BER Analysis of QAM with Transmit Diversity in Rayleigh Fading Channels

M. Surendra Raju ${ }^{\dagger}$, A. Ramesh ${ }^{\ddagger}$ and A. Chockalingam ${ }^{\S}$
${ }^{\dagger}$ Insilica Semiconductors India Pvt. Ltd., Bangalore 560001, INDIA
${ }^{\ddagger}$ Department of ECE, University of California, San Diego, La Jolla, CA 92093, U.S.A
${ }^{\S}$ Department of ECE, Indian Institute of Science, Bangalore 560012, INDIA

Abstract

In this paper, we present a log-likelihood ratio (LLR) based approach to analyze the bit error rate (BER) performance of quadrature amplitude modulation (QAM) on Rayleigh fading channels without and with transmit diversity. We derive LLRs for the individual bits forming a QAM symbol both on flat fading channels without diversity as well as on channels with transmit diversity using two transmit antennas (Alamouti's scheme) and multiple receive antennas. Using the LLRs of the individual bits forming the QAM symbol, we derive expressions for the probability of error for various bits in the QAM symbol, and hence the average BER. In addition to being used in the BER analysis, the LLRs derived can be used as soft inputs to decoders for various coded QAM schemes including turbo coded QAM with transmit diversity, as in high speed downlink packet access (HSDPA) in 3G.

Keywords - QAM, BER analysis, transmit diversity, log-likelihood ratio.

I. Introduction

Multilevel quadrature amplitude modulation (M-QAM) is an attractive modulation scheme for wireless communications due to the high spectral efficiency it provides. Several works have been reported on the performance analysis of M-QAM in fading channels, where mainly the symbol error rate (SER) performance has been derived. In addition to the SER analysis, bit error rate (BER) analysis is also of interest in multilevel modulation schemes. Recent works reported in [1]-[3] provide expressions to compute the BER for M-QAM on AWGN channels. In [1], Vitthaladevuni and Alouini provide BER analysis for hierarchical $4 / M$-QAM on fading channels. In the $4 / M-$ QAM scheme in [1], higher order M-QAM constellations are embedded by a lower order QAM constellation (4-QAM), and the M-QAM BER is obtained by using the results of the underlying 4-QAM constellation. Our focus in this paper is on the analytical evaluation of the BER performance of QAM on Rayleigh fading channels without and with transmit diversity.
The key contributions in this paper are two fold - first, we present an alternate method of deriving the BER for QAM on fading channels using log-likelihood ratios (LLRs) of the individual bits that form the QAM symbol, and second, using the LLRs, we derive the BER expressions for QAM on Rayleigh fading channels without and with transmit diversity using two transmit antennas (Alamouti's scheme [5]) and multiple receive antennas. We derive the LLRs and BER expressions for

This work was supported in part by the Swarnajayanti Fellowship from the Department of Science and Technology, Government of India, New Delhi under scheme Ref: No. 6/3/2002-S.F

16-QAM scheme in this paper. The analytical technique, however, is applicable to any high order $(M>16)$ QAM constellation and for any arbitrary mapping of bits to QAM symbols. Another major usefulness of the results in this paper is that the derived LLRs provide a soft metric for each bit in the mapping, which can be used as soft inputs to decoders for various coded QAM schemes. Examples of such systems include turbo coded QAM with transmit diversity in high speed downlink packet access (HSDPA) in 3G, and convolutionally coded QAM with OFDM in digital video broadcasting (DVB) and IEEE 802.11a.

The rest of the paper is organized as follows. We present the derivation of LLRs and BER expression for 16-QAM on flat Rayleigh fading channels in Section II. The derivation of the LLRs and BER expression for the case of transmit diversity is presented in Section III. Conclusions are given in Section IV.

II. LLR and BER in Flat Fading

Consider the M-QAM ($M=16$) scheme as shown in Fig. 1, where $\log _{2} M=4$ bits ($r_{1}, r_{2}, r_{3}, r_{4}$) are mapped on to a complex symbol $a=a_{I}+j a_{Q}$. The horizontal/vertical line pieces in Fig. 1 denote that all bits under these lines take the value 1 , and the rest take the value 0 . For example, the symbol with coordinates $(-3 d, 3 d)$ maps the 4 -bit combination $r_{1}=$ $1, r_{2}=0, r_{3}=r_{4}=1$. Assuming that the transmitted symbol a undergoes multiplicative fading (the fading is assumed to be slow, frequency non-selective and remain constant over one symbol interval), the received signal y corresponding to the transmitted symbol a can be written as

$$
\begin{equation*}
y=h a+n, \tag{1}
\end{equation*}
$$

where h is the complex fading channel coefficient with $E\left\{\|h\|^{2}\right\}$ $=1$ and the r.v's $\|h\|$'s for different symbols are assumed to be i.i.d Rayleigh distributed, and $n=n_{I}+j n_{Q}$ is a complex Gaussian r.v of zero mean and variance $\sigma^{2} / 2$ per dimension.

