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Abstract—We consider bounds for the capacity region of the
Gaussian X channel (XC), a system consisting of two transmit-
receive pairs, where each transmitter communicates with both
the receivers. We first classify the XC into two classes, the
strong XC and the mixed XC. In the strong XC, either the
direct channels are stronger than the cross channels or vice-versa,
whereas in the mixed XC, one of the direct channels is stronger
than the corresponding cross channel and vice-versa. After this
classification, we give outer bounds on the capacity region for
each of the two classes. This is based on the idea that when one
of the messages is eliminated from the XC, the rate region of the
remaining three messages are enlarged. We make use of the Z
channel, a system obtained by eliminating one message and its
corresponding channel from the X channel, to bound the rate
region of the remaining messages. The outer bound to the rate
region of the remaining messages defines a subspace in R

4
+ and

forms an outer bound to the capacity region of the XC. Thus, the
outer bound to the capacity region of the XC is obtained as the
intersection of the outer bounds to the four combinations of the
rate triplets of the XC. Using these outer bounds on the capacity
region of the XC, we derive new sum-rate outer bounds for both
strong and mixed Gaussian XCs and compare them with those
existing in literature. We show that the sum-rate outer bound
for strong XC gives the sum-rate capacity in three out of the
four sub-regions of the strong Gaussian XC capacity region. In
case of mixed Gaussian XC, we recover the recent results in [11]
which showed that the sum-rate capacity is achieved in two out
of the three sub-regions of the mixed XC capacity region and
give a simple alternate proof of the same.

keywords: Capacity region, X channel, interference channel, sum ca-

pacity.

I. INTRODUCTION

The capacity of wireless channels has attracted a lot of

interest. A major source of performance bottleneck limiting

the capacity of wireless systems is caused by interference

from the reception of unintended signals at the receivers. A

basic model in information theory to study the nature and

effect of interference is the the two-user interference channel

(IC), consisting of two point-to-point links with additive white

Gaussian noise and transmissions on either link interfere with

each other. The IC has been the subject of some intense

scrutiny by researchers for the past three decades. In spite of

this, the capacity region of even the simple two-user Gaussian

IC is not known. Recently in [1], some progress has been made

in this regard and the capacity of the Gaussian interference

channel is characterized to within one bit.

The X channel (XC) is a generalization of the interference

channel; there are two transmitter – receiver pairs, and each

transmitter intends to communicate with both receivers. It is

interesting to note that the multiple access channel (MAC),

the broadcast channel (BC), and the IC are contained within

the XC and can be obtained as special cases of the XC.

Although the XC is a close cousin of the IC, very little

is known regarding the capacity region of the XC. The best

known achievable region is due to Koyluoglu, Shahmoham-

madi, and El Gamal [2]. This rate region when specialized to

the IC, was shown to reduce to the Han and Kobayashi rate re-

gion [3], which is the best known achievable region for the IC.

However, no simplification of Koyluoglu-Shahmohammadi-

Gamal rate region was given and its characterization is ex-

tremely complicated.

The degrees of freedom of the multiple-input multiple-

output (MIMO) X channel is shown to be 4M
3 , with M > 1

antennas at each node [4]. It is shown that the concept of

interference alignment coupled with zero forcing achieves the

highest number of degrees of freedom. It was later shown in

[5] that 4/3 is indeed the degrees of freedom for the M = 1
case and introduced the novel idea of asymmetric complex

signaling to achieve the outer bound. In [6], the authors com-

bine dirty paper coding, zero forcing and successive decoding

methods to obtain signaling schemes which achieve the highest

multiplexing gain or the degrees of freedom. They eventually

transform the XC into four parallel channels.

The Etkin-Tse-Wang (ETW) sum-rate outer bound [1] de-

rived for the interference channel was extended to the XC

in [7]. Also, the sum-rate capacity result for the Gaussian

interference channel in the low-interference regime [8]–[10]

was extended to the Gaussian X channel. Thus, for a class of

channel coefficients, treating interference as noise is sum-rate

capacity optimal. In [11], the sum-rate capacity of the XC is

obtained for a class of channel coefficients and power levels.

When these conditions are met, the sum-rate capacity is shown

to be achieved by transmitting only two messages to one of

the receivers, i.e., a MAC at either receiver 1 or receiver 2.

In this work, we make progress with regard to the capacity

region of the XC. We first classify the XC into two broad

classes: strong XC and the mixed XC. The strong XC cor-

responds to a class of X channels where either the direct

channels are stronger than the corresponding cross channels,

or the cross channels are stronger than the corresponding

direct channels. In the mixed XC, as the name suggests,

one of the direct channels is stronger than the corresponding

cross channel, whereas the other cross channel is stronger

than the corresponding direct channel or vice-versa. After this

classification, we give outer bounds on the capacity region for

each of the two classes. This is based on the idea that when one

of the messages is eliminated from the XC, the rate region of

the remaining three messages are enlarged. We make use of the



Z channel, a system obtained by eliminating one message and

its corresponding channel from the X channel, to bound the

rate region of the remaining messages. We show that the outer

bound to the rate region of the remaining messages defines

a subspace in R
4
+ and forms an outer bound to the capacity

region of the XC. Thus, the outer bound to the capacity region

of the XC is obtained as the intersection of the outer bounds

to the four combinations of the rate triplets of the XC. Using

these bounds on the capacity region of the XC, we derive new

sum-rate outer bounds for both strong and mixed Gaussian

XCs and compare them with those existing in literature. We

show that the derived sum-rate outer bounds give sum-rate

capacity in certain regions of the XC capacity region. We

summarize these results below.

1) Strong XC:
• The sum-rate outer bound gives the sum-rate capacity

in three out of the four sub-regions of the strong XC

capacity region.

• In one of the regions, it is optimal to operate the XC as an

IC and treat interference as noise. This corresponds to the

noisy-interference or low-interference sum-rate capacity

result obtained in [7]. However, we show that the region

we obtain is much larger and contains the region in [7]

as a subset.

