading chasnel Energy Buffer

are studied in [24]. S
Information-theoretic capacity of an energy harvesting- sy _l .

N,

tem has been considered previously in [25] and [26] in- Ey l
dependently. It was shown that the capacity of the energy m
harvesting Additive White Gaussian Noise (AWGN) channel s—»| 500 > - »  Decoder —
with an unlimited battery is equal to the capacity with an o \J/WFX”M
average power constraint equal to average recharge rate. In
[26] the proof technique used is based on AMS SeqUeNGES 1 The model.
([27]) which is different from that used in [25]. The outage
capacity of an energy harvesting source transmitting over a
fading channel is characterized in [28] and [29]. Relevant ) ) .
work combining information theory and queuing theory is][30 !N this section we present our model for a single energy
and [31]. Reference [32] characterizes the capacity when fiaTvesting sensor node.We consider a sensor node (Fig. 1)
transmitter and the receiver probe the state of the chanrtéflich is sensing and generating data to be transmitted to a
The probing action is cost constrained. Very recently, theno central nodg via a discrete time AWGN channel. We assume
problem of finding the capacity of the system with a finitd1@t transmission consumes most of the energy in a sensor
buffer has been solved in [33]. _node and ignore other causes of energy consumption (this

System level power consumption in wireless systems il rué for many low quality, low rate sensor nodes ([12])).
cluding energy expended in decoding is provided in [34Ih|s a}ssumpnon will pe removed in Se_ctlon IV. The sensor
Related literature for conserving energy but without thergp hode is able to replenish energy by at time k. The energy
harvester is [32], [35]. In [35] an explicit model for powerf"“’a'Iable in the node at time is Ej. This energy is stored
consumption at an idealized decoder is studied. Optimal cdfl @n energy buffer with an infinite capacity. In this section
stellation size for uncoded transmission subject to peakepo the fading _eﬁects_are not considered; however this issue is
constraint is given in [36]. addressed in Section VI. _ _

Our main contributions are in considering significant ex- '€ node uses energy; at time & which depends orE),
tensions to the basic energy harvesting system by consicddtd 7k < Ex . The proces§ E} satisfies
ing processilng energy cost, energy inefficiencies and finall Ej1 = (Bx — Tp) + Y. (1)
channel fading. We compute the capacity when the energy
is consumed in other activities at the node (e.g., procgssin We will assume tha{Y} is stationary ergodic. This as-
sensing, etc) than transmission. This issue of energy coadu sumption is general enough to cover most of the stochastic
in processing in the context of the usual AWGN channel (i.énodels developed for energy harvesting. Often the energy
without energy harvesters) is addressed in [37]. Finally wrvesting process will be time varying (e.g., solar cedrgy
provide the achievable rates when there are storage irefficiharvesting will depend on the time of day). Such a process
cies. We show that the throughput optimal policies provide@®n be approximated by piecewise stationary processes As i
in [18] are related to the capacity achieving policies pded [18], we can indeed consid€lY} to be periodic, stationary
here. We also extend the results to a scenario with fastdadigrgodic.
Further we combine the information theoretic and queueing-The encoder receives a messafefrom the node and
theoretic models for the above scenarios. Finally, we pievigenerates am-length codeword to be transmitted on the
achievable rates when the nodes have finite buffer to sté¥&/GN channel. The channel outplit, = X + Ny where
the harvested energy. Our results can be useful in the dont& is the channel input at timé and N is independent,

of green communication ([38], [39]) when solar and/or winéfentically distributedi{d) Gaussian noise with zero mean and

energy can be used by a base station ([40]). varianceo? (we denote the corresponding Gaussian density

The paper is organized as follows. Section Il describes thg A/(0,02%)). The decoder receivad’ ™ 2 (Wh,...,W,) and

system model. Section Il provides the capacity for the AWGkeconstructsS such that the probability of decoding error is
energy harvesting channel under idealistic assumptioas: Sminimized.

tion IV takes into account the energy spent on sensing,We will obtain the information-theoretic capacity of this
computation etc. and proposes capacity achieving slede-wahannel. This of course assumes that there is always data to
schemes. Section V obtains efficient policies with ineffieie be sent at the sensor node (this assumption will be removed
cies in the energy storage system. Section VI studies timesection VII). This channel is essentially different frahe
capacity of the energy harvesting system transmitting @avemsually studied systems in the sense that the transmit power
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and coding scheme can depend on the energy available in i hard energy constraint df;, at time & does not affect
energy buffer at that time. its capacity. The capacity achieving signaling in the above
A possible generalization of our model is that the enerdfieorem is truncatedd Gaussian with zero mean and variance
E, changes at a slower time scale than a channel symidlY’] — ¢, wheree > 0 is an arbitrarily small constant, and
transmission time, i.e., in equation (& yepresents a time slot the truncation occurs due to the energy limitatigp at time
which consists ofn channel uses;, > 1. We comment on k. Using the truncatedid Gaussian signaling, the energy in

this generalization in Section Il (see also Section VII). the buffer goes to infinity in the long term. The same capacity
is obtained for any other initial energy, (because then also
[1l. CAPACITY FOR THE IDEAL SYSTEM our signaling scheme leads to an AMS sequence with the same

In this section we obtain the capacity of the channel witifaionary mean). _
an energy harvesting node under ideal conditions of infinite | € Scenario when there is no energy buffer to store the
energy buffer and energy consumption in transmission Om)}]arvested energy (Ha_rvest—Use) was studied in [42], which
The system starts at timke= 0 with an empty energy buffer Ealculated the 2capaC|ty to_ be’ T HaXpy (X5 W) ) <
and E, evolves with time depending of, and T;. Thus 2 108(1+E[Y]/o%). We mention this result in some detail (and
(E,, k> 0} is not stationary and hendg}} may also not varle_lt|0ns) since th_|s mate_rla_l W|Il_be used in developiatgt
be stationary. In this setup, a reasonable general assmnpections. The lastinequality is strict unleg is N(O’QE[Y])
is to expect{T}} to be asymptotically stationary. Indeed Wé’md Yy is also known_ at the receiver at tlr‘dnelThenX =Y
will see that it will be sufficient for our purposes. Thestgmd henceY; is chi-square distributed with degree 1. If

sequences are a subset of Asymptotically Mean Stationzi?yE E[Y] then the capacity will be th‘f’“ of an AWGN channel
(AMS) sequences, i.e., sequendds } such that with peak and average power constrainf[Y']. This problem
T is addressed in [43], [44], [45] and the capacity achieving

distribution has finite support and is discrete. l&fy) denote

a random variable having distribution that achieves capaci
- with peak powery. Then, for the case when information about
exists for all measurabld. In that caseP is also a probability v} is also available at the decoder at tiragthe capacity of
measure and is called thstationary meanof the AMS the channel whedY} }x>1 is iid is

sequence ([27]).