A. Log-Likelihood Ratios

We define the log-likelihood ratio (LLR) of bit $r_{i}, i=1,2,3,4$ of the received symbol as [4]

$$
\begin{equation*}
L L R\left(r_{i}\right)=\log \left(\frac{\operatorname{Pr}\left\{r_{i}=1 \mid y, h\right\}}{\operatorname{Pr}\left\{r_{i}=0 \mid y, h\right\}}\right) . \tag{2}
\end{equation*}
$$

Clearly, the optimum decision rule is to decide, $\hat{r_{i}}=1$ if $L L R\left(r_{i}\right) \geq 0$, and 0 otherwise. Define two set partitions,
$S_{i}^{(1)}$ and $S_{i}^{(0)}$, such that $S_{i}^{(1)}$ comprises symbols with $r_{i}=1$ and $S_{i}^{(0)}$ comprises symbols with $r_{i}=0$ in the constellation. Then, from (2), we have

$$
\begin{equation*}
L L R\left(r_{i}\right)=\log \left(\frac{\sum_{\alpha \in S_{i}^{(1)}} \operatorname{Pr}\{a=\alpha \mid y, h\}}{\sum_{\beta \in S_{i}^{(0)}} \operatorname{Pr}\{a=\beta \mid y, h\}}\right) . \tag{3}
\end{equation*}
$$

Assume that all the symbols are equally likely and that fading is independent of the transmitted symbols. Using Bayes' rule, we then have

$$
\begin{equation*}
L L R\left(r_{i}\right)=\log \left(\frac{\sum_{\alpha \in S_{i}^{(1)}} f_{y \mid h, a}\{y \mid h, a=\alpha\}}{\sum_{\beta \in S_{i}^{(0)}} f_{y \mid h, a}\{y \mid h, a=\beta\}}\right) . \tag{4}
\end{equation*}
$$

Since $f_{y \mid h, a}\{y \mid h, a=\alpha\}=\frac{1}{\sigma \sqrt{\pi}} \exp \left(\frac{-1}{\sigma^{2}}\|y-h \alpha\|^{2}\right)$, (4) can be written as

$$
\begin{equation*}
L L R\left(r_{i}\right)=\log \left(\frac{\sum_{\alpha \in S_{i}^{(1)}} \exp \left(\frac{-1}{\sigma^{2}}\|y-h \alpha\|^{2}\right)}{\sum_{\beta \in S_{i}^{(0)}} \exp \left(\frac{-1}{\sigma^{2}}\|y-h \beta\|^{2}\right)}\right) \tag{5}
\end{equation*}
$$

Using the approximation $\log \left(\sum_{j} \exp \left(-X_{j}\right)\right) \approx-\min _{j}\left(X_{j}\right)$, we can approximate (5) as ${ }^{1}$

$$
\begin{equation*}
L L R\left(r_{i}\right)=\frac{1}{\sigma^{2}}\left\{\min _{\beta \in S_{i}^{(0)}}\|y-h \beta\|^{2}-\min _{\alpha \in S_{i}^{(1)}}\|y-h \alpha\|^{2}\right\} . \tag{6}
\end{equation*}
$$

Define z as $z \triangleq \frac{y}{h}=a+\frac{n}{h}=a+\widehat{n}$, where \widehat{n} is a complex Gaussian r.v. with variance $\sigma^{2} /\|h\|^{2}$. Using the above definition of z into (6) and normalizing $L L R\left(r_{i}\right)$ by $4 / \sigma^{2}$,

$$
\begin{align*}
L L R\left(r_{i}\right)= & \frac{\|h\|^{2}}{4}\left\{\min _{\beta \in S_{i}^{(0)}}\|z-\beta\|^{2}-\min _{\alpha \in S_{i}^{(1)}}\|z-\alpha\|^{2}\right\} . \\
= & \frac{\|h\|^{2}}{4}\left[\min _{\beta \in S_{i}^{(0)}}\left\{\|\beta\|^{2}-2 z_{I} \beta_{I}-2 z_{Q} \beta_{Q}\right\}-\right. \\
& \left.\min _{\alpha \in S_{i}^{(1)}}\left\{\|\alpha\|^{2}-2 z_{I} \alpha_{I}-2 z_{Q} \alpha_{Q}\right\}\right], \tag{7}
\end{align*}
$$

where $z=z_{I}+j z_{Q}, \alpha=\alpha_{I}+j \alpha_{Q}$ and $\beta(k)=\beta_{I}+j \beta_{Q}$. Note that the set partitions $S_{i}^{(1)}$ and $S_{i}^{(0)}$ are delimited by horizontal or vertical boundaries. As a consequence, two symbols in different sets closest to the received symbol always lie either on the same row (if the delimiting boundaries are vertical) or on the same column (if the delimiting boundaries are horizontal). Then, for bit r_{1}, the two constellation symbols in $S_{1}^{(1)}$ and $S_{1}^{(0)}$ having closest distances to the received symbol satisfy the condition $\alpha_{Q}=\beta_{Q}$. Hence, for bit r_{1}

$$
L L R\left(r_{1}\right)= \begin{cases}-\|h\|^{2} z_{I} d & \left|z_{I}\right| \leq 2 d \tag{8}\\ 2\|h\|^{2} d\left(d-z_{I}\right) & z_{I}>2 d \\ -2\|h\|^{2} d\left(d+z_{I}\right) & z_{I}<-2 d\end{cases}
$$

where $2 d$ is the minimum distance between pairs of signal points. Following similar steps for bits r_{2}, r_{3}, and r_{4}, we get

$$
\operatorname{LLR}\left(r_{2}\right)= \begin{cases}-\|h\|^{2} z_{Q} d & \left|z_{Q}\right| \leq 2 d \tag{9}\\ 2\|h\|^{2} d\left(d-z_{Q}\right) & z_{Q}>2 d \\ -2\|h\|^{2} d\left(d+z_{Q}\right) & z_{Q}<-2 d,\end{cases}
$$

