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Abstract—In this paper, we compute worst case secrecy rates
in amplify-and-forward (AF) relay beamforming with cooper-
ative jamming (CJ) in the presence of imperfect channel state
information (CSI). A source-destination pair aided by M relays
is considered. Number of eavesdroppers J can be more than the
number of relays. Out of the M relays, k1 relays (1 ≤ k1 ≤M )
act as data relays and the remaining k2 = M − k1 relays act as
jamming relays. Data relays aid the communication by relaying
data in AF mode, and jamming relays cooperate by transmitting
jamming signals (artificial noise). The jamming signals are
created such that they degrade the eavesdroppers’ channels but
do not significantly affect the intended receiver’s channel, thereby
improving secrecy rate. Imperfection in the CSI is modeled using
a norm-bounded error model. We solve for the optimum (k1, k2)
and the weights of data relays and jamming relays that maximize
the secrecy rate subject to a total relay power constraint. We
relax the rank-one constraint on the complex semi-definite data
relays and jamming relays weight matrices and reformulate the
optimization problem into a form that can be solved using convex
semi-definite programming. Numerical results on the secrecy rate
that illustrate the effect of cooperative jamming, imperfect CSI,
and number of eavesdroppers are presented.

keywords: Cooperative relay beamforming, physical layer security, se-

crecy rate, amplify-and-forward, cooperative jamming, imperfect CSI, multiple

eavesdroppers, semi-definite programming.

I. INTRODUCTION

Wireless transmissions are prone to evesdropping due to

their broadcast nature. Providing security through physical

layer mechanisms where the intended receiver gets the infor-

mation reliably while the eavesdroppers get no information is

an active area of recent research [1]. Secrecy capacity results

for fading channels have been widely reported [2], [3]. Also,

secure wireless communications via cooperation is witnessing

growing research interest [4]. In particular, cooperation based

on amplify-and-forward (AF) and decode-and-forward (DF)

relaying protocols for secure communication has been investi-

gated in the literature, assuming perfect and imperfect channel

state information (CSI) [5], [6], [7].

Secrecy rate can be improved by adding artificially gener-

ated noise (jamming signal) to the information bearing signal

such that it degrades the channel towards the eavesdropper

but does not degrade the intended receiver’s channel [8].

This can be achieved by designing the jamming signal to

be orthogonal to the information signal when it reaches the

intended receiver, assuming perfect knowledge of CSI. When

the sender node has more than one transmit antenna, the

additional antennas can be used to transmit jamming signals.

Alternately, if ‘helper nodes’ are available, they can be used

to transmit the jamming signals. The idea of helper nodes

transmitting jamming signals to improve secrecy rate - referred

to as cooperative jamming (CJ) - has been attracting increased

research attention [4], [9]- [12]. Our new contribution in this

paper is the evaluation of secrecy rates in an amplify-and-

forward (AF) relay beamforming scenario in the presence of

cooperative jamming and imperfect CSI. Our work is different

from the above works on CJ as follows.

In the secrecy rate computation in [4], the following two

scenarios are considered. In one scenario, all the M relays are

used for relaying data in either AF or DF mode, and there is no

cooperative jamming. In the second scenario, all the relays are

used for cooperative jamming, and there is no data relaying.

These are two extreme cases of the use of relays, which are not

necessarily optimal. A more general formulation would be to

allow k1 out of M relays (1 ≤ k1 ≤M) to act as data relays

in AF or DF mode and the remaining k2 =M − k1 relays to

act as cooperative jamming relays (see Fig. 1), and solve for

the optimum (k1, k2) that maximizes the secrecy rate. In this

paper, we consider this general formulation. In particular, we

consider AF protocol for data relaying. We also consider that

the knowledge of the CSI is imperfect, and the imperfection

is modeled using a norm-bounded CSI error model.

In the above setting, our goal is to solve for the optimum

relay beamforming weights (weights of both data relays and

jamming relays) that maximize the worst case secrecy rate

subject to a total relay power constraint and CSI error con-

straints. The solution approach adopted is to relax the rank-

one constraint on the complex semi-definite weight matrices

of the data relays and jamming relays and reformulate the

optimization problem into a form that can be solved using

convex semi-definite programming.