• In the other two regions, it is optimal to operate the XC

as a MAC to either receiver 1 or receiver 2.

• We show that the new sum-rate bound outperforms both

ETW bounds given in [7].

2) Mixed XC:
• The sum-rate outer bounds give the sum-rate capacity in

two out of the three sub-regions of the mixed XC capacity

region. This result was first obtained in [11]. We give an

alternate proof of this result and show that it arises as a

natural consequence of the outer bound to the capacity

region.

• In both regions, it is optimal to operate the XC as a MAC

to one of the receivers.

• We show that the sum-rate outer bounds outperform the

ETW bounds [7] in the above two regions, whereas in

the third region, further analysis is needed to ascertain

the comparative tightness of the bounds.

The rest of this paper is organized as follows. The system

model is presented in Section II. In Section III, we discuss the

classification of XCs. In Section IV, we collect some results

on the capacity region of the Z channel, and make use of

these results to derive an outer bound on the capacity region

of the XC in Section V. In Sections VI and VII, we derive

the outer bounds on the capacity region of strong and mixed

XC, respectively, and give new sum-rate outer bounds for both

classes. Conclusions are presented in Section VIII.

We use lowercase letters for scalars and boldface lowercase

letters for vectors. h(·) denotes binary differential entropy of

a continuous random variable or vector, I(·; ·) denotes mutual

information, and E{·} denotes the expectation operation. All

logarithms are to base 2 unless otherwise specified.
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Fig. 1. Gaussian X channel system model.

Class Name Channel Constraints

A Strong Direct Channel Gain XC |h11|2 ≥ |h21|2; |h22|2 ≥ |h12|2

B Strong Cross Channel Gain XC |h11|2 ≤ |h21|2; |h22|2 ≤ |h12|2

C Mixed Channel Gain XC 1 |h11|2 ≥ |h21|2; |h22|2 ≤ |h12|2

D Mixed Channel Gain XC 2 |h11|2 ≤ |h21|2; |h22|2 ≥ |h12|2

TABLE I
GENERAL CLASSIFICATION OF X CHANNELS

II. SYSTEM MODEL

The Gaussian X channel system model is shown in Fig.

1. We consider the single-input single-output (SISO) case,

where both transmitters and both receivers are equipped with

single antenna each. As shown in Fig. 1, the X channel has

four independent messages, W11, W12, W21, W22, where Wij

is the message transmitted from transmitter j to receiver i.
We assume a flat-fading environment. Let hrt denote the

channel gain from transmitter t to receiver r, ∀ t, r ∈ {1, 2}.
The channel gains are assumed to be independent circularly

symmetric complex Gaussian (CSCG) random variables with

unit variance, i.e., hrt ∼ CN (0, 1). The received symbols yr
at receiver r, r = 1, 2 are given by

y1 = h11 x1 + h12 x2 + n1 (1)

y2 = h21 x1 + h22 x2 + n2, (2)

where xt is the transmitted symbol by transmitter t and nr is

a CSCG random variable with unit variance. Transmitter t is

subject to a separate power constraint E[|xt|2] ≤ Pt.

III. CLASSIFICATION OF X CHANNELS

In this section, we attempt to classify the X channel based

on the channel parameters. Depending on the magnitude of

the channel parameters, the XC can be classified into the four

classes shown in Table I.

In class A, i.e., strong direct channel gain XC, the direct

channel gains |h11|2 and |h22|2 are greater than the cross chan-

nel gains |h21|2 and |h12|2, respectively. Exactly the opposite

is true for class B. As the name suggests, in case of the mixed

channel gain XC, one of the direct channels is stronger than the

corresponding cross channel, whereas the other cross channel



Name Channel constraints

General XC Standard form XC

Strong XC |h11|2 ≥ |h21|2; |h22|2 ≥ |h12|2 |α|2 ≤ 1; |β|2 ≤ 1

|h11|2 ≤ |h21|2; |h22|2 ≤ |h12|2 |α|2 ≥ 1; |β|2 ≥ 1

Mixed XC |h11|2 ≥ |h21|2; |h22|2 ≤ |h12|2 |α|2 ≥ 1 ; |β|2 ≤ 1

|h11|2 ≤ |h21|2; |h22|2 ≥ |h12|2 |α|2 ≤ 1 ; |β|2 ≥ 1

TABLE II
CLASSIFICATION OF X CHANNELS

is stronger than the corresponding direct channel. Note that as

per the classification of the interference channel [9], class A,

i.e., strong direct channel gain XC corresponds to the weak

IC. Class B corresponds to the strong IC and classes C and D

correspond to the mixed IC. The capacity region of the IC is

known only in the strong interference region.

We show below that a class B channel can be converted

to a class A channel and vice-versa. Further, except for an

interchange in the message variables, the capacity region

remains unchanged. A similar relationship exists between

channels in class C and class D. In other words, the capacity

regions of class B and class D can be obtained by converting

them to class A and class C channels, respectively.

Consider an XC belonging to Class B, i.e., it has the follow-

ing channel parameters: |h11|2 ≤ |h21|2 and |h22|2 ≤ |h12|2.

First, we exchange the role of receiver 1 and receiver 2. This

does not alter the capacity region of the XC since the output

equations (1) and (2) remain the same.

Let the channel parameters be renamed as follows: h′11 =
h21, h′12 = h22, h′21 = h11, h′22 = h12. This channel can

now be represented in a form identical to the XC in Fig. 1

and the relationship between the channel parameters can be

written as |h′11|2 ≥ |h′21|2 and |h′22|2 ≥ |h′12|2. Notice that

this is the condition for XCs belonging to class A. The sole

difference is in the interchange of the messages due to an

exchange in the receivers. This shows that the capacity region

remains unchanged when a class B channel is transformed to

a class A channel. Using the same strategy, it can be shown

that a similar relationship exists between channels in classes

C and D.

