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Abstract—In this paper, we present a log-likelihood ratio (LLR)
based approach to analyze the bit error rate (BER) performance
of quadrature amplitude modulation (QAM) on Rayleigh fading
channels without and with transmit diversity. We derive LLRs
for the individual bits forming a QAM symbol both on flat fading
channels without diversity as well as on channels with transmit
diversity using two transmit antennas (Alamouti’s scheme) and
multiple receive antennas. Using the LLRs of the individual bits
forming the QAM symbol, we derive expressions for the proba-
bility of error for various bits in the QAM symbol, and hence the
average BER. In addition to being used in the BER analysis, the
LLRs derived can be used as soft inputs to decoders for various
coded QAM schemes including turbo coded QAM with transmit
diversity, as in high speed downlink packet access (HSDPA) in
3G.

Keywords – QAM, BER analysis, transmit diversity, log-likelihood ratio.

I. INTRODUCTION

Multilevel quadrature amplitude modulation (M -QAM) is an
attractive modulation scheme for wireless communications due
to the high spectral efficiency it provides. Several works have
been reported on the performance analysis of M -QAM in fad-
ing channels, where mainly the symbol error rate (SER) per-
formance has been derived. In addition to the SER analysis, bit
error rate (BER) analysis is also of interest in multilevel mod-
ulation schemes. Recent works reported in [1]-[3] provide ex-
pressions to compute the BER for M -QAM on AWGN chan-
nels. In [1], Vitthaladevuni and Alouini provide BER analysis
for hierarchical 4/M -QAM on fading channels. In the 4/M -
QAM scheme in [1], higher order M−QAM constellations are
embedded by a lower order QAM constellation (4-QAM), and
the M -QAM BER is obtained by using the results of the un-
derlying 4-QAM constellation. Our focus in this paper is on
the analytical evaluation of the BER performance of QAM on
Rayleigh fading channels without and with transmit diversity.

The key contributions in this paper are two fold – first, we
present an alternate method of deriving the BER for QAM on
fading channels using log-likelihood ratios (LLRs) of the indi-
vidual bits that form the QAM symbol, and second, using the
LLRs, we derive the BER expressions for QAM on Rayleigh
fading channels without and with transmit diversity using two
transmit antennas (Alamouti’s scheme [5]) and multiple re-
ceive antennas. We derive the LLRs and BER expressions for
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16-QAM scheme in this paper. The analytical technique, how-
ever, is applicable to any high order (M > 16) QAM constel-
lation and for any arbitrary mapping of bits to QAM symbols.
Another major usefulness of the results in this paper is that the
derived LLRs provide a soft metric for each bit in the map-
ping, which can be used as soft inputs to decoders for vari-
ous coded QAM schemes. Examples of such systems include
turbo coded QAM with transmit diversity in high speed down-
link packet access (HSDPA) in 3G, and convolutionally coded
QAM with OFDM in digital video broadcasting (DVB) and
IEEE 802.11a.

The rest of the paper is organized as follows. We present the
derivation of LLRs and BER expression for 16-QAM on flat
Rayleigh fading channels in Section II. The derivation of the
LLRs and BER expression for the case of transmit diversity is
presented in Section III. Conclusions are given in Section IV.

II. LLR AND BER IN FLAT FADING

Consider the M -QAM (M = 16) scheme as shown in Fig.
1, where log2M = 4 bits (r1, r2, r3, r4) are mapped on to a
complex symbol a = aI + jaQ. The horizontal/vertical line
pieces in Fig. 1 denote that all bits under these lines take the
value 1, and the rest take the value 0. For example, the symbol
with coordinates (−3d, 3d) maps the 4-bit combination r1 =
1, r2 = 0, r3 = r4 = 1. Assuming that the transmitted symbol
a undergoes multiplicative fading (the fading is assumed to be
slow, frequency non-selective and remain constant over one
symbol interval), the received signal y corresponding to the
transmitted symbol a can be written as

y = ha + n, (1)

where h is the complex fading channel coefficient with E{‖h‖2}
= 1 and the r.v’s ‖h‖’s for different symbols are assumed to
be i.i.d Rayleigh distributed, and n = nI + jnQ is a complex
Gaussian r.v of zero mean and variance σ2/2 per dimension.