If the input{X}} is AMS and ergodic, then it can be easily C = /I(X(y); W)dPy (y). 4)
shown that for the AWGN channé( X}, W}), k > 0} is also
AMS an ergodic ([27], chapter 9). In the following theorenfor smally, X?(y) = y. This result can be extended to the
we will show that the channel capacity of our system is ([27Base wher{Y} } is stationary ergodic. Then the right side of (4)

_ 1 will be replaced by the information rate ¢ (yx), Wi }. In
¢ =sup [(X; W) =sup limsup —I(X";W"),  (3) conclusion, having some energy buffer to store the hardeste
Px P e energy almost always strictly increases the capacity of the
where {X,,} is an AMS sequenceX” = (Xi,...,X,) and system (under ideal conditions of this section).
the supremum is over all possible AMS sequenf&s}. In |n [18], a system with a data buffer at the node which stores
other words, one can find a sequence of codewords with coflga sensed by the node before transmitting it, is congidere
lengthn and rateR such that the average probability of errorrhe stability region (for the data buffer) for the ‘no-buffand
goes to zero as — oo if and only if R < C'. ‘infinite-buffer’ corresponding to the harvest-use andvieat-

For the proof of the following theorem and others, we usgore-use architectures are provided. The throughpumapti
asymptotic equipartition property (AEP) for AMS sequencasolicies in [18] areT), — min(E,: E[Y] — ¢) for the infinite
which is reproduced below for easy reference. energy buffer andl,, = Y,, when there is no energy buffer.

Lemma 1 (AEP for AMS ergodic sequences [41]): Hence we see that the Shannon capacity achieving energy
Suppose{ X, } is an AMS ergodic source with entropy ratemanagement policies provided here are close to the thraughp
H. Givene > 0 there is anN such that for alln > N the gptimal policies in [18]. Also the capacity is the same as
set {z" : 2719 < p(gm) < 27"(H~9} has probability the maximum throughput obtained in the data-buffer case in

lim % an PIT} € A] = P(A) @)
k=1

greater tharl —e. B [18] for the infinite buffer architecture. In section VII we
Lemma 1 holds also for jointly AMS ergodic sequencegill connect further this model with our information thetice
[41]. model studied above.
Theorem 1: For the energy harvesting system, the capacity Above we considered the cases when there is infinite energy
C = 3}log (1 + %) buffer or when there is no buffer at all. However, in practice
Proof: See Appendix A. W often there is a finite energy buffer to store. This case is

. . . ..considered in Section VIl and we provide achievable rates.
This result has also appeared in [25]. The achievability .
: : Next we comment on the capacity results when (1) repre-
proofs are somewhat different (both the scheme itself at wel
. sSentsFy1 at the end of théth slot where a slot represents
as the technical approach to the proof). . . .
m channel uses. In this case enerfly is available not for
Thus we see that the capacity of this channel is the samme channel use but fom channel uses. This relaxes our

as that of a node with average energy constréifit], i.e., energy constraints. Thus E[Y] still denotes mean energy
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harvested per channel use, then for infinite buffer case theTheorem 2: For the energy harvesting system with process-
capacity remains same as in Theorem 1. ing energy cost,

C = sup I(X;w @)
IV. CAPACITY WITH PROCESSINGENERGY COST P E[b(X)|<E[Y] ( )

Till now we have assu_mgd that all the energy that a no??the capacity for the system.
consumes is for transmission. However, Sensing, progssin pgot- See Appendix B. n
and receiving (from other nodes) also require significant
energy, especially in recent higher-end sensor nodes)([12] It is interesting to compute the capacity (7) and the capacit
We will now include the energy consumed by Sensing amhieVing distribution. Without loss of generality, thedeo
processing only. sleeps with probabilityp, (0 < p < 1) and with probability
We assume that energgk is consumed by the node (|f (1 —p) the node transmits with a d|Str|bUt|cF} We can write
Ey, > Z,,) for sensing and processing at time instanfhus, the overall input distributionf;,, as a mixture distribution

for transmission at time, only E, —_Zk is available{Z;} is Fin = pu+ (1 —p)F,

assumed to be a stationary, ergodic sequence. The rest of the

system is as in Section II. whereu denotes the unit step function, i.e(z) =1if 2 >0
First we extend the achievable policy in Section IIRnd zero otherwise. The corresponding output density iomct

to incorporate this case. The signaling schemie = fw(w;F;) = pfx(w)+ (1 —p) [ [n(w — s)dFy(s), is the

sgn(X}) min(v/Ey, | X;|) where {X}} is iid Gaussian with convolution ofF%, and fy wherefy is (0, 0?). The mutual
zero mean and variandg[Y] — E[Z] — ¢ achieves the rate  informationI(X; W) in (7) can be written as
Epj—Ewyﬁ) I(R) = I(X;W)

1
Rpp = =log (1+ 5
PE =3 g ( 2 () ph(0; F}) + (1 _p)/h(x;Ft)dFt(iC) —h(N),

g

If the sensor node has two modes: Sleep and Awake then the . ] ] ]
achievable rates can be improved. The sleep mode is a poWBgreh(IV) is the differential entropy of nois& andh(x; F1)
saving mode in which the sensor only harvests energy ai§dhe marginal entropy function defined as
performs no other functions so that the energy consumption
is minimal (which will be ignored). IfE, < Z; then we h(z; ) = _/fN(w_x) log(fw (w; F))dw.
assume that the node will sleep at tirheBut to optimize its
transmission rate it can sleep at other times also. We cenaid
policy calledrandomized sleep polian [20]. In this policy at

Capacity computation can be formulated as a constrained
maximization problem,

each time instant with £}, > Z), the sensor chooses to sleep sup I(Fy), (8)
with probability p independent of all other random variables. FreQt
We will see that such a policy can be capacity achieving ighere Q 2 {F, : F; is a cdf andf s2dF,(s) < B,} and
the present context. , = %—a. Q) is the space of all distribution functions with
With the sleep option we will show that the capacity of thiginite second moments and is endowed with the topology of
system Is weak' convergence. This topology is metrizable with Prohorov
C= sup I(X; W), (6) metric ([46]). It is easy to see th& is a compact, convex
Px:Eb(X)I<E[Y] topological space. The compactness(dfis a consequence
whereb(z) is the cost of transmitting: and equals of the second moment constraint of the distribution furrctio
which makes it tight and Helly's theorem. The objective
bz) = {x2 +a, if x| >0, function I(F}) is a strictly concave map fror to R*, the
0, if |z| =0, positive real line. We can show thd(F}) is a continuous

_ _ function in the weak topology andI(F;) admits a weak
and o = E[Z]. Observe that if we follow a policy that derivative [43]. Then there is a unique distributid®, that

unless the node transmits, it sleeps, themthe cost function. optimizes (8). The weak derivative df(F;) with respect to
An optimal policy will have this characteristic. Denotinget F, at the optimum distributiordq is

expression in (6) a’(E[Y]), we can easily check that
C(E[Y]) is a non-decreasing function &f[Y']. We also show I, (F}) = ph(0; Fo) + (1— p)/h(x; Fyo)dF(x)
below thatC(E[Y]) is concave. These facts will be used in
proving that (6) is the capacity of the system. = N) = I(F).