Thus, we classify the XC into the two broad classes shown

in Table II. The strong XC corresponds to a class of X

channels where either the direct channels are stronger than

the corresponding cross channels, or the cross channels are

stronger than the corresponding direct channels. In the mixed

XC, as the name suggests, one of the direct channels is

stronger than the corresponding cross channel, whereas the

other cross channel is stronger than the corresponding direct

channel or vice-versa. Thus, unlike the IC, the XC can be

broadly classified into just two classes. This can be intuitively

explained as below. Since each transmitter communicates with

both receivers, we see that in the strong cross channel gain

case, each transmitter can utilize the strong cross channels to
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Fig. 2. Standard form XC.

allocate appropriate rates to the cross messages. It is clear

that by exchanging the receivers, this case can be mapped

back to the strong direct gain XC. It is interesting to note

that such a phenomenon does not happen in the IC. This is

because, the cross channels always constitute interference at

the receivers. Thus, we see that the strong and weak classes

of the IC coalesce together in case of the XC.

A. XC in Standard Form

The XC can be written in the standard form shown in Fig.

2 [12]. The input-output equations for the standard form XC

are

ỹ1 = x̃1 + α x̃2 + ñ1 (3)

ỹ2 = β x̃1 + x̃2 + ñ2, (4)

where α = h12/h22 and β = h21/h11. ñ1 and ñ2 are CSCG

random variables with unit variance. The new power constraint

at transmitter i is given by P̃i = |hii|2Pi, i = 1, 2.

There are certain advantages to this formulation, namely,

we need to deal with only two complex variables as against

four for the general XC. Moreover, the relationship between

the channel parameters can be characterized elegantly in the

standard form XC. To illustrate this, the constraint for the

strong XC in Table II can be written compactly as |α|2 ≤ 1,

|β|2 ≤ 1, or |α|2 ≥ 1, |β|2 ≥ 1. However, in this paper, we

derive all the results in terms of the actual channel parameters

and do not engage the standard form XC. These results can

easily be specialized to the standard form XC by substituting

h11 = h22 = 1, h12 = α and h21 = β.

Using the standard form XC, the different classes of the

XC can be illustrated with the help of a graph plotted in the

|α|2–|β|2 plane as shown in Fig. 3. Apart from strong and

mixed XC regions, certain other regions can be identified. If

either α = 0 or β = 0, then the channel becomes the Z

channel (see Section IV for a description of Z channels). If

αβ = 1, then the XC is said to be degraded, and is represented

by the hyperbola |α|2|β|2 = 1. This can be easily proved as

follows: When |α|2 ≥ 1 and |β|2 ≤ 1, multiply (3) by β. It

is clear that receiver 1 has a less noisier version of receiver

2’s output. Thus, ỹ2 is a degraded version of ỹ1 and the sum-

rate is maximized by the MAC formed by transmitters 1 and

2 to receiver 1 [11]. Similar arguments can be applied when

|α|2 ≤ 1 and |β|2 ≥ 1. In the strong XC region, in order to

satisfy the condition for degradedness, we have the constraint
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|α|2 = |β|2 = 1. This can also be inferred from the graph

since the hyperbola intersects the strong XC region only at

the point (1, 1). Finally, the symmetric Gaussian XC refers to

the case where P1 = P2 and |α|2 = |β|2.

Throughout the rest of the paper, strong XC refers to the X

channel where the direct channels are stronger than the cross

channels, i.e., |h11|2 ≥ |h21|2 and |h22|2 ≥ |h12|2. Similarly,

mixed XC refers to X channel where |h11|2 ≥ |h21|2 and

|h22|2 ≤ |h12|2.

IV. Z CHANNELS

In this section, we collect some results on the capacity

region of the Z channel, which will be utilized to derive outer

bounds on the capacity region of the XC. The Z channel is a

communication system obtained from the X channel by setting

the message W21 = φ and channel h21 = 0. Thus, there is

an absence of both communication link as well as a message

between transmitter 1 and receiver 2. Depending on which

message and its corresponding channel are removed, there are

four different Z channels associated with the X channel. They

are denoted by Z(11), Z(12), Z(21) and Z(22), where Z(ij)
denotes the Z channel obtained from the X channel when Wij

and hij are removed, ∀ i, j ∈ {1, 2}. The Z(21) channel is

shown in Fig. 4.

In the following, we state some capacity results for the

Z(21) channel. These can be easily extrapolated to other Z

channels by first writing them in a form similar to the Z(21)
and substituting for the corresponding variables. For the Z

channel, different types of degradation can be defined as in

[14]. We focus on type I and type II degradations below [14].

Definition 1. We define a ZC to be degraded of type I if

x2 → (x1, y2)→ y1 form a Markov chain. It is shown in [14]

that this class of degraded ZCs is equivalent to the condition

that |h12|2 < |h22|2 and the symbol x2 received at receiver 1

is a degraded version of x2 received at receiver 2.

Definition 2. We define a ZC to be degraded of type II if
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Fig. 4. Z channel

x2 → (x1, y1)→ y2 form a Markov chain. It is shown in [14]

that this class of degraded ZCs is equivalent to the condition

that |h12|2 ≥ |h22|2 and the symbol x2 received at receiver 2

is a degraded version of x2 received at receiver 1.

We have the following outer bounds on the capacity region

of type I and type II degraded ZCs. An outer bound to

the capacity region of the type I degraded Gaussian ZC is

determined in [13], which we state below.

Theorem 1 (Liu and Ulukus). For the degraded Gaussian ZC

of type I, with power constraints P1 and P2, the achievable

rate triplet (R11, R12, R22) has to satisfy

R11 ≤ log(1 + |h11|2P1) (5)

R12 ≤ log

(
1 +

|h12|2p12
1 + |h12|2p22

)
(6)

R22 ≤ log(1 + |h22|2p22) (7)

R11 +R12 ≤ log

(
1 +

|h11|2P1 + |h12|2p12
1 + |h12|2p22

)
, (8)

for some 0 ≤ p12 ≤ P2 and p22 = P2 − p12.

Proof: See [13, Theorem 2 and Section V-B]. Interest-

ingly, in [13, Theorem 1], the authors present an achievable

scheme which is able to achieve the bounds in (6)-(8). Thus,

the bounds in (6)-(8) are in fact tight.