[^0]

Fig. 1. 16-QAM Constellation

$$
\begin{align*}
& L L R\left(r_{3}\right)=\|h\|^{2} d\left\{\left|z_{I}\right|-2 d\right\} \tag{10}\\
& L L R\left(r_{4}\right)=\|h\|^{2} d\left\{\left|z_{Q}\right|-2 d\right\} \tag{11}
\end{align*}
$$

B. Derivation of Probability of Bit Error

Using the $\operatorname{LLR}\left(r_{i}\right)$'s obtained above, we derive the analytical expression for the probability of error for the bits $r_{i}, i=$ $1,2,3,4$. The probability of error for bit $r_{1}, P_{b 1}$, is given by

$$
\begin{equation*}
P_{b 1}=\frac{1}{2}\left(P_{b 1 \mid r_{1}=1}+P_{b 1 \mid r_{1}=0}\right) \tag{12}
\end{equation*}
$$

Since $r_{1}=1$ implies that the real part of the transmitted symbol, a_{I}, can take either values $-d$ or $-3 d$, and $r_{1}=0$ implies that a_{I} can take either values $+d$ or $+3 d$, we can write the above equation as

$$
\begin{align*}
P_{b 1} & =P_{b 1 \mid a_{I}=-d} \cdot \operatorname{Pr}\left\{a_{I}=-d\right\}+P_{b 1 \mid a_{I}=-3 d} \cdot \operatorname{Pr}\left\{a_{I}=-3 d\right\} \\
& +P_{b 1 \mid a_{I}=d} \cdot \operatorname{Pr}\left\{a_{I}=d\right\}+P_{b 1 \mid a_{I}=-d} \cdot \operatorname{Pr}\left\{a_{I}=3 d\right\}, \tag{13}
\end{align*}
$$

where $P_{b 1 \mid a_{I}=m}$ is the probability of error for bit r_{1} given that the real part of the transmitted symbol takes the value m. Now $P_{b 1 \mid a_{I}=-d, h}$ is given by

$$
\begin{align*}
P_{b 1 \mid a_{I}=-d, h} & =\operatorname{Pr}\left\{L L R\left(r_{1}\right)<0 \mid a_{I}=-d, h\right\} \\
& =\operatorname{Pr}\left\{\hat{n}_{I} \geq d\right\}=Q\left(\frac{d\left(\sqrt{\|h\|^{2}}\right)}{\sigma_{I}}\right), \tag{14}
\end{align*}
$$

where $\sigma_{I}^{2}=\sigma^{2} / 2$. Using the fact that $\frac{d}{\sigma_{I}}=\sqrt{\frac{4 E_{b}}{5 N_{o}}}$, where E_{b} is the energy per transmitted bit, we have

$$
\begin{equation*}
P_{b 1 \mid a_{I}=-d, h}=Q\left(\sqrt{\frac{4 E_{b}\|h\|^{2}}{5 N_{o}}}\right) \tag{15}
\end{equation*}
$$

Unconditioning on the r.v. h, it can easily be shown that

$$
P_{b 1 \mid a_{I}}=-d=Q\left(\sqrt{\frac{4 E_{b}\|h\|^{2}}{5 N_{o}}}\right)=\frac{1}{2}\left(1-\sqrt{\frac{2 E_{b} / N_{o}}{5+2 E_{b} / N_{o}}}\right)
$$

On similar lines, $P_{b 1 \mid a_{I}=-3 d}$ can be shown to be equal to

$$
\begin{equation*}
P_{b 1 \mid a_{I}}=-3 d=Q\left(\sqrt{\frac{36 E_{b}\|h\|^{2}}{5 N_{o}}}\right)=\frac{1}{2}\left(1-\sqrt{\frac{18 E_{b} / N_{o}}{5+18 E_{b} / N_{o}}}\right) \tag{17}
\end{equation*}
$$

It can be shown that $P_{b 1 \mid a_{I}=-d}=P_{b 1 \mid a_{I}=d}$ and $P_{b 1 \mid a_{I}=-3 d}=$ $P_{b 1 \mid a_{I}=3 d}$. Hence, $P_{b 1}$ is given by

$$
\begin{equation*}
P_{b 1}=\frac{1}{2}\left[1-\frac{1}{2} \sqrt{\frac{2 E_{b} / N_{o}}{5+2 E_{b} / N_{o}}}-\frac{1}{2} \sqrt{\frac{18 E_{b} / N_{o}}{5+18 E_{b} / N_{o}}}\right] \tag{18}
\end{equation*}
$$

Fig. 2. Comparison of the analytical BER evaluated using approximate LLRs vs the simulated BER using the LLRs without approximation. 16-QAM on flat Rayleigh fading.