A. Log-Likelihood Ratios

We define the log-likelihood ratio (LLR) of bit ri, i = 1, 2, 3, 4
of the received symbol as [4]

LLR(ri) = log

(
Pr{ri = 1|y, h}
Pr{ri = 0|y, h}

)
. (2)

Clearly, the optimum decision rule is to decide, r̂i = 1 if
LLR(ri) ≥ 0, and 0 otherwise. Define two set partitions,
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S
(1)
i and S

(0)
i , such that S

(1)
i comprises symbols with ri = 1

and S
(0)
i comprises symbols with ri = 0 in the constellation.

Then, from (2), we have

LLR(ri) = log

(∑
α∈S

(1)
i

Pr{a = α|y, h}∑
β∈S

(0)
i

Pr{a = β|y, h}

)
. (3)

Assume that all the symbols are equally likely and that fading
is independent of the transmitted symbols. Using Bayes’ rule,
we then have

LLR(ri) = log

(∑
α∈S

(1)
i

fy|h,a{y|h, a = α}∑
β∈S

(0)
i

fy|h,a{y|h, a = β}

)
. (4)

Since fy|h,a{y|h, a = α} = 1
σ
√

π
exp

(
−1
σ2 ‖y − hα‖2

)
, (4) can

be written as

LLR(ri) = log

(∑
α∈S

(1)
i

exp
(−1

σ2 ‖y − hα‖2
)

∑
β∈S

(0)
i

exp
(−1

σ2 ‖y − hβ‖2
)). (5)

Using the approximation log(
∑

j exp(−Xj)) ≈ −minj(Xj),
we can approximate (5) as 1

LLR(ri) =
1

σ2

{
min

β∈S
(0)
i

‖y − hβ‖2 − min
α∈S

(1)
i

‖y − hα‖2
}

. (6)

Define z as z
∆= y

h = a + n
h = a + n̂, where n̂ is a com-

plex Gaussian r.v. with variance σ2/‖h‖2. Using the above
definition of z into (6) and normalizing LLR(ri) by 4/σ2,

LLR(ri) =
‖h‖2

4

{
min

β∈S
(0)
i

‖z − β‖2 − min
α∈S

(1)
i

‖z − α‖2
}

.

=
‖h‖2

4

[
min

β∈S
(0)
i

{
‖β‖2 − 2zIβI − 2zQβQ

}
−

min
α∈S

(1)
i

{
‖α‖2 − 2zIαI − 2zQαQ

}]
, (7)

where z = zI + jzQ, α = αI + jαQ and β(k) = βI + jβQ.

Note that the set partitions S
(1)
i and S

(0)
i are delimited by hor-

izontal or vertical boundaries. As a consequence, two symbols
in different sets closest to the received symbol always lie ei-
ther on the same row (if the delimiting boundaries are vertical)
or on the same column (if the delimiting boundaries are hor-
izontal). Then, for bit r1, the two constellation symbols in
S

(1)
1 and S

(0)
1 having closest distances to the received symbol

satisfy the condition αQ = βQ. Hence, for bit r1

LLR(r1) =

{ −‖h‖2zId |zI | ≤ 2d
2‖h‖2d(d − zI) zI > 2d
−2‖h‖2d(d + zI) zI < −2d,

(8)

where 2d is the minimum distance between pairs of signal
points. Following similar steps for bits r2, r3, and r4, we get

LLR(r2) =

{ −‖h‖2zQd |zQ| ≤ 2d
2‖h‖2d(d − zQ) zQ > 2d
−2‖h‖2d(d + zQ) zQ < −2d,

(9)

1This is quite a standard approximation [7], and, as we will see in Sec. II-B,
the analytical BER evaluated using this approximate LLR is almost the same
as the BER evaluated through simulations without this approximation.