In [14], an outer bound to the capacity region of the type II

degraded Gaussian ZC is determined, which we state below.

Theorem 2 (Chong et al.). For the degraded Gaussian ZC of

type II, with power constraints P1 and P2, the achievable rate

triplet (R11, R12, R22) has to satisfy

R11 ≤ log(1 + |h11|2P1) (9)

R12 ≤ log(1 + |h12|2p12) (10)

R22 ≤ log

(
1 +

|h22|2p22
1 + |h22|2p12

)
(11)

R11 +R12 +R22 ≤ log(1 + |h11|2P1 + |h12|2P2), (12)

for some 0 ≤ p12 ≤ P2 and p22 = P2 − p12.

Proof: See [14, Theorem 7]. The authors also give an

achievable region in [14, Corollary 2].

V. OUTER BOUNDS ON THE CAPACITY REGION OF XC

We make use of Theorem 1 and Theorem 2 to derive outer

bounds on the capacity region of the XC.

Remark 1. In [15], an outer bound is obtained for weak

Gaussian IC. The outer bound relies on the fact that removing



one of the interfering links enlarges the capacity region of

the IC. The capacity region of the IC is contained within

the intersection of the capacity regions of the two one-sided

Gaussian ICs. Although the capacity region of the one-sided

Gaussian IC is unknown, Kramer makes use of an outer bound

due to Sato [16] to derive an outer bound for weak Gaussian

IC.

This approach cannot be directly applied to the XC since,

unlike the IC, the cross channels also carry messages apart

from interference from unintended signals. However, inter-

estingly, an analogous result can in fact be derived for the

XC. It is based on the idea that when an XC is converted

to a ZC by removing one of the communication links and

the corresponding message, the rate region of the remaining

messages are enlarged. Since the capacity region of the ZC is

not known, we use the outer bounds described in Theorem 1

and Theorem 2 instead. We prove this result in the following

theorem.

Theorem 3. Consider a XC in which the link h21 and the

message W21 are removed to obtain the Z(21) channel. Then

the rate region of the XC with respect to the rate triplet

(R11, R12, R22) is contained within the outer bounds to the

capacity region of the Z(21) channel, described in Theorem 1

and Theorem 2, with a power allocation of p11 at transmitter

1 and P2 at transmitter 2, where 0 ≤ p11 ≤ P1.

Proof: See the Appendix.

Remark 2. Let R21 be a subspace in R
4
+ with the rate triplet

(R11, R12, R22) bounded by Theorem 3 and rate variable

R21 unbounded. Applying Theorem 3, it is clear from the

above definition that the set R21 defines an outer bound to

the capacity region of XC. Although Theorem 3 has been

proved with respect to the Z(21) channel, similar results apply

to the other 3 combinations of rate triplets of the XC. For

example, the rate region of the XC with respect to the rate

triplet (R11, R21, R22) is contained within outer bounds to

the capacity region of the Z(12) channel given in Theorem 1

and Theorem 2 with a power allocation of P1 at transmitter 1

and 0 ≤ p22 ≤ P2 at transmitter 2, where Theorems 1 and 2

have been appropriately modified for the Z(12) channel. R12

denotes a subspace in R
4
+ with (R11, R21, R22) bounded as

above and R12 left unbounded. Regions R11 and R22 can be

defined similarly.

Let R denote the capacity region of the XC. Then, we have

the following theorem.

Theorem 4. The capacity region of the Gaussian XC is

contained within the set RI , i.e., R ⊂ RI , where

RI = R11 ∩R12 ∩R21 ∩R22. (13)

Proof: Using Remark 2 and Theorem 3, each of the sets

Rij defines an outer bound to the capacity region of the XC,

∀i, j ∈ 1, 2. Therefore, the capacity region of the Gaussian XC

is inside the intersection of the outer bounds to the capacity

regions of XC given in (13).

VI. STRONG GAUSSIAN X CHANNEL

In this section, we derive the outer bound for the capacity

region of the strong Gaussian XC and use this to derive a new

sum-rate outer bound.

A. Outer Bound on the Capacity Region

Theorem 5. The capacity region of the strong Gaussian XC is

contained within the set of rate vectors (R11, R12, R21, R22)
satisfying

R11 ≤ ψ1 = log(1 + |h11|2p11)
R12 ≤ ψ2 = log

(
1 +

|h12|2p12
1 + |h12|2p22

)

R21 ≤ ψ3 = log

(
1 +

|h21|2p21
1 + |h21|2p11

)

R22 ≤ ψ4 = log(1 + |h22|2p22)
R11 +R12 ≤ ψ5 = log

(
1 +

|h11|2p11 + |h12|2p12
1 + |h12|2p22

)

R21 +R22 ≤ ψ6 = log

(
1 +

|h21|2p21 + |h22|2p22
1 + |h21|2p11

)

R11 +R12 +R21 ≤ ψ7 = log(1 + |h11|2P1 + |h12|2p12)
R12 +R21 +R22 ≤ ψ8 = log(1 + |h21|2p21 + |h22|2P2),

(14)

for some 0 ≤ p11 ≤ P1, 0 ≤ p12 ≤ P2 with p21 = P1 − p11,

p22 = P2 − p12.

Proof: The rate equations in (14) is the representation of

the set RI given in Theorem 4 for the strong Gaussian XC.

The rate equations can be obtained by applying Theorem 3 to

the four Z channels associated with the strong Gaussian XC

and removing redundant equations.

Let R1 = R11 + R12 denote the rate at receiver 1 and let

R2 = R21 + R22 denote the rate at receiver 2. The outer

bounds in (14) can be converted to a set of outer bounds on

R1, R2 and R1+R2 by using Fourier-Motzkin elimination and

removing the redundant equations. The result is as follows.