To show concavity, fos;, s, > 0 and0 < A <1 we want Here, I(F,) is the capacity of the channel. Using Karush-
to show thatC(As1 + (1 — A)s2) > AC(s1) + (1 — A\)C(s2).  Kuhn-Tucker (KKT) conditions we get sufficient and neces-
For s, let C; be the capacity achieving codeboaks=1,2.  sary conditions ad}, (F;) < 0 and the conditions can be
Use A fraction of timeC; and 1 — A fraction C>. Then the simplified using the techniques in [43], [47] as
rate achieved is\C'(s1) + (1 — A\)C(s2) while the average

energy used i3s; + (1 — \)s2. Thus, we obtain the inequality
showing concavity. Q(z) £ (1 —p)h(z; Fyo) + K — Az <0,Vz  (9)
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and ! Sleep wake policies; E[Z]=.5, Noise variance = 1
14
(1 — p)h(z; Fyo) + K — M\z* = 0,Vz € Sp, (10)

where K = ph(0; Fyo) — h(N) — I(Fi) + A\Bp, A > 0 is the 1
Lagrangian multiplier and, is the support set of the optimum
distribution. 1r ]
The capacity achieving distribution is discrete and can |
proved using the techniques provided in [43] and is omitte  os- ~ 1
for brevity. A similar case is studied in [48] also. The ke

Rate

steps of the proof include: 061 i
« Identify the functionQ(z) which gives a necessary anc —¥— Nosleep
Sufﬁcient Condition for optlmallty 04l —&— Bursty transmission with optimum p [37] i
. ’ . ’ —&— Gaussian distribution, optimum p
» Show thatQ(z) has an analytic extensiafi(z) over the —— Optimu distrbuiion, optimum p
whole complex plane. 0ak ,

« Prove by contradiction that the zero set@fz) cannot
have limit points in its domain of definition and is at mos | ‘ ‘ ‘ ‘ ‘
countable. In fact, it has been shown in [48] thi¥t:) is 0 ! 2 e 4 5 6
countable.

Since any mass point of the optimum distribution function rig. 2. comparison of Sleep Wake policies.

satisfies the conditio)(x) = 0 the number of mass points of

the optimum distribution is at most countable. Hence we find

that the optimum input distribution is not Gaussian wheneve o , o )

0<p<l. optimal distributionF’ tends to a Gaussian distribution with
To get further insight, consid€B;} to beiid binary ran- mean zero and variandg[Y] — a.

dom variables withP[B;, = 0] = p = 1 — P[B;, = 1] and let From the figure we see that our scheme improves the

{G»} beiid with distributionFy,. Then the capacity achievingcapacity provided in [37]. This is due to the embedded binary

input with distribution I, can be written asX;, = BjGj. code and the difference is significant at low valuesFt].

Also, In the figure, “optimum distribution, optimum p”, is obtanhe
by first fixing p, finding the corresponding optimal rate and
I(X}; Xp, + Ni) = W(BiGr, + Ni) — h(Ny), then optimizing ovep. Also the optimizingp for the optimum
= h(BrGk + Ni) — h(Br Gy + Ni|By) distribution case and the Gaussian distribution casefisrdift.

+ h(BRGr, + Ni|Br) — h(Ny), We plot the optimunp for the capacity achieving distribution

h(
. _ and Gaussian distribution for various valuesijt’] in Fig. 3.
I(By; BiGr + Ni) + 1(Gi; BeGr + Nie| By), We see thap tends to zero a®[Y] increases.

I(By; BxGy + Ni) + (1 = p)I(Gr; Gi + Ni).  (11)

This representation suggests the following interpretafand

coding theoretic implementation) of the scheme: the oler: Comparison of Sleep Probabilties

code is a superposition of a binary ON-OFF code andidn N N S SN
code with distributionF}y. The position of the ON (and OFF)
symbols is used to reliably encodéB; BG + N) bits of
information per channel use, while the code with distriti
Fyo (which is used only during the ON symbols) reliably
encodeq1 — p)I(G; G + N) bits of information per channel
use.

It is interesting to compare this result with the capacity i
[37]. The capacity result in [37] is only the second term i
(11) evaluated withG, being Gaussian.

In Fig.2 we compare the optimal sleep-wake policy, a slet
wake policy with F' being mean zero Gaussian with varianc
E[Y]/(1—p)— « and no-sleep policy with the result in [37].
We takeE[Z] = 0.5 ando? = 1. We see that whe®[Y] is
comparable or less thah[Z] then the node chooses to slee| s s s s T I e
with a high probability. WherE[Y] >> E[Z] the probability E)
of the node being awake is close to 1 (Fig. 3). Also it is founu
that whenE[Y] < E[Z], the capacity is zero when the nodey 3 optimum sleep probability.
does not have a sleep mode. However we obtain a positive
capacity if it is allowed to sleep. WheR[Y] >> E[Z], the

—=A— Optimum p for capacity achieving distribution
—©— Optimum p for Gaussian distribution

o
©
T

Probability of sleep (p)
o o o o o o °
N @ = o > 3 &
T T T T T T T
! ! ! ! ! ! !

o
T
!
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V. ACHIEVABLE RATE WITH ENERGY INEFFICIENCIES Let {Y3} beiid taking values in{0.25,0.5,0.75,1} with

In this section we make our model more realistic by takingdu@! probability. We take the loss due to leakages 0. In
into account the inefficiency in storing energy in the enerdy9ure 4 we compare the various architectures discusséisin t

buffer and the leakage from the energy buffer ([15]) for HS§ection for varying storage efficiengl. We use the result in
architecture. For simplicity, we will ignore the energy used [45] for computing the capacity in (4). From the figure it can
for sensing and processing.