Fig. 1. 16-QAM Constellation

LLR(r3) = ‖h‖2d{|zI | − 2d} (10)

LLR(r4) = ‖h‖2d{|zQ| − 2d}. (11)

B. Derivation of Probability of Bit Error

Using the LLR(ri)’s obtained above, we derive the analyti-
cal expression for the probability of error for the bits ri, i =
1, 2, 3, 4. The probability of error for bit r1, Pb1, is given by

Pb1 =
1

2

(
Pb1|r1=1 + Pb1|r1=0

)
. (12)

Since r1 = 1 implies that the real part of the transmitted sym-
bol, aI , can take either values −d or −3d, and r1 = 0 implies
that aI can take either values +d or +3d, we can write the
above equation as

Pb1 = Pb1|aI=−d. Pr{aI = −d} + Pb1|aI=−3d. Pr{aI = −3d}
+ Pb1|aI=d. Pr{aI = d} + Pb1|aI=−d. Pr{aI = 3d}, (13)

where Pb1|aI=m is the probability of error for bit r1 given that
the real part of the transmitted symbol takes the value m. Now
Pb1|aI=−d,h is given by

Pb1|aI=−d,h = Pr{LLR(r1) < 0 | aI = −d, h}

= Pr{n̂I ≥ d} = Q

(
d
(√

‖h‖2
)

σI

)
, (14)

where σ2
I = σ2/2. Using the fact that d

σI
=

√
4Eb

5No
, where Eb

is the energy per transmitted bit, we have

Pb1|aI=−d,h = Q

(√
4Eb‖h‖2

5No

)
. (15)

Unconditioning on the r.v. h, it can easily be shown that

Pb1|aI=−d = Q

(√
4Eb‖h‖2

5No

)
=

1

2

(
1 −

√
2Eb/No

5 + 2Eb/No

)
. (16)

On similar lines, Pb1|aI=−3d can be shown to be equal to

Pb1|aI=−3d = Q

(√
36Eb‖h‖2

5No

)
=

1

2

(
1 −

√
18Eb/No

5 + 18Eb/No

)
. (17)

It can be shown that Pb1|aI=−d = Pb1|aI=d and Pb1|aI=−3d =
Pb1|aI=3d. Hence, Pb1 is given by

Pb1 =
1

2

[
1 − 1

2

√
2Eb/No

5 + 2Eb/No
− 1

2

√
18Eb/No

5 + 18Eb/No

]
. (18)
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Fig. 2. Comparison of the analytical BER evaluated using approximate LLRs
vs the simulated BER using the LLRs without approximation. 16-QAM on
flat Rayleigh fading.

For the 16-QAM constellation considered, Pb1 = Pb2 and
Pb3 = Pb4. The error probabilities, Pb3 and Pb4 can be ob-
tained as

Pb3 = Pb4 =
1

2

[
1 −

√
2Eb/No

5 + 2Eb/No
−

1

2

√
18Eb/No

5 + 18Eb/No

+
1

2

√
50Eb/No

5 + 50Eb/No

]
. (19)

Using (18) and (19), we obtain the average BER, Pb, as Pb =
1
2

(
Pb1+Pb3

)
. In Fig. 2, we compare the analytical BER eval-

uated using the approximate LLRs derived in the above versus
the simulated BER using the LLRs without approximation, for
16-QAM on flat Rayleigh fading. It is observed that the ana-
lytically computed BER is almost the same as the simulated
BER, indicating that the approximation to the LLRs results
in insignificant difference between the analytically computed
BER and the true BER.

III. LLR AND BER IN TRANSMIT DIVERSITY

In this section, we derive the LLRs and BER for 16-QAM on
Rayleigh fading channels with transmit diversity. We consider
a system with two transmit antennas (Alamouti’s scheme [5]).
We first analyze the case of two transmit antennas and one
receive antenna. We then extend the analysis to two transmit
antennas and L, L > 1 receive antennas.