II. SYSTEM MODEL

Consider the cooperative relay beamforming system model

shown in Fig. 1, which consists of a source node S, M
relay nodes {R1, R2, · · · , RM}, an intended destination node

D, and J eavesdropper nodes {E1, E2, · · · , EJ}, where J
can be greater than M (i.e., more number of eavesdrop-

pers than the number of relays). In addition to the links

from relays to destination node and relays to eavesdropper

nodes, we assume direct links from source to destination

node and source to eavesdropper nodes. The complex fad-

ing channel gains between source to relays are denoted by

{γ∗1 , γ
∗
2 , · · · , γ

∗
M}. Likewise, the channel gains between relays

to destination and relays to the jth eavesdropper are denoted

by {α∗
1, α

∗
2, · · · , α

∗
M} and {β∗

1j , β
∗
2j , · · · , β

∗
Mj}, respectively,

where j = 1, · · · , J . The channel gains on the direct links

from source to destination and source to jth eavesdropper are
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Fig. 1. Relay beamforming with data relays and cooperative jamming relays.

denoted by α∗
0 and β∗

0j , respectively. The channel gains are

assumed to be i.i.d. complex Gaussian with zero mean and

variances σ2
γ∗

i
, σ2

α∗

0
, σ2

α∗

i
, σ2

β∗

0j
, and σ2

β∗

ij
. Let P0 denote the

total transmit power budget in the system (i.e., source power

plus relays power).

A. Relay Beamforming Using AF with Cooperative Jamming

The source transmits data in the first hop of transmission.

Let x be the source symbol transmitted from the source with

E{|x|2} = 1. In the second hop of transmission, let k1 out

of M relays, 1 ≤ k1 ≤ M , are selected to act as the data

relays to aid communication from S to D and remaining

k2 =M − k1 relays are selected to act as jamming relays for

the transmission of jamming signals. Let Ps denote the power

transmitted by the source in the first hop of transmission.

Let {φ1, φ2, · · · , φk1
} denote the complex weights applied

on the transmitted signals from the k1 data relays and let

{ψ1, ψ2, · · · , ψk2
} denote the complex weights applied on the

transmitted jamming signals from the k2 jamming relays in the

second hop of transmission. Let yk1

R , yD1
and yE1j

denote the

received signals at the k1 data relays, destination D and jth
eavesdropper Ej , respectively, in the first hop of transmission.

In the second hop of transmission, the received signals at the

destination and jth eavesdropper are denoted by yD2
and yE2j

,

respectively. We have

yk1

R =
√
Psγ

k1∗x+ ηk1

R , (1)

yD1
=
√
Psα

∗
0x+ ηD1

, (2)

yE1j
=
√
Psβ

∗
0jx+ ηE1j

, j = 1, · · · , J, (3)

yD2
= yk1T

R diag(φk1)αk1∗ +αk2†diag(ψk2)zk2 + ηD2

=
√
Psγ

k1†diag†(αk1)φk1x+ ηk1T
R diag†(αk1)φk1 +

αk2†diag(ψk2)zk2 + ηD2
, (4)

yE2j
= yk1T

R diag(φk1)βk1∗
j + βk2†

j diag(ψk2)zk2 + ηE2j

=
√
Psγ

k1†diag†(βk1
j )φk1x+ ηk1T

R diag†(βk1
j )φk1 +

β
k2†
j diag(ψk2)zk2 + ηE2j

, ∀j = 1, · · · , J, (5)

where γk1∗ = [γ∗
1 , · · · , γ

∗
k1
]T , η

k1
R = [ηR1 , · · · , ηRk1

]T , φk1 =

[φ1, · · · , φk1 ]
T , ψk2 = [ψ1, · · · , ψk2 ]

T , αk1∗ = [α∗
1, · · · , α

∗
k1
]T ,

αk2∗ = [α∗
(k1+1), · · · , α

∗
M ]T , β

k1∗
j = [β∗

1j , · · · , β
∗
k1j

]T , βk2∗
j =

[β∗
(k1+1)j , · · · , β

∗
Mj ]

T , j = 1, · · · , J , zk2 = [z1, · · · , zk2
]T ,

and [.]T , (.)∗, [.]† denote transpose, conjugate, conjugate

transpose operations, respectively. The noise components, η’s

and z’s are assumed to be i.i.d. CN (0, N0) and CN (0, 1),
respectively. Also, η’s and z’s are assumed to be independent.

1) Secrecy Rate with Perfect CSI: Let Rk1k2

D and Rk1k2

Ej

denote the information rates at the destination D and jth eaves-

dropper Ej , respectively. Using (2) and (4), the expression for

the information rate at the destination D is

Rk1k2

D =
1

2
log2

(
1 +

Psα
∗
0α0

N0
+
Pst11
t12

)
, (6)

where

t11 = φk1†diag(αk1)γk1γk1†diag†(αk1)φk1 ,

t12 = N0 +N0φ
k1†diag†(αk1)diag(αk1)φk1 +

ψk2†diag†(αk2)diag(αk2)ψk2 .