We assume that if energy;, is harvested at timé, then Comparison of poicies (B,=0.E[Y}=1)
only energy:Y;, is stored in the buffer and energi gets 0% ‘ ‘ ‘ ?
leaked in each slot whele< 5, <1 and0 < > < oo. Then
(1) become

Ert1 = ((Ex — Ty) — B2)" + B1Ys. (12)

The energy can be stored in a supercapacitor and/or ir
battery. For a supercapacitgt; > 0.95 and for the Ni-MH
battery (the most commonly used battery) ~ 0.7. The g
leakage S, for the battery is close to O but for the supe |,
capacitor it may be somewhat larger.

In this case, similar to the achievability of Theorem 1 w

03
i

0.25-

—<— Harvest Store Use
—8— Harvest Use Store
—6— Harvest Use

can show that 015 i
1 E[Y] -
Rysu = = log (1 + M) (13)
2 o
is achievable. This policy is neither capacity achieving nc RE 03 04 05 06 o7 08 09 !

throughput optimal [18]. An achievable rate of course is (¢
(obtained via HU). Now one does not even store energy and _ _
B1, B2 are not effective. The upper bouédog(l +E[Y]/02) Fig. 4. Rates for various architectures.

IS achleyablg i 1S chi-square d|str|puted with degree 1be seen that if the storage efficiency is very poor it is better
Now, unlike in Section IllI, the rate achieved by the HU may

be larger than (13) for certain range of parameter values and->c ItheHUhpohcy. Th|fs rr]equwes no sf;pr_age b_uffer and has
distributions. a simpler architecture. If the storage efficiency is gddtf .S

Another achievable policy for the system with an energ&OIICy gives the best performance. For = 1, the HUS

. N olicy and HSU policy have the same performance. Thus, if
buffer with storage inefficiencies is to use the harvestedtggn o L )
. . . o 7. we judiciously use a combination of a supercapacitor and a
Y, immediately instead of storing in the buffer. The remamlna tterv. we mav obtain a better performance
energy after transmission is stored in the buffer. We calfen’ y P '
this Harvest-Use-StoréHUS) architecture. For this case, (12)

becomes V1. FADING AWGN CHANNEL

- N - N In this section we extend the results of Theorem 1 to include
B = (Be + 51(Ye = Ti)" = (T = Y3)")" = F2)". (14) fading. Rest of the notation is same as in Section IIl. The

Compute the largest constanisuch thatg; E[(Y; — ¢)t] > Model considered is given in Figure 5.
El(c — Yi)T] 4+ B2. This is the largest such that taking

E[T}] < ¢ will make Ej, — oo a.s. Thus, as in Theorem Py Pl
1, we can show that rate Ye—» H W
Ty
Ruvs = ~log (1 + i) (15) " ‘l
2 o2
is achievable for this system. This is achievable by an inputs—{ pie > ———"  Decodr  [*§
with distributioniid Gaussian with mean zero and variarce o W= Ml 2

Equation (12) approximates the system where we have only
rechargable battery while (14) approximates the systenravh&9- 5 The model.
the harvested energy is first stored in a supercapacitor and
after initial use transferred to the battery. The encoder receives a messagefrom the node and
When 5; = 1,8, = 0, the capacity of the system isgenerates an-length codeword to be transmitted on the fading
provided in Section Ill. For the general case, its capadty AWGN channel. We assume flat, fast, fading. At tiraehe

an open problem. channel gain id7;, and takes values i®. The sequencéH }
We illustrate the achievable rates mentioned above via Brassumedid, independent of the energy generation sequence
example. {Y:.}. The channel output at timg is Wy, = Hip X, + Ni
Example 1 where X}, is the channel input at timé& and { N} is iid

Gaussian noise with zero mean and variaméeThe decoder
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receivesy” 2 (Y1,...,Y,,) and reconstruct$ such that the A. Capacity with Energy Consumption in Sensing and Pro-

probability of decoding error is minimized. Also, the deeod cessing

has perfect knowledge of the channel stieat timek. | this section we extend the results in Section IV to the

If the channel input{X;} is AMS ergodic, then it fading case.

can be easily shown that for the fading AWGN channel First we extend the achievable policies given above to

{(Xk, W), k > 0} is also AMS ergodic. Thus the channelncorporate the energy consumption in activities othentha

capacity of the fading system is ([27]) transmission. We assume perfect Channel State Information
T o ) 1 n oom the Receiver (CSIR) for the channel stdi& at the timek.

C= P Ix;w) = g 1132031’ ST W), (18) \When there is perfect CSIT also, we use the signaling scheme
X, = sgn(X}) min(\/T*(Hy)|Xt|, vV Ex), where{X,} is
éid N(0,1) andT™*(H) is the optimum power allocation such

(X1, ..., Xn) and the supremum IS over all possible AM hat E[T*(H)] = E[Y] — E[Z] — e. When no CSl is available
sequences{X,}. For a fading AWGN channel, capacity ., 1o transmitter, we Us&, = sgn(X7) min(|X.|, vEr)

achieving X, is zero mean Gaussian with variantg where where {X/} is éid N'(0, E[Y] — E[Z] — ¢). The achievable
T, depends on the power control policy used and is assum%ta ’ . )
. es for CSIT and no CSIT respectively are,
AMS. Then E[T] < E[Y] where E[T] is the mean ofT pecively
under its stationary mean. The following theorem shows that 1 2T
one can find a sequence of codewords with code lengthd Rprg_csir = =En {1og (1 + #)] , (20)
rate R such that the average probability of error goes to zero 2 ) [U] 2
H*(E|Y]-E[Z —e))}

where underPx, {X,} is an AMS sequenceX" =

asn — oo if and only if R < C whereC is given in (17).

1
Rpeg_NcsiT = §EH [log (1 +

Theorem 3: For the energy harvesting system with perfect o?
Channel State Information at the Transmitter (CSIT), (21)
1 H?T*(H) When Sleep Wake modes are supported the achievable rates
C= §EH [k’g(l + T)] ; (17)  can be improved as in Section IV.

Theorem 4: Let P(H) be the set of all feasible power
where 1 I\t allocation policies such that fdP(H) € P(H), Ex[P(H)] <
T*(H) = (— — —> , (18) E[Y]. For the energy harvesting system with processing en-
Hy H ergy cost, transmitting over a fading Gaussian channel,
and Hy is chosen such thaly [T*(H)| = E[Y].