Theorem 6. The capacity region of the strong Gaussian XC is

contained within the set of rate pairs (R1, R2) satisfying

R1 ≤ ψ5 (15)

R2 ≤ ψ6 (16)

R1 +R2 ≤ ψ1 + ψ8 (17)

R1 +R2 ≤ ψ4 + ψ7, (18)

for some 0 ≤ p11 ≤ P1, 0 ≤ p12 ≤ P2 with p21 = P1 − p11,

p22 = P2 − p12.

B. New Sum-Rate Outer Bound

Applying Theorem 6, the sum-rate of strong Gaussian XC

is bounded by three different rate-inequalities, namely (17),

(18), and a combination of (15), (16), Thus, three sum-rate

outer bounds can be derived by maximizing each of the above

rate-inequalities over (p11, p12). However, it can be shown that

the latter bound is tighter than the former two bounds. Hence,

we describe only the last bound below.



The sum-rate outer bound is given by maxp11, p12
(ψ5+ψ6).

It appears as though we need to perform joint optimization

over (p11, p12) of a non-convex objective function. Fortunately,

this can be rewritten so that the maximizations can be carried

out independently. We have

max
p11

log

( |h11|2p11 + |h12|2P2 + 1

1 + |h21|2p11

)

+max
p22

log

(
1 + |h21|2P1 + |h22|2p22

1 + |h12|2p22

)
. (19)

Although we have decoupled the optimization variables in

(19), each of the individual maximizations still represents a

maximization over a non-convex objective function. We make

use of the following lemma to solve (19).

Lemma 1. Define the function f(x) = log

(
1 + cx

1 + dx

)
, where

x, c, d ∈ R+. Then, the solution of the maximization problem

x∗ = arg max
0≤ x≤P

f(x) = arg max
0≤ x≤P

log

(
1 + cx

1 + dx

)

is given by

x∗ =

{
P if c > d,
0 if c < d.

and when c = d, any value of x∗ ∈ [0, P ] can be chosen.

Proof: The lemma can be easily proved by observing

the monotonicity of the function f(x). The function f(x) is

continuous and differentiable ∀x ∈ [0, P ]. Observe that the

derivative f ′(x) is positive if c > d and negative if c < d.

This implies that if c > d, f(x) is a strictly increasing function

on the interval [0, P ] and the maximum of f(x) is achieved

when x∗ = P . Conversely, when c < d, f(x) is a strictly
decreasing function and is maximized when x∗ = 0. When

c = d, f(x) = 0, ∀x ∈ [0, P ] and any value of x∗ ∈ [0, P ]
can be chosen.

Writing the first maximization in (19) in the form of the

above lemma, it is clear that, when |h11|2 ≥ |h21|2(1 +
|h12|2P2), p11 = P1 solves the first maximization problem.

Similarly, if |h22|2 ≥ |h12|2(1 + |h21|2P1), then p22 = P2.

Substituting this in (19) and rearranging, we get

R ≤ log

(
1 +

|h11|2P1

1 + |h12|2P2

)
+ log

(
1 +

|h22|2P2

1 + |h21|2P1

)
.

Similarly, sum-rate bounds can be calculated for the other three

sub-regions. These results are summarized in Table III.

C. Sum-Rate Capacity

We show that the sum-rate outer bound given in Table III

is tight in three out of the four sub-regions.

Theorem 7. The sum-rate outer bound for the strong Gaussian

XC given in Table III is achievable in regions I, II and III,

and it represents the sum-rate capacity in those regions.

Proof: The sum-rate outer bound for region I given in

Table III can be achieved with a simple scheme of transmitting

only on the direct channels, i.e., W11 and W22 are transmitted

with power P1 and P2, respectively, while the cross messages

W12 =W21 = φ. The cross channels interfere with the decod-

ing of the direct messages. Such a scheme clearly achieves the

sum-rate bound for region I. The bound for region II can be

achieved with the MAC transmission from transmitters 1 and

2 to receiver 1, while messages W21 = W22 = φ. Similarly,

the outer bound for region III can be achieved with the MAC

transmission from transmitters 1 and 2 to receiver 2, while

messages W11 = W12 = φ. Thus, we have shown that the

sum-rate outer bounds for regions I, II and III are achievable.

Observe that in regions II and III, the XC is operated as

a MAC, while in region I, the XC is operated as an IC. The

outer bound to the capacity region for a strong Gaussian XC

is illustrated in Fig. 5 for all the four regions. It is clear from

the rate equations in Theorem 6 that there are at most five

corner points. We calculate the corner points below. Point A is

obtained by maximizing (15) over all (p11, p12). It is obvious

that p11 = P1, p12 = P2 solves this problem and the corner

point A is given by

R1 ≤ log(1 + |h11|2P1 + |h12|2P2),

which is achievable by the MAC formed by transmitters 1 and

2 to receiver 1. Similarly, corner point D is given by

R2 ≤ log(1 + |h21|2P1 + |h22|2P2),

and is achieved by the MAC formed by transmitters 1 and 2

to receiver 2.
In Fig. 5a, the line BC represents the sum-rate bound for

region I given in Table III and point F is the rate point

achieved by transmitting only on the direct channels and

treating interference as noise. Theorem 7 ensures us that point

F lies on BC, i.e., sum-rate capacity is achieved at point F. The

line AF can be achieved using a time-sharing strategy between

the points A and F. Similarly, line DF is also achievable.

Thus, any point within the region AEDFA is achievable and

the shaded region denotes an achievable region for region I.

Likewise, the outer bounds for the other regions are illustrated

in Fig. 5b–Fig. 5d.

D. Discussion on the Implications of Region I
In region I, messages are transmitted only on the direct

channels and interference from the cross channels are treated

as noise. This is akin to the noisy-interference or the low-

interference sum-rate capacity result of the IC. In this region,

sum-rate capacity of the IC is achieved by treating interference

as noise [8]–[10]. In [7], the authors showed that the results

carryover to the XC, i.e., the XC can be operated as an IC and

interference treated as noise to achieve the sum-rate capacity.