Similarly, using (3) and (5), the expression for the information

rate at the jth eavesdropper Ej is

Rk1k2

Ej
=

1

2
log2

(
1 +

Psβ
∗
0jβ0j

N0
+
Pst21
t22

)
, (7)

where

t21 = φk1†diag(βk1
j )γk1γk1†diag†(βk1

j )φk1 ,

t22 = N0 +N0φ
k1†diag†(βk1

j )diag(βk1
j )φk1 +

ψk2†diag†(βk2
j )diag(βk2

j )ψk2 , ∀j = 1, · · · , J.

The total power transmitted by all M relays is

Psφ
k1†diag(γk1)diag†(γk1)φk1 + N0φ

k1†φk1 + ψk2†ψk2 .

The achievable secrecy rate Rk1k2
s for (k1, k2) relay

combination is [4]:

Rk1k2
s = max

φk1 , ψk2

min
j:1,··· ,J

(Rk1k2

D −Rk1k2

Ej
)

= max
φk1 , ψk2

min
j:1,··· ,J

1

2
log2 t3 (8)

s.t.

Psφ
k1†diag(γk1)diag†(γk1)φk1 +N0φ

k1†φk1

+ ψk2†ψk2 ≤ P0 − Ps, (9)

where t3 =
1 +

Psα
∗

0α0

N0
+ Pst11

t12

1 +
Psβ

∗

0jβ0j

N0
+ Pst21

t22

.

Defining Φ
k1

△
= φk1φk1

†
and Ψ

k2
△
= ψk2ψk2

†
, the above

secrecy rate expression can be written in the following equiv-

alent optimization form:

Rk1k2
s = max

Φk1 , Ψk2

min
j:1,··· ,J

1

2
log2 t4 (10)
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s.t. Φ
k1 � 0, rank(Φk1) = 1, Ψ

k2 � 0, rank(Ψk2) = 1,

tr(Φk1(Psdiag(γ
k1)diag†(γk1) +N0I))

+ tr(Ψk2) ≤ P0 − Ps, (11)

where t4 =
(1 +

Psα
∗

0α0

N0
+ Pst411

t412
)

(1 +
Psβ

∗

0jβ0j

N0
+ Pst421

t422
)
,

t411 = tr(Φk1diag(αk1)γk1γ
k1†diag

†(αk1)),

t412 = N0 +N0tr(Φ
k1diag(αk1)diag†(αk1)) +

tr(Ψk2diag(αk2)diag†(αk2)),

t421 = tr(Φk1diag(βk1
j )γk1γ

k1†diag
†(βk1

j )),

t422 = N0 +N0tr(Φ
k1diag(βk1

j )diag†(βk1
j )) +

tr(Ψk2diag(βk2
j )diag†(βk2

j )).

Relaxing the rank constraint on Φ
k1 , Ψ

k2 and dropping the

logarithm [5]- [7], [10], [13], the optimization problem to

compute the above secrecy rate expression can be written in

the following equivalent optimization form:

max
Φ

k1 , Ψ
k2

min
j:1,··· ,J

t4 (12)

s.t. Φ
k1 � 0, Ψ

k2 � 0,

tr(Φk1(Psdiag(γ
k1)diag†(γk1) +N0I)) +

tr(Ψk2) ≤ P0 − Ps. (13)

B. Imperfect CSI Model

We consider imperfect CSI, modeled as γ∗i = γ̂∗i + e
∗
γ∗

i
, i =

1, · · · , k1, α∗
0 = α̂∗

0 + e∗α∗

0
, β∗

0j = β̂∗
0j + e∗β∗

0j
, j = 1, · · · , J ,

αk1∗ = α̂k1∗ + e∗
αk1∗ , αk2∗ = α̂k2∗ + e∗

αk2∗ , βk1∗
j = β̂

k1∗

j +

e∗
β

k1∗

j

, j = 1, · · · , J , βk2∗
j = β̂

k2∗

j + e∗
β

k2∗

j

, j = 1, · · · , J ,

where γ∗i ’s, α∗
0, β

∗
0j’s, αk1∗, αk2∗, βk1∗

j ’s, βk2∗
j ’s are the

true CSI, γ̂∗i ’s, α̂∗
0, β̂∗

0j’s, α̂
k1∗, α̂

k2∗ β̂
k1∗

j ’s, β̂
k2∗

j ’s are the

corresponding imperfect CSI, and e∗γ∗

i
’s, e∗α∗

0
, e∗β∗

0j
’s, e∗

αk1∗ ,

e∗
αk2∗ , e∗

β
k1∗

j

’s, e∗
β

k2∗

j

’s are the additive errors in the CSI. We

consider a norm-bounded CSI error model, where it is assumed

that

|eγ∗

i
| ≤ ǫγ∗

i
, |eα∗

0
| ≤ ǫα∗

0
, |eβ∗

0j
| ≤ ǫβ∗

0j
, ‖eαk1∗‖ ≤ ǫαk1∗ ,

‖eαk2∗‖ ≤ ǫαk2∗ , ‖e
β

k1∗

j

‖ ≤ ǫ
β

k1∗

j

, ‖e
β

k2∗

j

‖ ≤ ǫ
β

k2∗

j

.