For the 16-QAM constellation considered, $P_{b 1}=P_{b 2}$ and $P_{b 3}=P_{b 4}$. The error probabilities, $P_{b 3}$ and $P_{b 4}$ can be obtained as

$$
\begin{aligned}
P_{b 3}=P_{b 4}= & \frac{1}{2}\left[1-\sqrt{\frac{2 E_{b} / N_{o}}{5+2 E_{b} / N_{o}}}-\frac{1}{2} \sqrt{\frac{18 E_{b} / N_{o}}{5+18 E_{b} / N_{o}}}\right. \\
& \left.+\frac{1}{2} \sqrt{\frac{50 E_{b} / N_{o}}{5+50 E_{b} / N_{o}}}\right] .
\end{aligned}
$$

Using (18) and (19), we obtain the average BER, P_{b}, as $P_{b}=$ $\frac{1}{2}\left(P_{b 1}+P_{b 3}\right)$. In Fig. 2, we compare the analytical BER evaluated using the approximate LLRs derived in the above versus the simulated BER using the LLRs without approximation, for 16-QAM on flat Rayleigh fading. It is observed that the analytically computed BER is almost the same as the simulated BER, indicating that the approximation to the LLRs results in insignificant difference between the analytically computed BER and the true BER.

III. LLR and BER in Transmit Diversity

In this section, we derive the LLRs and BER for 16-QAM on Rayleigh fading channels with transmit diversity. We consider a system with two transmit antennas (Alamouti's scheme [5]). We first analyze the case of two transmit antennas and one receive antenna. We then extend the analysis to two transmit antennas and $L, L>1$ receive antennas.

A. Two Transmit Antennas and One Receive antenna

Let $a_{1},-a_{2}^{*}$ be the symbols transmitted on the first and the second transmit antennas, respectively, during a symbol interval. During the next symbol interval, a_{2}, a_{1}^{*} are transmitted on the first and the second transmit antennas, respectively [5]. Assuming that the channel remains constant over two consecutive symbol intervals, the received signals during the two consecutive symbol intervals are given as

$$
\begin{align*}
& y_{1}=a_{1} h_{1}-a_{2}^{*} h_{2}+n_{1} \\
& y_{2}=a_{2} h_{1}+a_{1}^{*} h_{2}+n_{2} \tag{20}
\end{align*}
$$

where h_{1} and h_{2} are the complex fading coefficients on the path from the 1st and the 2 nd transmit antennas, respectively, to the receive antenna with $\left\|h_{1}\right\|,\left\|h_{2}\right\|$ being Rayleigh distributed with $E\left\{\left\|h_{1}\right\|^{2}\right\}=E\left\{\left\|h_{2}\right\|^{2}\right\}=1$, and n_{1} and n_{2} are
complex Gaussian r.v's of zero mean and variance σ^{2}. Assuming perfect knowledge of the fading coefficients at the receiver, we form \hat{a}_{1} and \hat{a}_{2} as

$$
\begin{align*}
\hat{a}_{1} & =h_{1}^{*} y_{1}+h_{2} y_{2}^{*} \\
& =\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} a_{1}+n_{1} h_{1}^{*}+n_{2}^{*} h_{2}, \tag{21}\\
\hat{a}_{2} & =h_{1}^{*} y_{2}-h_{2} y_{1}^{*} \\
& =\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} a_{2}+n_{2} h_{1}^{*}-n_{1}^{*} h_{2} . \tag{22}
\end{align*}
$$

In (21), (22), we replace $\left(n_{1} h_{1}^{*}+n_{2}^{*} h_{2}\right)$ and $\left(n_{2} h_{1}^{*}-n_{1}^{*} h_{2}\right)$ by ζ_{1} and ζ_{2}, respectively, where ζ_{1} and ζ_{2} are complex Gaussian r.v's of zero mean and variance $\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} \sigma^{2}$. Then

$$
\begin{align*}
& \hat{a}_{1}=\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} a_{1}+\zeta_{1} \\
& \hat{a}_{2}=\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} a_{2}+\zeta_{2} \tag{23}
\end{align*}
$$

1) Log-Likelihood Ratios: The derivation of the LLRs for the bits in symbol a_{1} and a_{2} is quite similar to that in Section IIA. We define the LLR for the bit $r_{i}, i=1,2,3,4$ of symbol $a_{j}, j=1,2$, as

$$
\begin{align*}
L L R_{a_{j}}\left(r_{i}\right) & =\log \left(\frac{\operatorname{Pr}\left\{r_{i}=1 \mid y_{1}, y_{2}, h_{1}, h_{2}\right\}}{\operatorname{Pr}\left\{r_{i}=0 \mid y_{1}, y_{2}, h_{1}, h_{2}\right\}}\right) \\
& =\log \left(\frac{\operatorname{Pr}\left\{r_{i}=1 \mid \hat{a}_{j}, h_{1}, h_{2}\right\}}{\operatorname{Pr}\left\{r_{i}=0 \mid \hat{a}_{j}, h_{1}, h_{2}\right\}}\right) . \tag{24}
\end{align*}
$$