A. Two Transmit Antennas and One Receive antenna
Let a1, −a∗

2 be the symbols transmitted on the first and the
second transmit antennas, respectively, during a symbol in-
terval. During the next symbol interval, a2, a∗

1 are transmit-
ted on the first and the second transmit antennas, respectively
[5]. Assuming that the channel remains constant over two con-
secutive symbol intervals, the received signals during the two
consecutive symbol intervals are given as

y1 = a1h1 − a∗
2h2 + n1

y2 = a2h1 + a∗
1h2 + n2, (20)

where h1 and h2 are the complex fading coefficients on the
path from the 1st and the 2nd transmit antennas, respectively,
to the receive antenna with ‖h1‖, ‖h2‖ being Rayleigh dis-
tributed with E{‖h1‖2} = E{‖h2‖2} = 1, and n1 and n2 are

complex Gaussian r.v’s of zero mean and variance σ2. Assum-
ing perfect knowledge of the fading coefficients at the receiver,
we form â1 and â2 as

â1 = h∗
1y1 + h2y

∗
2

= {‖h1‖2 + ‖h2‖2}a1 + n1h
∗
1 + n∗

2h2, (21)

â2 = h∗
1y2 − h2y

∗
1

= {‖h1‖2 + ‖h2‖2}a2 + n2h
∗
1 − n∗

1h2. (22)

In (21), (22), we replace (n1h
∗
1 +n∗

2h2) and (n2h
∗
1−n∗

1h2) by
ζ1 and ζ2, respectively, where ζ1 and ζ2 are complex Gaussian
r.v’s of zero mean and variance {‖h1‖2 + ‖h2‖2}σ2. Then

â1 = {‖h1‖2 + ‖h2‖2}a1 + ζ1

â2 = {‖h1‖2 + ‖h2‖2}a2 + ζ2. (23)

1) Log-Likelihood Ratios: The derivation of the LLRs for the
bits in symbol a1 and a2 is quite similar to that in Section II-
A. We define the LLR for the bit ri, i = 1, 2, 3, 4 of symbol
aj , j = 1, 2, as

LLRaj (ri) = log

(
Pr{ri = 1|y1, y2, h1, h2}
Pr{ri = 0|y1, y2, h1, h2}

)
= log

(
Pr{ri = 1|âj , h1, h2}
Pr{ri = 0|âj , h1, h2}

)
. (24)

Assuming all symbols as equally likely and that the fading is
independent of the transmitted symbols, using Bayes’ rule,

LLRaj
(ri) = log

(∑
α∈S

(1)
i

fâj |h1,h2,aj
{âj |h1, h2, aj = α}∑

β∈S
(0)
i

fâj |h1,h2,aj
{âj |h1, h2, aj = β}

)
. (25)

Using the conditional pdf fâj |h1,h2,aj
{âj |h1, h2, aj = α}, which

is given by 1
σ̂
√

π
exp

(
−1
σ̂2

∥∥âj − {‖h1‖2 + ‖h2‖2}α

∥∥2
)

where

σ̂2 = σ2{‖h1‖2 + ‖h2‖2}, we obtain LLRaj
(ri) as

LLRaj
(ri) =

1

σ̂2

[
min

β∈S
(0)
i

∥∥âj − {‖h1‖2 + ‖h2‖2}β

∥∥2
−

min

α∈S
(1)
i

∥∥âj − {‖h1‖2 + ‖h2‖2}α

∥∥2

]
. (26)

Define two complex variables, ẑj , j = 1, 2, as

ẑj =
âj

‖h1‖2 + ‖h2‖2
. (27)

Using (27) in (26) and normalizing by 4/σ2, we can write

LLRaj
(ri) =

‖h1‖2 + ‖h2‖2

4

[
min

β∈S
(0)
i

‖ẑj − β‖2 − min

α∈S
(1)
i

‖ẑj − α‖2

]
. (28)

Following similar steps as in Sec. II-A, we obtain the follow-
ing LLRs for bits r1, r2, r3, r4 of the symbol aj .