Proof: See Appendix C. | C= s sup B[I(X: W], (22)
Thus we see that the capacity of this fading channel is same P(H)EP(H) Px:Eb(X)]<P(H)

as that of a node with average power constréifit’] and the is the capacity for the system.

instantaneous power allocated is according to ‘water §llin  Proof: : See Appendix D. n

power allocation. The hard energy constraintfof at time k
does not affect its capacity. The capacity achieving siggal

for our system isX, = sgn(X},) min(\/T*(Hy)| X} |, VEr),

We compute the capacity (22) and the capacity achieving
distribution. Let P*(h) be the power allocated in state

where{X/} is iid A’(0,1) and T*(H) is defined in (18) Without loss of generality, unddid = h, the node sleeps with
) . . U robability p, (0 < p < 1) and with probability(1 — p) the
When no Channel State Information (CSI) is available %ode transmits with a distributioR; (.). As in Section IV, we

the transmitter (but perfect CSI is available at the decpder . . . .
take X; — sgn(X})min(|X}|, vEr) where {X]} is did can show using KKT conditions that the capacity achieving

* ; istribution for stateH = h is discrete and the number of
g?(?EE[[}gg(?nf Zig[;?fgﬁm 1 this approaches the capacﬁ}/ass points are at most countable wiffb(X)] < P(h). As
o H :

Similar to the non-fading case the throughput optimal{i] the case without fading the distributidn () underff = h

L . . 1S not Gaussian.
policies in [18] are relateq t_o the Sr_\annon capacity act_\ga_\n_ The optimal power allocation polick*(H) that maximizes
energy management policies provided here for the mﬂnggz) is not ‘water filling’ but similar and uses more power
buffer case. Also the capacity is the same as the maxim M )

: . : when the channel is better.

throughput obtained in the data-buffer case in [18]. Example 2

If there is no energy buffer to store the harvested energy, .

. . . . Let the fade states tak I .5, 1, 1.2 th b-

then at timek only Y}, energy is available. ThuX,, is peak et the fade states take values{.5, 1, } with pro

power limited toY,. The capacity achieving distribution forabilities {0.2, 0.7, 0.1}. We takea = B[] =05, o* = 1.
an AWGN channel with peak power constrakit — 1 is not We compare the capacity for the cases with perfect and no

Gaussian. In general this distribution is discrete. Thedig CSIT when there is no sleep mode supported (Equation (20),

. . ) (21)) and with the optimal sleep probability in Figure 6.
capacity, when there is no buffer and perfect CSIT, is From the figure we observe that

_ . o The randomized sleep wake policy improves the rate
C = 1(X(y,h); W)dPy (y)dPr (h), 19 e
// (X{y. 1) W)dPy (y)dPe (h) (19) significantly whenE[Y] < E[Z].

where X (y, h) is the distribution that maximizes the capacity * As in the non fading case, wheh[Y] >> E[Z], the
subject to peak power constraintand fade staté. probability of node being awake is close to one.
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ot J _Fading channel~ Sieep wake polcies: FlZ1=5 Find the largest constantsuch thai3; E[(Yy —c¢)*] > E[(c—

' Yi) T+ B2. Of coursec < E[Y]. When there is no CSIT, this
is the largest such that takindl, = min(c — ¢, E}), where

1 6 > 0 is any small constant, will maké&; — oo a.s. and
henceTl}, — c a.s. Then, as in Theorem 3, we can show that

0.8

| 1 H?c
Rys—ncsim = EEH [1og <1 + 7)} (28)

is an achievable rate.

When there is perfect CSIT, ‘water filling’ power allocation
can be done subject to average power constraintard the
1 achievable rate is

0.4

—¥— No sleep;No CSIT
—&— No sleep;Perfect CSIT

1 H?T*(H
—&— Sleep with optimum p;No CSIT RUS*CSIT = iEH |:10g (1 + #)] , (29)

—©— Sleep with optimum p;Perfect CSIT - 0’2

0.2

where T*(H) is the ‘water filling’ power allocation with

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ {1 E[T*(H)]=c
05 1 15 2 2, ° 35 4 45 5 We illustrate the achievable rates mentioned above via an
example.
Fig. 6. Comparison of sleep wake policies. Example 3

Let the process{Y;} be iid taking values in{0.5, 1}
with probability {0.6, 0.4} . We take the loss due to leakage
B2 = 0. The fade states aned taking values in{0.4, 0.8, 1}

In this section we take into account the inefficiency ifvith probability {0.4, 0.5, 0.1}. In Figure 7 we compare
storing energy in the energy buffer and the leakage from thge various architectures discussed in this section foyingr

B. Achievable Rate with Energy Inefficiencies

energy buffer. The notation is same as in Section V. storage efficiencys;. The capacity for the no buffer case with
The energy evolves as perfect CSIT is computed using equations (19) and (26).
Ery1 = ((Bx = Ti) — B2) + 1Ys. (23)

Fading channels- Comparison of schemes

In this case, similar to the achievability of Theorem 3 we ce ‘ ‘ ‘
show that the rates

2 _

Rs—ncsir = %EH {bg <1 + & (ﬂlEUE/] ﬂ2)>} , (24)
2 _

Rs_csir = %EH {log (1 + & (ﬂng{) ﬂ2)>} , (25)

are achievable in the no CSIT and perfect CSIT case resp ¢ s
tively, whereT' (H) is a power allocation policy such that (25) :
is maximized subject td&y [T (H)] < E[Y]. This policy is
neither capacity achieving nor throughput optimal [18].

An achievable rate, when there is no buffer and perfect CS
is (19). A numerical method to evaluate the capacity wittkpei
power constraints is provided in [43]. It is also shown in][45
that for,/y < 1.05, the capacity has a closed form expressiol

0.1 —¥— HSU; Perfect CSIT
—%— HSU; No CSIT
—6— HUS; Perfect CSIT|
—&— HUS; No CSIT

—&8— HU; Perfect CSIT i

o
03 0.4 0.5 0.6 0.7 0.8 0.9 1

> =" /2]og cosh(y — \/yz) B,
C(y) :y—/ Ner VI 4o, (26)

The capacity in (19) is without using buffer and henge Fig. 7. Rates for various architectures.

and 3, do not affect the capacity. Hence unlike in Section From the figure we observe the following:
I, (19) may be larger than (24) and (25) for certain range of
parameter values. We will illustrate this in Example 3. When *
there is no buffer and no CSIT the distribution that maxirsize
the capacity cannot be chosen as in (19) and the capacity is
less than the capacity given in (19).

For the Harvest-Use-StordHUS) architecture, (23) be-
comes

Unlike the ideal system, thé/ SU (which uses infinite
energy buffer) performs worse than thEJ (which uses
no energy buffer) when storage efficiency is poor for the
perfect CSIT case.