The low-interference sum-rate capacity region for the IC/XC

given in [7]–[10] is

|h21|
|h11| (1 + |h12|

2P2) +
|h12|
|h22| (1 + |h21|

2P1) ≤ 1. (20)

On the other hand, the channel constraints for region I can be

rewritten as

|h21|2
|h11|2 (1 + |h12|

2P2) ≤ 1 ;
|h12|2
|h22|2 (1 + |h21|

2P1) ≤ 1. (21)



Region Channel Constraints Sum-Rate Outer Bound for Strong Gaussian XC

I |h11|2 ≥ |h21|2(1 + |h12|2P2) |h22|2 ≥ |h12|2(1 + |h21|2P1) log

(
1 +

|h11|2P1

1 + |h12|2P2

)
+ log

(
1 +

|h22|2P2

1 + |h21|2P1

)

II |h11|2 ≥ |h21|2(1 + |h12|2P2) |h22|2 ≤ |h12|2(1 + |h21|2P1) log(1 + |h11|2P1 + |h12|2P2)

III |h11|2 ≤ |h21|2(1 + |h12|2P2) |h22|2 ≥ |h12|2(1 + |h21|2P1) log(1 + |h21|2P1 + |h22|2P2)

IV |h11|2 ≤ |h21|2(1 + |h12|2P2) |h22|2 ≤ |h12|2(1 + |h21|2P1) log(1 + |h12|2P2) + log(1 + |h21|2P1)

TABLE III
SUM-RATE BOUND FOR STRONG GAUSSIAN X CHANNELS
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Fig. 5. Illustration of the outer bound to the capacity region of strong Gaussian XC for all the four regions defined in Table III.

Curiously, it is not difficult to see that the region defined by

channel constraints in (21) is a larger region than (20) and

includes (20) as a subset. Since the XC is operated as an IC

in region I, and both of them share the same physical channel,

this begs the question whether region I defined by (21) carries

over to the IC. Note that (20) is only a sufficient condition

for the IC to be in the low-interference regime, where treating

interference as noise achieves sum-rate capacity. Thus, there

might exist channels which do not satisfy (20), but belong to

the low-interference regime [10].

Although we suspect that (21) is indeed the new sufficient

condition for an IC to be in the low-interference region, to

conclusively settle the argument, we need to come up with

tight sum-rate outer bounds for the IC to be in the low-

interference region. We do not pursue this here as this will

take us away from the XC, which is the focus of this paper.

E. Comparison with Other Sum-Rate Outer Bounds

The only known sum-rate outer bounds for the XC are the

ETW bounds in [7, Theorem 5.3]. With some effort it is not

difficult to show that the sum-rate outer bound for strong

Gaussian XCs in Table III outperforms the ETW bounds in

all regions of the strong XC sum-rate capacity region.

VII. MIXED GAUSSIAN X CHANNEL

Similar to the previous section, we derive outer bounds on

the capacity region of the mixed Gaussian XC and use this to

derive two sum-rate outer bounds.

A. Outer Bound on the Capacity Region

Theorem 8. The capacity region of the mixed Gaussian XC is

contained within the set of rate vectors (R11, R12, R21, R22)
satisfying

R11 ≤ ϕ1 = log(1 + |h11|2p11)
R12 ≤ ϕ2 = log(1 + |h12|2p12)
R21 ≤ ϕ3 = log

(
1 +

|h21|2p21
1 + |h21|2p11

)

R22 ≤ ϕ4 = log

(
1 +

|h22|2p22
1 + |h22|2p12

)

R21 +R22 ≤ ϕ5 = log

(
1 +

|h21|2p21 + |h22|2p22
1 + |h21|2p11

)

R21 +R22 ≤ ϕ6 = log

(
1 +

|h21|2p21 + |h22|2p22
1 + |h22|2p12

)

R11 +R12 +R21 ≤ ϕ7 = log(1 + |h11|2P1 + |h12|2p12)
R11 +R12 +R22 ≤ ϕ8 = log(1 + |h11|2p11 + |h12|2P2).

(22)

for some 0 ≤ p11 ≤ P1, 0 ≤ p12 ≤ P2 with p21 = P1 − p11,

p22 = P2 − p12.

Proof: The rate equations in (22) is the representation of

the set RI given in Theorem 4 for the mixed Gaussian XC.

The rate equations can be obtained by applying Theorem 3 to

the four Z channels associated with the mixed Gaussian XC

and removing redundant equations.

The outer bounds in (22) can be converted to a set of outer



bounds on R1, R2, R1 +R2 and 2R1 +R2 by using Fourier-

Motzkin elimination. The result is as follows.

Theorem 9. The capacity region of the mixed Gaussian XC is

contained within the set of rate pairs (R1, R2) satisfying

R1 ≤ ϕ1 + ϕ2 (23)

R2 ≤ ϕ5 (24)

R2 ≤ ϕ6 (25)

R2 ≤ ϕ3 + ϕ4 (26)

R1 +R2 ≤ ϕ4 + ϕ7 (27)

R1 +R2 ≤ ϕ3 + ϕ8 (28)

2R1 +R2 ≤ ϕ7 + ϕ8, (29)

for some 0 ≤ p11 ≤ P1, 0 ≤ p12 ≤ P2 with p21 = P1 − p11,

p22 = P2 − p12.

B. New Sum-Rate Outer Bounds

As in the case of the strong Gaussian XC, using Theorem 9,

two sum-rate outer bounds on the mixed Gaussian XC can be

derived. We describe them one by one below. The first bound

is given by maxp11, p12(ϕ4 + ϕ7) and can be written as

R ≤ max
p11, p12

log

(
(1 + |h11|2P1 + |h12|2p12)(1 + |h22|2P2)

1 + |h22|2p12

)
.