In addition to the above assumptions, we assume the knowl-

edge of the combined channel gain vectors (γα)k1∗ =
[γ∗1α

∗
1, · · · , γ

∗
k1
α∗
k1
]T and (γβ)k1∗

j = [γ∗1β
∗
1j , · · · , γ

∗
k1
β∗
k1j

]T ,

j = 1, · · · , J . In support of this assumption, we note that

estimates of the product channel gains (γα)k1∗ and (γβ)k1∗
j ’s

can be obtained using the techniques proposed in [14], [15].

The imperfections in the knowledge of these channel vectors

are modeled as (γα)k1∗ = (γ̂α)k1∗+e∗
(γα)k1∗ and (γβ)k1∗

j =

(γ̂β)k1∗
j + e∗

(γβ)
k1∗

j

, where (γα)k1∗ and (γβ)k1∗
j are the

perfect CSI, (γ̂α)k1∗ and (γ̂β)k1∗
j are the corresponding

imperfect CSI, and e∗
(γα)k1∗ and e∗

(γβ)
k1∗

j

are the additive

errors in the CSI. A norm-bounded error model is assumed,

i.e., ‖e(γα)k1∗‖ ≤ ǫ(γα)k1∗ and ‖e
(γβ)

k1∗

j

‖ ≤ ǫ
(γβ)

k1∗

j

,

j = 1, · · · , J .

III. SECRECY RATE FOR AF RELAY BEAMFORMING WITH

CJ AND IMPERFECT CSI

The optimization problem (12) for computing the worst case

secrecy rate of AF relay beamforming can be written in the

following form:

max
Φ

k1 , Ψ
k2

min
j:1,··· ,J

min
e
γ∗
i

, e
α∗
0
, e

αk1∗ , e
αk2∗ ,

e
(γα)k1∗ , e

β∗
0j

, e
β
k1∗

j

, e
β
k2∗

j

, e
(γβ)

k1∗

j

t5 (14)

s.t. ∀i : 1, · · · , k1, |eγ∗

i
| ≤ ǫγ∗

i
|eα∗

0
| ≤ ǫα∗

0
,

‖eαk1∗‖ ≤ ǫαk1∗ , ‖eαk2∗‖ ≤ ǫαk2∗ , ‖e(γα)k1∗‖ ≤ ǫ(γα)k1∗ ,

|eβ∗

0j
| ≤ ǫβ∗

0j
, ‖e

β
k1∗

j

‖ ≤ ǫ
β
k1∗

j

, ‖e
β
k2∗

j

‖ ≤ ǫ
β
k2∗

j

,

‖e
(γβ)

k1∗

j

‖ ≤ ǫ
(γβ)

k1∗

j

, Φ
k1 � 0, Ψ

k2 � 0,

tr(Φk1(Psdiag(γ̂
k1 + eγk1∗)diag

†(γ̂k1 + eγk1∗) +N0I))

+ tr(Ψk2) ≤ P0 − Ps, (15)

where γ̂
k1∗ = [γ̂∗1 , · · · , γ̂

∗
k1
]T , e∗

γk1∗ = [e∗γ∗

1
, · · · , e∗γ∗

k1

]T ,

t5 =
1 +

Ps(α̂0+eα∗
0
)∗(α̂0+eα∗

0
)

N0
+ Pst511

t512

1 +
Ps(β̂0j+eβ∗

0j
)∗(β̂0j+eβ∗

0j
)

N0
+ Pst521

t522

,

t511 = ((γ̂α)k1 + e(γα)k1∗)†Φk1((γ̂α)k1 + e(γα)k1∗),

t512 = N0 +N0(α̂
k1 + eαk1∗)†Ak1(α̂k1 + eαk1∗) +

(α̂k2 + eαk2∗)†Bk2(α̂k2 + eαk2∗),

t521 = ((γ̂β)k1
j + e

(γβ)
k1∗

j

)†Φk1((γ̂β)k1
j + e

(γβ)
k1∗

j

),

t522 = N0 +N0(β̂
k1

j + e
β

k1∗

j

)†Ak1(β̂
k1

j + e
β

k1∗

j

) +

(β̂
k2

j + e
β

k2∗

j

)†Bk2(β̂
k2

j + e
β

k2∗

j

),

Ak1
△
= diag(diag(Φk1)) and Bk2

△
= diag(diag(Ψk2)).