« When storage efficiency is highfi{U policy performs
worse compared tdd SU and HUS for perfect CSIT
case.

Epi1=((Bx + (Y —Te)" — (T, — Yi)T)T = B2)T. (27) « HUS performs better thadl SU for No/Perfect CSIT.
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In slot k, n Ry, bits are taken out of the queuedif > nRy.

e
Ak_b Ty B0 W The bits are represented by a message € {1,...,2"%}
» Encoder [—* Ly Decoder — andz"(my) is sent. Ifg, < nR; no bits are taken out of the
gueue and “0 message™(0) is sent.
- T ot Hence the processd€,} and {¢;} satisfy
k k
- Qer1 = qu — nRplyg,>npy + A, (31)
E, Eriw = (Bx—Tr) +Ys. (32)
With Ty, in (30), E;, — oo a.s. andTy, — E[Y] — € a.s.
Fig. 8. Model of an energy harvesting point to point channel. Also, Ry = %log(l + %) N %log(l + E[ri]z)—E). Thus we
obtain

Theorem 5: The random data arrival procegsi;} can
e For g8 = 1, the HUS policy and HSU policy are the be communicated with arbitrarily low average probabilify o
same for both perfect CSIT and no CSIT. block error, by an energy harvesting sensor node over a
« The availability of CSIT and storage architecture play§aussian channel with a stable queue if and onlZifl] <
an important role in determining the achievable rates. %nlog(H—E[g}). |

no

In Theorem 5, ‘stability’ of the queue has the following in-
VII. COMBINING INFORMATION AND QUEUING THEORY terpretation. If{ A, } is stationary, ergodic theR[g, — oo =

In this section we consider a system with both energB/",’m,d with probability 1,{qx} visits the set{g : ¢ < nR}
and data buffer, each with infinite capacity (see Fig. 8). W@ﬁnnely often. Also the sequendg;, } |s_t|ght ([49])'_”{Ak}
consider the simplest case: no fading, no battery leakade &n ¢4 then {ax, By} is a Markov chain. WithT}, in (30),
storage inefficiencies. The system is slotted. During #lot 2Symptotically,7, — E[Y] — ¢ a.s. and we can ignore the
(defined as time intervalk, k + 1], i.e., a slot is a unit of £x component of the process and think{af; } as a Markov

time), A, bits are generated. Although the transmitter ma?'ain with7;, = E[Y] —e. It has a finite number O,f ergodi_c
generate data as packets, we allow arbitrary fragmentafion ets. Th,e procesty, } eventually enters one ergod|c_ se.t W',th
packets during transmission. Thus, packet boundariesare HrObab'l_'ty_ 1 and_ then approa_ch(_as a stationary dlstr_|but|o
important and we consider bit strings (or just fluid). Thesbit! {¢r} iS irreducible and aperiodic thefy;} has a unique
Ay are eligible for transmission ik + 1)st slot. The queue stationary distribution andg;} converges in distribution to it

length (in bits) at timek is ¢,. We assume that transmissior'"eSPective of initial co_nd|t|0n§. . .
consumes most of the energy at the transmitter and ignoréA‘Ithough the capacity achieved n each slot IS as per
other causes of energy consumption. We denoteFhythe Theorem 1, the set-up used here is somewhat different. In

energy available at the node at tiheThe energy harvesting 1 heorem 1, the t_|rr_1e| scalg of thr? dynamics ththe enkergy
source is able to replenish energy By in slot . proceis{E_k} 1S m'ln' s]?tsl, ut mht LS section ‘é"e _a\r:e ta §n|
In slot k we will use energy it at the time scale of slots (w ich one is the right mode
depends on the system under consideration). Thus, in Timeore
Ty = min(Ey, E[Y] — ¢), (30) 1 we used the theoretical tool of AMS sequences. But in
where ¢ is a small positive constant. It was shown in [18 ur pr_esent setup, in a slot we can use, XQ"".".X” Z.Zd.
S : o -GaussianV (0, T, /n—¢) and use a codeword only if it satisfies
that such a policy is throughput optimal (and it is capaat/y@ 5 i X
achieving in Theorem 1) i i + X; < Ty and g .z nRy; otherW|se an error
) - . . message is sent. Of course, if the physical system demands
There aren channel uses (mini slots) in a slot, i.e., th? . )
hat we should use for the energy dynamics the time scale of

system uses an length code to transmit the data in a slot,
._.a channel use then we can use the framework of Theorem 1.
The lengthn of the code word can be chosen to satisfy

certain code error rate. The slot lengthand R, are to be

appropriately chosen. We use codewords of lengdnd rate VIIl. FINITE BUFFER
Ry = %1Og(1 + T}, /nc?) in slot k with the following coding In this section we find achievable rates when the sensor node

and decoding scheme: has a finite buffer to store the harvested energy. This case is
1) An augmented message et ..., 2"} U {0}. of more practical interest. We consider the simplest case: n
2) An encoder that assigns a codeworti(m) to each fading, no battery leakage and storage inefficiencies and no
m € {1,...,2"%} U {0} wherez"(m) is generated as atid data queue. The node has an energy buffer of Sizeco. By
sequence with distribution/ (0, T, /n — 6;) andd; > 0 is a this we mean that the energy buffer can store a finite number
small constant. The codeword (m) is retained if it satisfies of energy units of interest.

the power constraing_; »? < Tj. Otherwise error message 0 We use the HUS architecture where the energy harvested
is sent. is used and only the left over energy is stored. The energy

3) A decoder that assigns a message {1, ..., 2" }U{0} available at the buffer at timé is denoted byEk. At time
to each received sequeneé in a slot such thatz™(m),w™) k, the node uses enerdl, with T}, < By + Y5 2 E.. We
is jointly typical and there is no other”(m’) jointly typical assume thafs;, andY;, take values in finite alphabets. Also,
with w”™. Otherwise it declares an error. {Yi}i>1 is assumedid.
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We assume that the buffer state information (BSH), is |, Fintebufer

perfectly available at the encoder and the decoder at time

X} denotes the codeword symbol used at thrand X < T;.. | o Pt e, reey ol |

Of courseTy, < Ex and B, <T. In generalT}, is a function ' i:gﬁf;:;; optimal policy

of Ey, ..., E}. An easily tractable class of energy manageme

policies is 1 : ]
7

Ty = f(Ek)v (33)

0.8 b
wheref defines the energy management policy. The codewcg
symbol X, is picked with a distribution that maximizes the”
capacity of a Gaussian channel with peak power constra
T, (we quantize this such thdtF,} takes values in a finite
alphabet). Hence the proce§E }i>1 satisfies,