Applying Lemma 1 to the above expression, we conclude that

if |h12|2 ≥ |h22|2(1 + |h11|2P1) then p12 = P2 and we have

R ≤ log(1 + |h11|2P1 + |h12|2P2). (30)

On the other hand, if |h12|2 ≤ |h22|2(1 + |h11|2P1), then

R ≤ log(1 + |h11|2P1) + log(1 + |h22|2P2). (31)

The second outer bound can be written as maxp11, p12(ϕ3+
ϕ8). Using a similar analysis as in the first bound, we conclude

that if |h11|2 ≥ |h21|2(1+ |h12|2P2), the sum-rate is bounded

by (30). If this condition is not met, then the sum-rate is

bounded as

R ≤ log(1 + |h12|2P2) + log(1 + |h21|2P1). (32)

The above results are summarized in Table IV. Finally, 2R1+
R2 in (29) is bounded by maxp11, p12(ϕ7 + ϕ8) and is given

by

2R1 +R2 ≤ 2 log(1 + |h11|2P1 + |h12|2P2), (33)

which is achievable by the MAC formed by transmitters 1 and

2 to receiver 1 over two channel uses.

C. Sum-Rate Capacity

From the discussions in the previous subsection, we have

the following theorem.

Theorem 10. The sum-rate outer bound for the mixed Gaussian

XC given in Table IV is achievable in regions I and II, and it

represents the sum-rate capacity in those regions.

Proof: The sum-rate bound for regions I and II in Table

IV is achieved by the MAC formed by transmitters 1 and 2 to

receiver 1.

RR + 1 2

1R

2R

(a)

R + 1 2R2

RR + 1 2

1R

2R

(b) Region III

K

.

.

.

.

L

J

Region I & Region II

I

K .

.

.

L

.

.
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HH

Fig. 6. Illustration of the outer bound to the capacity region of mixed
Gaussian XC for all the three regions defined in Table IV

The above sum-rate capacity result was first obtained in [11,

Theorem 4] and a rather long three part proof was given to

prove each of the regions in the above theorem. However, we

have shown that the regions given in Theorem 10 are obtained

as a natural consequence of the outer bound for the capacity

region of the mixed Gaussian XC given in Theorem 9.

Note that unlike in case of the strong Gaussian XC, the

channel constraints given in regions I and II in Table IV

are independent of each other. This means that when either

of the regions are true, as per Theorem 10, the sum-rate

capacity is achieved. It is clear that the remaining region can

be characterized by the intersection of the channel constraints

in region III in Table IV, and in this case, the sum-rate is

bounded by the minimum of the rate inequalities in (31) and

(32).

The outer bound to the capacity region is illustrated in Fig.

6 for all the three regions. In all the graphs, point K is obtained

by maximizing (24)-(26) over all (p11, p12) and taking their

minimum. It is given by

R2 ≤ log(1 + |h21|2P1 + |h22|2P2). (34)

Similarly, point H is obtained from (33) which gives a tighter

bound on rate R1 than that obtained by maximizing (23) over

all (p11, p12) and is given by

R1 ≤ log(1 + |h11|2P1 + |h12|2P2). (35)

Fig. 6a represents the outer bound to the capacity region for

regions I and II. The shaded region represents an achievable

region for regions I and II. This is because, points H and

K are achievable by the MAC at receiver 1 and receiver

2, respectively. The line KH is achievable by time-sharing

between these two strategies. Fig. 6b represents the outer

bound to the capacity region for region III and the shaded

region represents an achievable region.

D. Comparison with Other Known Sum-Rate Outer Bounds

We compare the outer bounds developed in the previous

subsection with the ETW bounds in [7, Theorem 5.3]. With

some effort it is not difficult to show that the sum-rate outer

bounds in the previous subsection outperform the ETW bounds

in regions I and II. In region III, further analysis is needed to

ascertain the comparative tightness of the bounds.



Region Channel Constraints Sum-Rate Outer Bound for Mixed Gaussian XC

I |h12|2 ≥ |h22|2(1 + |h11|2P1) - log(1 + |h11|2P1 + |h12|2P2)

II - |h11|2 ≥ |h21|2(1 + |h12|2P2) log(1 + |h11|2P1 + |h12|2P2)

III |h12|2 ≤ |h22|2(1 + |h11|2P1) |h11|2 ≤ |h21|2(1 + |h12|2P2) min
(
log(1 + |h11|2P1) + log(1 + |h22|2P2),
log(1 + |h12|2P2) + log(1 + |h21|2P1)

)
TABLE IV

SUM-RATE OUTER BOUND FOR MIXED GAUSSIAN X CHANNELS
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Fig. 7. Comparison of sum-rate outer bounds for mixed Gaussian X channel.

In Fig. 7, we compare the sum-rate outer bounds in the

previous subsection with the ETW bounds in [7], where we

have plotted the minimum of the two bounds in [7, Theorem

5.3]. We assume the following: h11 = 1, h12 = 2, h21 =
h22 = a, P1 = 10dB, P2 = 0dB. We plot the performance of

the bounds when a2 is varied from 0 to 1.

Also plotted are the three regions defined in Table IV. The

channel constraint for region I is given by a2 ≤ 4/(1+P1) =
0.363 and that for region II is a2 ≤ 1/(1+4P2) = 0.2. Thus,

for this particular channel configuration and power levels, we

see that region II is contained within region I and the first

sum-rate outer bound outperforms the ETW bound in all the

three regions.

VIII. CONCLUSIONS

We investigated the capacity region of the Gaussian X

channel (XC). We first classified the XC into two classes,

the strong XC and the mixed XC. We derived bounds on the

capacity region for each of the two classes. We used the idea

that when one of the messages is eliminated from the XC,

the rate region of the remaining three messages are enlarged.

We made use of the Z channel to bound the rate region of

the remaining messages and showed that it defines a subspace

in R
4
+ and forms an outer bound to the capacity region of

the XC. Thus, the outer bound to the capacity region of the

XC was obtained as the intersection of the outer bounds to

the four combinations of the rate triplets of the XC. Using

these outer bounds, we derived new sum-rate outer bounds

for both strong and mixed Gaussian XCs and compared them

with those existing in literature. We showed that the sum-rate

outer bound for strong XC gave the sum-rate capacity in three

out of the four sub-regions of the strong XC capacity region. In

case of mixed XC, we recovered the recent sum-rate capacity

results in [11] and gave a simple alternate proof of the same.