Let a = min
eα∗

0

(
1 +

Ps(α̂0 + eα∗

0
)∗(α̂0 + eα∗

0
)

N0

)
(16)

s.t. |eα∗

0
| ≤ ǫα∗

0
. (17)

Using the method of Lagrangian, the dual of the above

problem is the following SDP problem [16]:

a = max
η, ν

η (18)

s.t. ν ≥ 0,

[
( Ps
N0

+ ν) Ps
N0

α̂0

α̂∗
0

Ps
N0

α̂∗
0

Ps
N0

α̂0 + 1− η − νǫ2
α∗
0

]
� 0. (19)

Let bj = max
eβ∗

0j

(
1 +

Ps(β̂0j + eβ∗

0j
)∗(β̂0j + eβ∗

0j
)

N0

)
, (20)

∀j : 1, · · · , J s.t. |eβ∗

0j
| ≤ ǫβ∗

0j
. (21)

The above problem can be written in the following SDP form:

bj = −max
η, ν

η, ∀j : 1, · · · , J s.t. ν ≥ 0, (22)

[
(− Ps

N0
+ ν) − Ps

N0
β̂0j

−β̂∗
0j

Ps
N0

−β̂∗
0j

Ps
N0

β̂0j − 1− η − νǫ2
β∗

0j

]
� 0. (23)

Since the objective function of the optimization problem (14)

is independent of eγ∗

i
, we modify the power constraint
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tr(Φk1(Psdiag(γ̂
k1 + eγk1∗)diag

†(γ̂k1 + eγk1∗) +N0I))

+ tr(Ψk2) ≤ P0 − Ps,

|eγ∗

i
| ≤ ǫγ∗

i
, ∀i : 1, · · · , k1,

which is a function of eγ∗

i
, as follows:

max
eγ∗

i

tr(Φk1(Psdiag(γ̂
k1 + eγk1∗)diag

†(γ̂k1 + eγk1∗) +N0I))

+ tr(Ψk2) ≤ P0 − Ps,

s.t. |eγ∗

i
| ≤ ǫγ∗

i
, ∀i : 1, · · · , k1.

Rewriting it in the following equivalent form, we have

tr(Φk1(Psdiag(v) +N0I)) + tr(Ψk2) ≤ P0 − Ps, (24)

where v = [v1, v2, · · · , vk1
]T , and ∀i : 1, · · · , k1,

vi = max
e∗
γ∗
i

(γ̂i + eγ∗

i
)∗(γ̂i + eγ∗

i
) s.t. |eγ∗

i
| ≤ ǫγ∗

i
,

which can be written in the following SDP form:

vi = −max
η, ν

η, ∀i : 1, · · · , k1

s.t. ν ≥ 0,
[

(−1 + ν) −γ̂i
−γ̂∗

i −γ̂∗
i γ̂i − η − νǫ2γi

]
� 0.

Substituting the values of a and bj , j : 1, · · · , J and the power

constraint (24) in the optimization problem (14), we have

max
Φk1 , Ψk2

min
j:1,··· ,J

min
e
αk1∗ , e

αk2∗ , e
(γα)k1∗ ,

e
β
k1∗

j

, e
β
k2∗

j

, e
(γβ)

k1∗

j

a+ Ps
t511
t512

bj + Ps
t521
t522

, (25)

s.t. Φ
k1 � 0, Ψ

k2 � 0,

‖eαk1∗‖ ≤ ǫαk1∗ , ‖eαk2∗‖ ≤ ǫαk2∗ ,

‖e(γα)k1∗‖ ≤ ǫ(γα)k1∗ , ‖e
β

k1∗

j

‖ ≤ ǫ
β

k1∗

j

,

‖e
β

k2∗

j

‖ ≤ ǫ
β

k2∗

j

, ‖e
(γβ)

k1∗

j

‖ ≤ ǫ
(γβ)

k1∗

j

,

tr(Φk1(Psdiag(v) +N0I)) + tr(Ψk2) ≤ P0 − Ps, (26)