Assuming all symbols as equally likely and that the fading is independent of the transmitted symbols, using Bayes' rule,

$$
\begin{equation*}
L L R_{a_{j}}\left(r_{i}\right)=\log \left(\frac{\sum_{\alpha \in S_{i}^{(1)}} f_{\hat{a}_{j} \mid h_{1}, h_{2}, a_{j}}\left\{\hat{a}_{j} \mid h_{1}, h_{2}, a_{j}=\alpha\right\}}{\sum_{\beta \in S_{i}^{(0)}} f_{\hat{a}_{j} \mid h_{1}, h_{2}, a_{j}}\left\{\hat{a}_{j} \mid h_{1}, h_{2}, a_{j}=\beta\right\}}\right) . \tag{}
\end{equation*}
$$

Using the conditional pdf $f_{\hat{a}_{j} \mid h_{1}, h_{2}, a_{j}}\left\{\hat{a}_{j} \mid h_{1}, h_{2}, a_{j}=\alpha\right\}$, which is given by $\frac{1}{\hat{\sigma} \sqrt{\pi}} \exp \left(\frac{-1}{\hat{\sigma}^{2}}\left\|\hat{a}_{j}-\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} \alpha\right\|^{2}\right)$ where $\hat{\sigma}^{2}=\sigma^{2}\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\}$, we obtain $L L R_{a_{j}}\left(r_{i}\right)$ as

$$
L L R_{a_{j}}\left(r_{i}\right)=\frac{1}{\hat{\sigma}^{2}}\left[\min _{\beta \in S_{i}^{(0)}}\left\|\hat{a}_{j}-\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} \beta\right\|^{2}-\right.
$$

$$
\begin{equation*}
\left.\min _{\alpha \in S_{i}^{(1)}}\left\|\hat{a}_{j}-\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} \alpha\right\|^{2}\right] . \tag{26}
\end{equation*}
$$

Define two complex variables, $\hat{z}_{j}, j=1,2$, as

$$
\begin{equation*}
\hat{z}_{j}=\frac{\hat{a}_{j}}{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}} \tag{27}
\end{equation*}
$$

Using (27) in (26) and normalizing by $4 / \sigma^{2}$, we can write

$$
L L R_{a_{j}}\left(r_{i}\right)=\frac{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}}{4}\left[\min _{\beta \in S_{i}^{(0)}}\left\|\hat{z}_{j}-\beta\right\|^{2}-\min _{\alpha \in S_{i}^{(1)}}\left\|\hat{z}_{j}-\alpha\right\|^{2}\right]
$$

Following similar steps as in Sec. II-A, we obtain the following LLRs for bits $r_{1}, r_{2}, r_{3}, r_{4}$ of the symbol a_{j}.

$$
\begin{gather*}
L L R_{a_{j}}\left(r_{1}\right)= \begin{cases}-\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} \hat{z}_{j I} d & \left|\hat{z}_{j I}\right| \leq 2 d \\
2\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} d\left(d-\hat{z}_{j I}\right) & \hat{z}_{j I}>2 d \\
-2\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} d\left(d+\hat{z}_{j I}\right) & z_{j I}<-2 d\end{cases} \tag{29}\\
L L R_{a_{j}}\left(r_{2}\right)= \begin{cases}-\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} \hat{z}_{j Q} d & \left|\hat{z}_{j Q}\right| \leq 2 d \\
2\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} d\left(d-\hat{z}_{j Q}\right) & \hat{z}_{j Q}>2 d \\
-2\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} d\left(d+\hat{z}_{j Q}\right) & \hat{z}_{j Q}<-2 d,\end{cases} \tag{30}\\
L L R_{a_{j}}\left(r_{3}\right)=\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} d\left\{\left|\hat{z}_{j I}\right|-2 d\right\}, \tag{31}\\
L L R_{a_{j}}\left(r_{4}\right)=\left\{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right\} d\left\{\left|\hat{z}_{j Q}\right|-2 d\right\} . \tag{32}
\end{gather*}
$$

In the above equations, $\hat{z}_{j I}$ and $\hat{z}_{j Q}$ are the real and imaginary parts of \hat{z}_{j}, respectively.
2) Probability of Bit Error: In this subsection, we derive the probability of error for the bit r_{i} when transmit diversity is employed. The bit error probability for bit $r_{1}, P_{b 1}$, as in Sec. II-B, can be written as

$$
\begin{aligned}
P_{b 1}= & P_{b 1 \mid a_{j I}=-d} \cdot \operatorname{Pr}\left\{a_{j I}=-d\right\}+P_{b 1 \mid a_{j I}=-3 d} \cdot \operatorname{Pr}\left\{a_{j I}=-3 d\right\} \\
& +P_{b 1 \mid a_{j I}=d} \cdot \operatorname{Pr}\left\{a_{j I}=d\right\}+P_{b 1 \mid a_{j I}=-d} \cdot \operatorname{Pr}\left\{a_{j I}=3 d\right\}, \text { (33) }
\end{aligned}
$$