APPENDIX

PROOF OF THEOREM 3

Consider the XC with the message W21 given at both the

receivers as side information. This is equivalent to removing

link h21 and the message W21 from the XC. Thus, we obtain

the Z(21) channel.

Let |h22|2 > |h12|2 which is the condition for the type I

degradation of the resulting Z(21) channel. Applying Theorem

1 to this channel, clearly (5)–(8) represents the rate region

of the remaining messages W11, W12 and W22. It remains to

prove the existence of p11 ∈ [0, P1] such that the rate equations

(5)–(8) continue to hold true when P1 is replaced with p11.

Since (6) and (7) do not contain P1, it suffices to show that

the power allocation P1 in (5) and (8) can be replaced with

0 ≤ p11 ≤ P1.

To this end, let yn
i denote the vector of received symbols

of length n at receiver i. Let xn
i denote the n length vector

of transmitted symbols at transmitter i. Along with message

W21, let xn
2 also be made available at receiver 1. Using Fano’s

inequality, we can bound R11 as follows

nR11 ≤ I(W11 ; y
n
1 , W21, x

n
2 ) + nε1n

≤ I(W11 ; y
n
1 |W21, x

n
2 ) + nε1n

≤ h(yn
1 |W21, x

n
2 )− h(nn

1 ) + nε1n, (36)

where the last but one inequality follows since W21, xn
2 are

independent of W11 and ε1n → 0 as n → ∞. Next we

bound the term h(yn
1 |W21, x

n
2 ). Consider the following set

of inequalities

n log(πe)
(a)
= h(nn

1 ) = h(yn
1 |xn

1 , x
n
2 ) (37)

(b)

≤ h(yn
1 |W21, x

n
2 )

(c)

≤ h(yn
1 |xn

2 )
(d)

≤ n log(πe(1 + |h11|2P1)), (38)



where in steps (a) and (d), we use the fact that the circu-

larly symmetric complex Gaussian distribution maximizes the

differential entropy for a given covariance constraint, steps

(b) and (c) follow since removing conditioning cannot reduce

differential entropy. Observe that the term h(yn
1 |W21, x

n
2 ) is

upper bounded by (38) and lower bounded by (37). Hence, we

conclude that there exists p11 ∈ [0, P1], such that

h(yn
1 |W21, x

n
2 ) = n log(πe(1 + |h11|2p11)). (39)

Using (39) and (37) in (36), we get

R11 ≤ log(1 + |h11|2p11) + ε1n, (40)

and as n→∞, ε1n → 0 and we get the desired bound.

We next develop a bound for R11 +R12 below.

n(R11+R12) ≤ I(W11, W12 ; y
n
1 , W21) + nε2n

≤ I(W11, W12 ; y
n
1 |W21) + nε2n

≤ h(yn
1 |W21)− h(yn

1 |xn
1 ,W12) + nε2n. (41)

Using the same strategy as (38), we can bound each of the

conditional entropy terms in (41) as follows:

n log(πe) = h(yn
1 |xn

1 , x
n
2 )

≤ h(yn
1 |W21)

≤ h(yn
1 )

≤ n log(πe(1 + |h11|2P1 + |h12|2P2)).

Thus, there exists p11 ∈ [0, P1], such that

h(yn
1 |W21) = log(πe(1 + |h11|2p11 + |h12|2P2)). (42)

Similarly, we bound the term h(yn
1 |xn

1 , W12) as given below.

n log(πe) = h(yn
1 |xn

1 , x
n
2 )

≤ h(yn
1 |xn

1 , W12)

≤ h(yn
1 |xn

1 )

≤ n log(πe(1 + |h12|2P2)).

From the above set of inequalities, we conclude that there

exists p22 ∈ [0, P2], such that

h(yn
1 |xn

1 , W12) = log(πe(1 + |h12|2p22)). (43)

Substituting (42) and (43) in (41) and simplifying, we get

R11 +R12 ≤ log

(
1 +

|h11|2p11 + |h12|2p12
1 + |h12|2p22

)
+ nε2n,

where we have defined p12 = P2 − p22 and as n → ∞,

ε2n → 0 and we get the desired bound.

Next, let |h22|2 ≤ |h12|2 which is the condition for the

type II degradation of the resulting Z(21) channel. Applying

Theorem 2 to this channel, clearly (9)–(12) represents the rate

region of the remaining messages W11, W12 and W22. Since

(9) is the same as (5), and (6), (7) do not contain P1, it suffices

to show that the power allocation P1 in (12) can be replaced

with 0 ≤ p11 ≤ P1. Before we proceed any further, we would

first have to prove that W22 can be decoded at receiver 1. By

Fano’s inequality, we have h(W22 |yn
2 ) ≤ nε4n.

Since W11 is the only message transmitted from transmitter

1, decoding and canceling out xn
1 will remove transmitter 1’s

contribution to yn
1 . After this step, it is sufficient to show

that h(W22 |yn
1 , x

n
1 ) ≤ nε4n, since as n → ∞, ε4n → 0,

proving that message W22 is decodable at receiver 1. For the

degraded ZC of type II, by definition, we have the following

Markov chain: W22 → xn
2 → (xn

1 ,y
n
1 )→ yn

2 . Using the data

processing inequality, we conclude that

I(W22 ; y
n
1 , x

n
1 ) ≥ I(W22 ; y

n
2 ) (44)

from which it is straightforward to show that

h(W22 |yn
1 , x

n
1 ) ≤ nε4n. (45)

Finally, we bound the sum-rate of the remaining messages,

R11 +R12 +R22 as follows:

n(R11+R12+R22) ≤ I(W11,W12,W22;y
n
1 ,W21) + nε5n

≤ I(W11,W12,W22;y
n
1 |W21) + nε5n

≤ h(yn
1 |W21)− h(nn

1 ) + nε5n.

Using (42) in the above equation, we get

R11+R12+R22 ≤ log(1 + |h11|2p11 + |h12|2P2) + nε5n,

and as n→∞, ε5n → 0 and we get the desired bound. This

completes the proof.
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