We transform the innermost minimization in the optimization

problem (25) as

max
e
αk1∗ , e

αk2∗ , e
(γα)k1∗ , e

β
k1∗

j

, e
β
k2∗

j
e
(γβ)

k1∗

j

,t6, t7, t8, t9j , t10j , t11j

a+ Ps
t6

t7+t8

bj + Ps
t9j

t10j+t11j

, (27)

with the constraints written in the equivalent LMIs (Linear

Matrix Inequalities) using S-procedure [16] as follows:

∀e(γα)k1∗ s.t. ‖e(γα)k1∗‖ ≤ ǫ(γα)k1∗ =⇒

−((γ̂α)k1 + e(γα)k1∗ )
†
Φ

k1 ((γ̂α)k1 + e(γα)k1∗ ) + t6 ≤ 0

⇐⇒ λ ≥ 0, Cλ
△
=[

Φ
k1 + λI Φ

k1†(γ̂α)k1

(γ̂α)k1†Φ
k1 (γ̂α)k1†Φ

k1 (γ̂α)k1 − t6 − λǫ2
(γα)k1∗

]
� 0,

∀e
αk1∗ s.t. ‖e

αk1∗‖ ≤ ǫ
αk1∗ =⇒

N0(α̂
k1 + e

αk1∗ )
†Ak1 (α̂k1 + e

αk1∗ ) +N0 − t7 ≤ 0

⇐⇒ µ ≥ 0, Cµ
△
=[

−N0A
k1 + µI −N0A

k1†α̂k1

−N0α̂
k1†Ak1 −N0α̂

k1†Ak1 α̂k1 −N0 + t7 − µǫ2
(α)k1∗

]
� 0,

∀e
αk2∗ s.t. ‖e

αk2∗‖ ≤ ǫ
αk2∗ =⇒

(α̂k2 + e
αk2∗ )

†Bk2 (α̂k2 + e
αk2∗ )− t8 ≤ 0

⇐⇒ ξ ≥ 0, Cξ
△
=

[
−Bk2 + ξI −Bk2†α̂k2

−α̂k2†Bk2 −α̂k2†Bk2 α̂k2 + t8 − ξǫ2
(α)k2∗

]
� 0,

∀e
(γβ)

k1∗

j

s.t. ‖e
(γβ)

k1∗

j

‖ ≤ ǫ
(γβ)

k1∗

j

=⇒

((γ̂β)k1
j + e

(γβ)
k1∗

j

)†Φk1 ((γ̂β)k1
j + e

(γβ)
k1∗

j

)− t9j ≤ 0

⇐⇒ λj ≥ 0, Cλj

△
=




−Φ

k1 + λjI −Φ
k1†(γ̂β)k1

j

−(γ̂β)k1†
j Φ

k1 −(γ̂β)k1†
j Φ

k1 (γ̂β)k1
j + t9j − λjǫ

2

(γβ)
k1∗

j



 � 0,

∀e
β
k1∗

j

s.t. ‖e
β
k1∗

j

‖ ≤ ǫ
β
k1∗

j

=⇒

−N0(β̂
k1

j + e
β
k1∗

j

)†Ak1 (β̂
k1

j + e
β
k1∗

j

)−N0 + t10j ≤ 0

⇐⇒ µj ≥ 0, Cµj

△
=




N0A

k1 + µjI N0A
k1†β̂

k1

j

N0β̂
k1†

j Ak1 N0β̂
k1†

j Ak1 β̂
k1

j +N0 − t10j − µjǫ
2

β
k1∗

j



 � 0,

∀e
β
k2∗

j

s.t. ‖e
β
k2∗

j

‖ ≤ ǫ
β
k2∗

j

=⇒

−(β̂
k2

j + e
β
k2∗

j

)†Bk2 (β̂
k2

j + e
β
k2∗

j

) + t11j ≤ 0

⇐⇒ ξj ≥ 0, Cξj

△
=




Bk2 + ξjI Bk2†β̂

k2

j

β̂
k2†

j Bk2 β̂
k2†

j Bk2 β̂
k2

j − t11j − ξjǫ
2

β
k2∗

j



 � 0,

and t6 ≥ 0, t10j ≥ 0, t11j ≥ 0.