where $a_{j I}, j=1,2$ represents the real part of a_{j}. Now
$P_{b 1 \mid a_{j I}=-d, h_{1}, h_{2}}$ is given by

$$
\begin{align*}
P_{b 1 \mid a_{j I}=-d, h_{1}, h_{2}} & =\operatorname{Pr}\left\{L L R_{a_{j}}\left(r_{1}\right)<0 \mid a_{I j}=-d, h_{1}, h_{2}\right\} \\
& =\operatorname{Pr}\left\{\frac{\zeta_{j I}}{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}} \geq d\right\} \\
& =Q\left(\frac{d\left(\sqrt{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}}\right)}{\sigma_{I}}\right) \tag{34}
\end{align*}
$$

where $\sigma_{I}^{2}=\sigma^{2} / 2$. Scaling the signal power in proportion to the number of transmit antennas, we have $\frac{d}{\sigma_{I}}=\sqrt{\frac{2 E_{b}}{5 N_{o}}}$ where E_{b} is the energy per bit per transmit antenna. We then have

$$
\begin{equation*}
P_{b 1 \mid a_{j I}=-d, h_{1}, h_{2}}=Q\left(\sqrt{\frac{2 E_{b}\left(\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right)}{5 N_{o}}}\right) . \tag{35}
\end{equation*}
$$

Unconditioning the above on h_{1}, h_{2}, it can be shown that [6]

$$
\begin{equation*}
P_{b 1 \mid a_{j I}=-d}=\left(\frac{1-\mu_{1}}{2}\right)^{2}\left(2+\mu_{1}\right), \tag{36}
\end{equation*}
$$

where μ_{1} is given by $\mu_{1}=\sqrt{\frac{E_{b} / N_{o}}{5+E_{b} / N_{o}}}$. Similarly, the conditional error probability $P_{b 1 \mid a_{j I}=-3 d, h_{1}, h_{2}}$ is given by

$$
\begin{align*}
P_{b 1 \mid a_{j I}=-3 d, h_{1}, h_{2}} & =\operatorname{Pr}\left\{L L R_{a_{j}}\left(r_{1}\right)<0 \mid a_{I}=-3 d, h_{1}, h_{2}\right\} \\
& =\operatorname{Pr}\left\{\frac{\zeta_{j I}}{\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}} \geq 3 d\right\} \\
& =Q\left(\sqrt{\frac{18 E_{b}\left(\left\|h_{1}\right\|^{2}+\left\|h_{2}\right\|^{2}\right)}{5 N_{o}}}\right) . \tag{3}
\end{align*}
$$

Unconditioning the above on h_{1} and h_{2}, we get

$$
\begin{equation*}
P_{b 1 \mid a_{j I}=-3 d}=\left(\frac{1-\mu_{2}}{2}\right)^{2}\left(2+\mu_{2}\right), \tag{38}
\end{equation*}
$$

where μ_{2} is given by $\mu_{2}=\sqrt{\frac{9 E_{b} / N_{o}}{5+9 E_{b} / N_{o}}}$. It can further be shown that $P_{b 1 \mid a_{I}=-d}=P_{b 1 \mid a_{I}=d}$ and $P_{b 1 \mid a_{I}=-3 d}=P_{b 1 \mid a_{I}=3 d}$. Hence, the probability of error for bit r_{1} is given by

$$
\begin{equation*}
P_{b 1}=\frac{1}{2}\left(\left(\frac{1-\mu_{1}}{2}\right)^{2}\left(2+\mu_{1}\right)+\left(\frac{1-\mu_{2}}{2}\right)^{2}\left(2+\mu_{2}\right)\right) . \tag{39}
\end{equation*}
$$

For the 16-QAM constellation used, it can be shown that $P_{b 1}=$ $P_{b 2}$. Using a similar approach, we can obtain the error probabilities for bits r_{3} and $r_{4}, P_{b 3}$ and $P_{b 4}$, as

$$
\begin{align*}
P_{b 3}=P_{b 4}= & \frac{1}{2}\left[\frac{1}{2}\left(1-\mu_{1}\right)^{2}\left(2+\mu_{1}\right)+\frac{1}{4}\left(1-\mu_{2}\right)^{2}\left(2+\mu_{2}\right)\right. \\
& \left.-\frac{1}{4}\left(1-\mu_{3}\right)^{2}\left(2+\mu_{3}\right)\right], \tag{40}
\end{align*}
$$

where μ_{3} is given by $\mu_{3}=\sqrt{\frac{25 E_{b} / N_{o}}{5+25 E_{b} / N_{o}}}$. Using (39) and (40), we can write the average BER, P_{b}, as $P_{b}=\frac{1}{2}\left(P_{b 1}+P_{b 3}\right)$.

Fig. 3. BER performance of uncoded 16-QAM with transmit diversity. 2 transmit antennas and 1 receive antenna.