0.6 4
04r q

Bii1 = (Bx — X2) + Yias (38) o | f

and is a finite state Markov chain with the transition matri
decided byf. If £, = 0 then the Markov chain will either % 1 2 3 4 5 6 7 8 9
enter only one ergodic set or possibly in a finite number u L

disjoint components which depend ¢gn If 7* and I denote Fig. 9. Achievable rate for finite buffer.

the Pinsker and Dobrushin information rates ([27]), sinee w

have finite alphabetd;* = I. In particular,

I (X; W): T(X; W): lim lI(X(n); W(n)). (35) rate using simultaneous perturbation stochastic app rabidam

nsoo N algorithm [52]. The achievable rate is also compared with a
Also, AEP holds for{ X, Wj}. greedy policy, where the rate is evaluated using algorithms
The following theorem provides achievable rates. provided in [50] and [51]. In the greedy policy, at any instan

Theorem 6: A rate R is achievable if an en- anoptimum distribution foran AWGN channel peak amplitude
ergy management policyf exists, such thatR < constrained toy/E, = VE, +Y; is used. We have also
T(X; w). B obtained the optimal rates using a 1-step Markov policy (33)

The proof is similar to the achievability proof given inwhere the optimal Markov chain is obtained via stochastic
Theorem 1. The rates (35) can be computed via algorithmgproximation. Then achievable rates are compared with the
available in [50] and [51]. Using stochastic approximationapacity with infinite buffer and no-buffer in Figure 9.

([52]) we can obtain the Markov chains that optimize (35).

If initial energy Ey is not zero, then the Markov chain can TABLE |
enter some other ergodic sets and the achievable rates can be Y), PROCESS
different. Iff_|s such thal{Ek_} is an irreducible Marko_v _c_ham E(Y) | Mass pomnts Probabiliies
then the achievable rates will be independent of the irstiziie 0 000 1 0 0
Fy. 10142 0 1 2 | 0.3192 0.3474 0.3334
Theorem 6 can be generalized to include the case where 21030] 123 | 02303 04364 0.3333
. . . 33078 2 3 4 0.1794 0.3334 0.4872
_{(Ek,Xk)} is a k—step finite state Markov chain. In fact 71991 3 42 5 | 02338 03333 04329
if {(Fx,Xk)} is a general AMS ergodic finite alphabet 5.0855| 45 6 0.33330.2479 0.4188
sequence then AEP holds antt = 1. Thus, R < g-gzgg 2 3 ; 8-257’23 ggggi 8-?;23
: —1 n. ny j i - : . :
limy, oo n™"1(X"; W") is achievable. 82533 7 8 9 | 0.2067 0.3333 0.4600
The capacity of our system can be written as ([53]) 90332 8 9 10 | 03167 03334 03499
9.9136| 9 10 11 | 0.3333 0.4198 0.2469

1 n n
C = sup P-liminf — log M, (36)
p(a")p(w™)

n
where P-liminf of a sequence of random variablési,.} From the figure we observe that, for a given buffer size, the

is defined as the infimumy such that for alle > 0 greedy policy is close to optimal at highé[Y]. Also, the
1 optimal achievable rates for finite buffer case are closééo t

lim,, oo P[4, < a — €] = 0 ([53]) and sup is over all . CT
input distributions X™ which satisfy the energy constraintsc"’lpac'ty for infinite buffer for smalEY] but becomes close

X? < By for all kK > 0. An interesting open problem is: cantO the greedy at higtE[Y].
(36) be obtained by limitind X,,} to AMS ergodic sequences
mentioned above?
Example 4 In this paper the Shannon capacity of an energy harvesting
We consider a system with a finite buffer wilh = 15 sensor node transmitting over an AWGN channel is provided.
units in steps of size 1. ThE, process has three mass point# is shown that the capacity achieving policies are related
and provided in Table 1. We compute the optimal achievaltlee throughput optimal policies. Also, the capacity is pred

IX. CONCLUSIONS
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when energy is consumed in activities other than transorissi Converse Part For the system under consideration
Achievable rates are provided when there are inefficienciésy"; | 7, < 137 Vi — E[Y] as. Hence, if
in energy storage. We extend the results to the fast fadifig.(s), ¥ = 1,...,n} is a codeword for message
case. We also combine the information theoretic and queuing € {1,...,2"%} then for all largen we must have
theoretic formulations. Finally we also consider the cakenwv %2221 X (s)? < E[Y] 4+ § with a large probability for any

the energy buffer is finite. 0 > 0. Hence by the converse in the AWGN channel case,
limsup,, o, ~1(X™ W) < 3 log(1+(E[Y] + 6)/0?). Now
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APPENDIXA APPENDIX B
PROOF OFTHEOREM 1 PROOF OFTHEOREM 2
Codebook Generation Let {X]} be aniid Gaussian . .
sequence with mean zero and varianE¢Y] — ¢ where Codebook ~ Generation : For each message

; PR c {1,2,...,2"%}, generate: length codewords according to
e > 0 is an arbitrarily small constant. For each messagg% ”‘,{d distributio];]g)’( with const?aintE[b(X’)] Ry _Eg

s € {1,2,...,2"F} generaten length codewords according h 0 I tant. Denote th q 4b
to theiid distribution N (0, E[Y] — €). Denote the codeword w/eree > D15 a small constant. »enote the codeword by
X'"(s). Disclose this codebook to the receiver.

by X’(s). Disclose this codebook to the receiver. -
Encoding When S = s, choose the channel codeword to Encoding: When S = s, choose the channel codeword as
be X, = sgn(Xj(s)) min(v/Ek, | X, (s)|) wheresgn(z) = 1
if # >0and= —1if x < 0. ThenT, = X? < E; and ) , N = oy
E[Ty] = E[X}?] < E[Y] — e Thus, from standard results X;,(s) = {mm{X’“’(s)’ (Bk = 2)" !f X’j =0,
on G/G/1 queues ([54], chapter B — oo a.s. and hence max{Xj(s), =/ (Ex — Zk)*},  if X; <0
| Xr — Xi| = 0 a.s. Also (X, W}) converges almost surely . )
(a.s.) to a random variable with the distribution (Of7, 17) ~ Then to transmitX;(s) we need energylj, = (Xj(s) +
and {(Xy, Wy, X.)} is AMS ergodic wheréV, = X/ + Nj. Zi)lix, 20y @nd Eyy1 = (Ej, — Tj) + Y. Also,
Decoding:The decoder obtaing ™ and finds the codeword