Substituting the maximization form (27) and the above LMI

constraints in the optimization problem (25) and using the fact

that min-max is greater the max-min, we get the following

lower bound for the optimization problem (25):

max
Φ

k1 , Ψ
k2

max
t6, t7, t8, t9j , t10j , t11j ,

λ, µ, ξ, λj, µj, ξj , ∀j:1,··· ,J

min
j:1,··· ,J

a+ Ps
t6

t7+t8

bj + Ps
t9j

t10j+t11j

(28)

s.t. Φ
k1 � 0, Ψ

k2 � 0, t6 ≥ 0,

tr(Φk1(Psdiag(v) +N0I)) + tr(Ψk2) ≤ P0 − Ps,

λ ≥ 0, µ ≥ 0, ξ ≥ 0, Cλ � 0, Cµ � 0, Cξ � 0,

∀j : 1, · · · , J, t10j ≥ 0, t11j ≥ 0,

λj ≥ 0, µj ≥ 0, ξj ≥ 0, Cλj
� 0, Cµj � 0, Cξj � 0. (29)
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Transforming the innermost minimization in (28) to maxi-

mization operation, the optimization problem reduces to the

following single maximization form:

max
Φ

k1 , Ψ
k2 , t6, t7, t8, t9j , t10j, t11j ,

λ, µ, ξ, λj, µj, ξj, r, s, ∀j:1,··· ,J

rs (30)

s.t. Φ
k1 � 0, Ψ

k2 � 0, t6 ≥ 0,

tr(Φk1(Psdiag(v) +N0I)) + tr(Ψk2) ≤ P0 − Ps,

a(t7 + t8) + Pst6 − r(t7 + t8) ≥ 0,

λ ≥ 0, µ ≥ 0, ξ ≥ 0, Cλ � 0, Cµ � 0, Cξ � 0,

∀j : 1, · · · , J, t10j ≥ 0, t11j ≥ 0,

(t10j + t11j)− s(bj(t10j + t11j) + Pst9j) ≥ 0,

λj ≥ 0, µj ≥ 0, ξj ≥ 0, Cλj
� 0, Cµj � 0, Cξj � 0. (31)

This is a non-convex optimization problem. We solve this

problem using the algorithm described below.

Step1: Find rmax and smax by solving the following two

independent optimization problems:

rmax = max
Φk1,Ψk2, t6, t7, t8, λ, µ, ξ, r

r (32)

s.t. Φ
k1 � 0, Ψ

k2 � 0, t6 ≥ 0,

tr(Φk1(Psdiag(v) +N0I)) + tr(Ψk2) ≤ P0 − Ps,

a(t7 + t8) + Pst6 − r(t7 + t8) ≥ 0,

λ ≥ 0, µ ≥ 0, ξ ≥ 0, Cλ � 0, Cµ � 0, Cξ � 0, (33)

and smax = max
Φk1, Ψk2, t9j , t10j , t11j ,

λj, µj, ξj, ∀j:1,··· ,J, s

s (34)

s.t. Φ
k1 � 0, Ψ

k2 � 0,

tr(Φk1(Psdiag(v) +N0I)) + tr(Ψk2) ≤ P0 − Ps,

∀j : 1, · · · , J, t10j ≥ 0, t11j ≥ 0,

(t10j + t11j)− s(bj(t10j + t11j) + Pst9j) ≥ 0,

λj ≥ 0, µj ≥ 0, ξj ≥ 0, Cλj
� 0, Cµj

� 0, Cξj � 0. (35)

For a given r and s, both the problems are convex SDP fea-

sibility problems and both are solved using bisection method.

We describe the bisection method in short to solve (32) as

follows. Let rmax lie in the interval [rll, rul]. Check the

feasibility of the constraints of (32) at r = (rll + rul)/2.

If feasible then rll = r else rul = r. Repeat this until

rul = rll or the desired accuracy is achieved. Maximum values

of r and s obtained in the above two independent optimization

problems will be larger than the values that would be obtained

in the original joint optimization problem (30). This is due to

the fact that maximum over a larger set (or unconstrained set)

is larger than the maximum over the smaller set (or constrained

set). So, the maximum value of the product rs obtained in the

constrained optimization problem (30) will be upper bounded

by the product rmaxsmax.

Step2: We represent the optimum value of the optimization

problem (30) by roptsopt. Having obtained the values of

rmax and smax in Step 1, we obtain roptsopt sequentially

by decreasing r from rmax towards zero in discrete

steps of size △r = rmax/N , where N is a large

positive integer, and finding the maximum s such that

constraints in (31) are feasible and the product rs is

maximum. The algorithm to obtain roptsopt as follows:

for (i = N : -1 : 1)

begin{
ri = i ∗ △r

si = max
Φk1, Ψk2,

t6, t7, t8, t9j , t10j , t11j ,

λ, µ, ξ, λj, µj, ξj , s, ∀j:1,2,··· ,J

s

subject to all constraints in (31) with r = ri

if (i == N) then ropt = ri, sopt = si
elseif (roptsopt ≤ risi) then ropt = ri, sopt = si
else exit for loop

endif

} end for loop

For a given value of ri and s in the interval [0, smax], the

constrained maximization problem in the for loop above is

a SDP feasibility problem, and si can be obtained using the

bisection method as described in Step1 to solve (32). With

roptsopt from Step 2 above for (k1, k2) selected relays, worst

case secrecy rate Rk1k2
s for a given source power Ps is then

given by Rk1k2
s = 1

2 log2 roptsopt, and the maximum secrecy

rate is Rmax
s = maxall relay combinations R

k1k2
s . Maximization is

performed over all 2M − 1 possible relay combinations.