We computed the average BER from the above expression and plotted the numerical results in Fig. 3. Fig. 3 shows P_{b} as a function of E_{b} / N_{o} for 16-QAM without and with transmit diversity (2 transmit, 1 receive antenna). It can be seen that when transmit diversity is employed, the BER performance improves as expected.

B. Two Transmit Antennas and L Receive Antennas

We now consider a receiver with $L, L>1$ receive antennas. The transmitter remains the same as discussed in Section III-A. We denote the channel fading coefficients as follows: $h_{2 i-1}$ represents the fading coefficient from transmit antenna 1 to receive antenna $i, i=1 \cdots L$, and $h_{2 i}$ represent the fading coefficient from transmit antenna 2 to receive antenna $i, i=1 \cdots L$. Let $y_{2 i-1}$ and $y_{2 i}, i=1 \cdots L$ be the received signal at the $i^{\text {th }}$ antenna during two consecutive symbol intervals, respectively.
Assuming perfect knowledge of the fading coefficients at the receiver, we have (as in Sec. III-A)

$$
\begin{align*}
& \hat{a}_{1}=\sum_{i=1}^{L}\left(h_{2 i-1}^{*} y_{2 i-1}+h_{2 i} y_{2 i}^{*}\right) \tag{41}\\
& \hat{a}_{2}=\sum_{i=1}^{L}\left(h_{2 i-1}^{*} y_{2 i}-h_{2 i} y_{2 i-1}^{*}\right) . \tag{42}
\end{align*}
$$

After further simplification, \hat{a}_{1} and \hat{a}_{2} can be rewritten as

$$
\begin{align*}
& \hat{a}_{1}=\left(\sum_{i=1}^{2 L}\left\|h_{i}\right\|^{2}\right) a_{1}+\zeta_{1} \tag{43}\\
& \hat{a}_{2}=\left(\sum_{i=1}^{2 L}\left\|h_{i}\right\|^{2}\right) a_{2}+\zeta_{2}, \tag{44}
\end{align*}
$$

where ζ_{1} and ζ_{2} are complex Gaussian random variables with zero mean and variance $\left\{\sum_{i=1}^{2 L}\left\|h_{i}\right\|^{2}\right\} \sigma^{2}$.

1) Log-Likelihood Ratios: Following a similar approach as in Sec. III-A.1, it can be shown that the log-likelihood ratios for bits r_{1}, r_{2}, r_{3} and $r 4$ are given by
$L L R_{a_{j}}\left(r_{1}\right)= \begin{cases}-\left(\sum_{i=1}^{2 L}\left\|h_{i}\right\|^{2}\right) \hat{z}_{j I} d & \left|\hat{z}_{j I}\right| \leq 2 d \\ 2\left(\sum_{i=1}^{2 L}\left\|h_{i}\right\|^{2}\right) d\left(d-\hat{z}_{j I}\right) & \hat{z}_{j I}(k)>2 d \\ -2\left(\sum_{i=1}^{2 L}\left\|h_{i}\right\|^{2}\right) d\left(d+\hat{z}_{j I}\right) & \hat{z}_{j I}(k)<-2 d\end{cases}$

Fig. 4. BER performance of uncoded 16-QAM with transmit diversity. 2 transmit antennas and L receive antennas. $L=1,2,3,4,20$.

$$
\begin{gather*}
L L R_{a_{j}}\left(r_{2}\right)= \begin{cases}-\left(\sum_{i=1}^{2 L}\left\|h_{i}\right\|^{2}\right) \hat{z}_{j Q} d & \left|\hat{z}_{j Q}\right| \leq 2 d \\
2\left(\sum_{i=1}^{2}\left\|h_{i}\right\|^{2}\right) d\left(d-\hat{z}_{j Q}\right) & \hat{z}_{j Q}>2 d \\
-2\left(\sum_{i=1}^{2 L}\left\|h_{i}\right\|^{2}\right) d\left(d+\hat{z}_{j Q}\right) & \hat{z}_{j Q}<-2 d\end{cases} \tag{46}\\
L L R_{a_{j}}\left(r_{3}\right)=\left(\sum_{i=1}^{2 L}\left\|h_{i}\right\|^{2}\right) d\left\{\left|\hat{z}_{j I}\right|-2 d\right\} \tag{47}\\
L L R_{a_{j}}\left(r_{4}\right)=\left(\sum_{i=1}^{2 L}\left\|h_{i}\right\|^{2}\right) d\left\{\left|\hat{z}_{j Q}\right|-2 d\right\} \tag{48}
\end{gather*}
$$