X'"(8) such that(X'™(s5),W™) € T where T is the EIT) = EIX{]+ E[Z]P{X # 0}
set of weaklye-typical sequences of the joint AMS ergodic < E[X2]+aP{X; #0} = E[Y] -
distribution Px . If it is a uniques then it declares as the
message transmitted; otherwise declares an error. Thus, from standard results on G/G/1 queues ([54], chapter
Analysis of error events 7), E, — oo a.s. and hencgX;, — X} | — 0 a.s. Also finite
Let s has been transmitted. The following error events cgimensional distributions of (Xo ik, Wintk, X7, 41), b =
happen 0} converge a.s. to that of {(X,,W,,X;)}. Thus

E1: {(X'"(s),W™) ¢ T"}. The probability of evenEl {(Xk, Wy, X},)} is AMS ergodic with limiting distribution
goes to zero as{X/, W} is AMS ergodic and AEP holds (Xz, Wy, X}) whereWy = Xj + Nj.. Furthermore the energy
for AMS ergodic sequences (Lemma 1), becafisg, W} Cconstraints are also met.
has a density with respect tad Gaussian measure on an If the chosen codeword ise—weakly typical and
appropriate Euclidean space. i b(zi)/n < E[Y]—¢, then transmit it; otherwise send an

E2: There existss # s such that{(X'"(3), W") e T"}. error message. By AEP for AMS sequences, the probability
Let H(X'), H(W') be the entropy rates dfX;} and{I¥;}. thatan error message is sent goes to zern as co.

Next we show that?(E;) — 0 asn — co. We have Decoding: The decoder obtaing/’™. If it finds a unique
codewordX '™ (8) such that{(X'™(s), W™) € T*} where, T"
P(E2) < Y P((X™(3),W")eT!) is the set ofe-typical sequences for the distributid® 1y, it
§7s declaress as the transmitted message. Otherwise it declares
< 2"y PE™ ) an error.
(zm,wn)eTr By the usual methods as in Theorem 1 with the above
< onR Z P P(w'™) coding-decoding scheme, we can show that the probability of

error for this scheme goes to zero as—+ co. Now the fact
thatC' is non-decreasing i [Y] provides the capacity (7) as
e — 0.
o(nH (X', W')+e)gnRo—(nH(X')—€)g—(nH(W')~¢) Converse The converse follows via Fano's inequality
as in Theorem 1. For that proof to hold here,
Also, since {X; W} are iid vectors with {X;} iid we need thatC() is concave (as for example in
N(O,E[Y] =€), I(X',W') = Llog(1 + ZX]=¢). Therefore, the converse for the AWGN channel capacity in
P(E2) = 0andn — oo if R < I(X’;W’) = L1og(1+Z01).  [55)). u

o

(z/n,w’”)ETEn
|T6n|2nR2—(nﬁ(X')—e)2—(nﬁ(W’)—e)

IN N
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APPENDIXC
PROOF OFTHEOREM 3

Achievability Let 7; = T*(H;,) with T* defined in (18)
with E[T*(H)] = E[Y] — ¢ wheree > 0 is a small constant. [°]
Since{H;/g} is iid, {T}} is alsoiid. [10]

Let { X, } beiid Gaussian with zero mean and variance one.
The channel codeword;, = sgn(X},) min(\/7}|X} |, vVEx)
where sgn(z) = 1, if > 0 and —1 otherwise. Define
T, = X,f. Thus, as in the proof of Theorem 1, from standard
results on G/G/1 queues ([54], chapter B, — oo a.s.
Therefore, ag™*(H) is upper boundedim,, _, oo SUp;~,, |7k —
T*(Hy)| — 0 a.s. This implies that{ X;,} is an AMS ergodic
sequence with the stationary mean being the distribution [08]
Vv T*(Hy)X;,. Then since the AWGN channel under consid-
eration is AMS ergodic ([27])(X, W) 2 {(Xg, Wi), E>1} 114
is AMS ergodic.

By using the techniques in Theorem 1, we can show t 15]

(8]

[11]

[12]

12

O. Gnawal, B. Greenstein, K. Y. Jang, A. Joki, and J. P&4Eke Tenet
architecture for tired sensor networkfoc. of the 4th International
Conference on Embedded Networked Sensor Ststems, ptM53—
166, 2006.

S. Kumar, T. H. Lai, and J. Balogh, “On k-coverage of mpstleeping
sensor network,Wireless Networksvol. 14, no. 3, pp. 277-294, 2008.
A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Pomanage-
ment in energy harvesting sensor network&CM. Trans. Embedded
Computing System2006.

D. Niyato, E. Hossain, M. M. Rashid, and V. K. Bhargavayifeless
sensor networks with energy harvesting technologies: Aegdmaoretic
approach to optimal energy managemetEEE Wireless Communica-
tions pp. 90-96, Aug 2007.

V. Raghunathan, S. Ganeriwal, and M. Srivastava, “Ejinertechniques
for long lived wireless sensor networkdEEE Communication Maga-
zing pp. 108-114, April 2006.

A. Kansal and M. B. Srivastava, “An environmental enetmrvesting
framework for sensor networks,international Symposium on Low
Power Electronics and Design, ACM Presp. 481-486, 2003.

M. Rahimi, H. Shah, G. S. Sukhatme, J. Heidemann, and &irE
“Studying the feasibility of energy harvesting in a mobilensor
network,” Proc. IEEE Int. Conf. on Robotics and Automati@®03.

X. Jiang, J. Polastre, and D. Culler, “Perpetual envinentally powered

we can have an encoding and decoding scheme to provide any sensor networksProc. IEEE Conf on Information Processing in Sensor

R <I(X,W) = Eg[log(1+ H*T*(H))/o?).

Converse PartLet there be a sequence of codebooks il
our system with raté? and average probability of error going[17]
to 0 asn — oo. If {X(s), k = 1,...,n} is a codeword
for messages € {1,..,2"%} then 1/n Y }_, Xi(s)? <
1/nd> Y, < E[Y]+6 for any§ > 0 with a large [18]
probability for all n large enough. Hence by the con-
verse in the fading AWGN channel case ([56]R < [19]
limsup,_, o, [(X*¥;W")/k < 1Eg[log(1 + H*T*(H)/o?)]
for T*(H) given in (18).

Combining the direct and the converse part completes tl2él
proof. |

[21]
APPENDIXD
PROOF OFTHEOREM4

Fix the power allocation policy P*. Under P*(h),
the achievability ofsupp, . p(x)<p-(n) [(X; W), whenever
Hj, = h, is proved using the techniques provided in Theorepg)
2 for the non-fading case. Using this along with finding
the expectation w.r.t. the optimum power allocation scherr[12e4]
completes the achievability proof.

The converse follows via Fano's inequality.
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