IV. RESULTS AND DISCUSSIONS

We evaluated the secrecy rate for AF beamforming

with/without cooperative jamming, perfect/imperfect CSI and

multiple eavesdroppers for different system scenarios through

simulations. The results are generated for M = 2, J = 1, 2, 3,

N0 = 1, Ps = 3 dB and N = 50. We take the norm of the

CSI error vectors on all links to be equal, and we denote it

by ǫ.
In Fig. 2(a), we plot the secrecy rate as a function of total
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Fig. 2. Secrecy rate versus total relay transmit power in AF relay beam-
forming with/without CJ, perfect/imperfect CSI, and multiple eavesdroppers.
CJ gives significant gains with 2 and 3 eavesdroppers.

relay transmit power with the following system parameters:
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Fig. 3. Secrecy rate versus CSI error (ǫ) in AF relay beamforming
with/without CJ, perfect/imperfect CSI and multiple eavesdroppers.

σγ∗

1
= σγ∗

2
= 4.0, σα∗

1
= 4.0, σα∗

2
= 0.0, σβ∗

11
= σβ∗

21
= 4.0,

σβ∗

12
= σβ∗

22
= 4.0, σβ∗

13
= σβ∗

23
= 4.0, and ǫ = 0.1. We

assume that there is no direct path from source to destination

and source to any eavesdropper. From Figs. 2 (a) and (b),

we observe that i) in the presence of only one eavesdropper

(J = 1), the advantage of CJ compared to no CJ is not

significant, and ii) with 2 and 3 eavesdroppers (J = 2, 3),
however, significant gains in secrecy rates due to CJ compared

to no CJ are achieved. We also observe that imperfect CSI

degrades secrecy rates compared to those with perfect CSI,

and that increased number of eavesdroppers results in reduced

secrecy rates. In Fig. 3, we plot the secrecy rate as a function

of CSI error (ǫ) with P0 − Ps = 6 dB and remaining system

parameters are same as in Fig. 2. From Fig. 3, we observe that

i) CJ results in rate gains compared to no CJ for J = 2, 3,

and ii) the achieved rate gain due to CJ is maximum for

perfect CSI case and the gain diminishes as the CSI error

variance is increased. Next, Fig. 4 shows the secrecy rate
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Fig. 4. Secrecy rate versus total relay transmit power in AF relay beam-
forming with/without CJ, perfect/imperfect CSI, and multiple eavesdroppers.
Source-destination and relays-destination channels are stronger than the cor-
responding eaves channels.

results for a scenario where the rate gains due to CJ is

not significant even for J = 2, 3. In this scenario, source-

destination and relays-destination channels are stronger than

the corresponding eaves channels. The corresponding param-

eters used are: σγ∗
1
= σγ∗

2
= 4.0, σα∗

0
= 2.0, σα∗

1
= σα∗

2
= 4.0,

σβ∗
01

= 0.5, σβ∗
02

= 1.0, σβ∗
03

= 1.5, σβ∗
11

= σβ∗
21

= 1.0,

σβ∗
12

= σβ∗
22

= 2.0, σβ∗
13

= σβ∗
23

= 3.0, and ǫ = 0.1.

In summary, the secrecy rate gains due to CJ depends on

the channel/noise conditions, number of eavesdroppers, and

CSI error variances, and the proposed solution allows us to

compute the secrecy rate in AF beamforming with CJ under

various channel conditions and scenarios.

V. CONCLUSIONS

We evaluated the worst case secrecy rates in AF relay

beamforming scheme with cooperative jamming and in the

presence of imperfect CSI (using a norm-bounded CSI er-

ror model) and multiple eavesdroppers, where the number

of eavesdroppers can be more than the number of relays.

We solved the optimization problem to find the optimum

relay beamforming weights (weights of both data relays and

jamming relays) subject to a total relay power constraint and

CSI error constraints, and computed the worst case secrecy

rate by relaxing the rank one constraint on the complex semi-

definite data relays and jamming relays weight matrices and

reformulated the optimization problem into a form that was

solved using convex semi-definite programming.
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