In the above equations, $\hat{z}_{j}, j=1,2$, are given by

$$
\begin{equation*}
\hat{z}_{j}=\frac{\hat{a}_{j}}{\sum_{i=1}^{2 L}\left\|h_{i}\right\|^{2}} \tag{49}
\end{equation*}
$$

and $\hat{z}_{j I}$ and $\hat{z}_{j Q}$ are the real and imaginary parts of \hat{z}_{j}.
2) Probability of Bit Error: The probability of error can be derived following similar lines in Sec. III-A.2. The error probabilities for bits $r_{1}, r_{2} r_{3}$ and r_{4} can be derived to be:

$$
\begin{gather*}
P_{b 1}=P_{b 2}=\frac{1}{2}\left(P_{1}+P_{2}\right) \tag{50}\\
P_{b 3}=P_{b 4}=\frac{1}{2}\left(2 P_{1}+P_{2}-P_{3}\right), \tag{51}
\end{gather*}
$$

where $P_{i}, i=1,2,3$, are given by
$P_{i}=\left[\frac{1}{2}\left(1-\mu_{i}\right)\right]^{2 L} \sum_{k=0}^{2 L-1}\binom{2 L-1+k}{k}\left[\frac{1}{2}\left(1+\mu_{i}\right)\right]^{k}$,
where $\mu_{1}=\sqrt{\frac{E_{b} / N_{o}}{5 L+E_{b} / N_{o}}}, \mu_{2}=\sqrt{\frac{9 E_{b} / N_{o}}{5 L+9 E_{b} / N_{o}}}$, and $\mu_{3}=\sqrt{\frac{25 E_{b} / N_{o}}{5 L+25 E_{b} / N_{o}}}$.
Fig. 4 provides the numerical results of the average BER, P_{b}, computed using the BER expression derived above, for the case of two transmit and multiple receive antennas. The various values of L considered are $1,2,3,4$, and 20 . It is seen that the performance improves as L increases due to the increased diversity order. We point out that the performance of $(2-\mathrm{Tx}, L-\mathrm{Rx})$ scheme is same as that of $(1-\mathrm{Tx}, 2 L-$ $R x$) scheme. Thus our analysis provides a means to analytically evaluate the BER of QAM with 'receive-only diversity' using MRC when the number of receive antennas is even.

Fig. 5. BER performance of rate-1/3 turbo coded 16-QAM scheme with transmit diversity in Rayleigh fading. LLRs of bits in QAM symbols used as soft inputs to the turbo decoder.

C. LLRs as Soft Inputs to Decoders

We note that, in addition to being used in the BER analysis above, the derived LLRs for the individual bits in the QAM symbols can be used as soft inputs to the decoders in various coded QAM schemes. As an example, we employed the LLRs as soft inputs to the turbo decoder in a rate- $1 / 3$ turbo coded 16-QAM scheme in Rayleigh fading without and with transmit diversity using Alamouti scheme. Fig. 5 shows the simulated BER performance of turbo coded 16-QAM system using the derived LLRs as soft inputs to the decoder. The turbo code used in the simulations is the one specified in the 3GPP standard. Likewise, the LLRs can be used as soft inputs to decoders in DVB and IEEE 802.11a, where convolutionally coded QAM with OFDM is used.

IV. Conclusions

We analyzed the BER performance of QAM schemes in Rayleigh fading channels without and with transmit diversity. The key contributions in this paper are two fold - first, we presented an alternate method of deriving the BER for QAM on fading channels using loglikelihood ratios (LLRs) of the individual bits that form the QAM symbol, and second, using the LLRs, we derived the BER for QAM with transmit diversity in a system that uses two transmit antennas and multiple receive antennas. Although we derived the LLRs and BER for a 16-QAM scheme in this paper, the analytical technique applies to any higher order $(M>16)$ QAM constellation and for any arbitrary mapping of bits to QAM symbols. We also pointed out another major application of the LLRs derived; that is, the LLRs provide a soft metric for each bit in the mapping, which can be used as soft inputs to decoders for various coded QAM schemes, including turbo coded QAM with transmit diversity as specified in high speed downlink packet access (HSDPA) in 3G.

REFERENCES

[1] P. K. Vitthaladevuni and M.-S. Alouini, "BER computation of 4/MQAM hierarchical constellations," IEEE Trans. Broadcasting, vol. 47, no. 3, pp. 228-240, September 2001.
[2] K. Cho and D. Yoon, "On the general BER expression of one and two dimensional amplitude modulations," IEEE Trans. Commun., vol. 50, no. 7, pp. 1074-1080, July 2002.
[3] L.-L. Yang and L. Hanzo, "A recursive algorithm for the error probability evaluation of M-QAM," IEEE Comm. Letters, vol. 4, no. 10, pp. 304-306, October 2000.
[4] R. Pyndiah, A. Picard and A. Glavieux, "Performance of block Turbo coded 16-QAM and 64-QAM modulations," Proc. IEEE GLOBECOM'95, pp. 1039-1043, Singapore, November 1995.
[5] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE Jl. Sel. Areas in Commun., vol. 16, no. 8, pp. 1451-1458, October 1998.
[6] J. G. Proakis, Digital Communications, McGraw-Hill, 1995.
[7] A. J. Viterbi, "An intuitive justification and a simplified implementation of the MAP decoder for convolutional codes," IEEE Jl. Sel. Areas in Commun., vol. 16, no. 2, pp. 260-264, 1998.

[^0]: ${ }^{1}$ This is quite a standard approximation [7], and, as we will see in Sec. II-B the analytical BER evaluated using this approximate LLR is almost the same as the BER evaluated through simulations without this approximation.