LLRaj (r1) =

{
− {‖h1‖2 + ‖h2‖2}ẑjId |ẑjI | ≤ 2d
2{‖h1‖2 + ‖h2‖2}d(d − ẑjI) ẑjI > 2d
− 2{‖h1‖2 + ‖h2‖2}d(d + ẑjI) zjI < −2d,

(29)

LLRaj (r2) =

{
− {‖h1‖2 + ‖h2‖2}ẑjQd |ẑjQ| ≤ 2d
2{‖h1‖2 + ‖h2‖2}d(d − ẑjQ) ẑjQ > 2d
− 2{‖h1‖2 + ‖h2‖2}d(d + ẑjQ) ẑjQ < −2d,

(30)

LLRaj (r3) = {‖h1‖2 + ‖h2‖2}d{|ẑjI | − 2d}, (31)

LLRaj (r4) = {‖h1‖2 + ‖h2‖2}d{|ẑjQ| − 2d}. (32)

In the above equations, ẑjI and ẑjQ are the real and imaginary
parts of ẑj , respectively.

GLOBECOM 2003 - 643 - 0-7803-7974-8/03/$17.00 © 2003 IEEE



2) Probability of Bit Error: In this subsection, we derive the
probability of error for the bit ri when transmit diversity is
employed. The bit error probability for bit r1, Pb1, as in Sec.
II-B, can be written as

Pb1 = Pb1|ajI=−d. Pr{ajI = −d} + Pb1|ajI=−3d. Pr{ajI = −3d}
+Pb1|ajI=d. Pr{ajI = d} + Pb1|ajI=−d. Pr{ajI = 3d}, (33)

where ajI , j = 1, 2 represents the real part of aj . Now
Pb1|ajI=−d,h1,h2 is given by

Pb1|ajI=−d,h1,h2 = Pr{LLRaj (r1) < 0 | aIj = −d, h1, h2}

= Pr

{
ζjI

‖h1‖2 + ‖h2‖2
≥ d

}
= Q

(
d
(√

‖h1‖2 + ‖h2‖2
)

σI

)
, (34)

where σ2
I = σ2/2. Scaling the signal power in proportion to

the number of transmit antennas, we have d
σI

=
√

2Eb

5No
where

Eb is the energy per bit per transmit antenna. We then have

Pb1|ajI=−d,h1,h2 = Q

(√
2Eb

(
‖h1‖2 + ‖h2‖2

)
5No

)
. (35)

Unconditioning the above on h1, h2, it can be shown that [6]

Pb1|ajI=−d =
(

1 − µ1

2

)2 (
2 + µ1

)
, (36)

where µ1 is given by µ1 =
√

Eb/No

5+Eb/No
. Similarly, the condi-

tional error probability Pb1|ajI=−3d,h1,h2 is given by

Pb1|ajI=−3d,h1,h2 = Pr{LLRaj (r1) < 0 | aI = −3d, h1, h2}

= Pr

{
ζjI

‖h1‖2 + ‖h2‖2
≥ 3d

}

= Q

(√
18Eb

(
‖h1‖2 + ‖h2‖2

)
5No

)
. (37)

Unconditioning the above on h1 and h2, we get

Pb1|ajI=−3d =

(
1 − µ2

2

)2(
2 + µ2

)
, (38)

where µ2 is given by µ2 =
√

9Eb/No

5+9Eb/No
. It can further be

shown that Pb1|aI=−d = Pb1|aI=d and Pb1|aI=−3d = Pb1|aI=3d.
Hence, the probability of error for bit r1 is given by

Pb1 =
1

2

((
1 − µ1

2

)2

(2 + µ1) +
(

1 − µ2

2

)2

(2 + µ2)

)
. (39)

For the 16-QAM constellation used, it can be shown that Pb1 =
Pb2. Using a similar approach, we can obtain the error proba-
bilities for bits r3 and r4, Pb3 and Pb4, as

Pb3 = Pb4 =
1

2

[
1

2
(1 − µ1)

2 (2 + µ1) +
1

4
(1 − µ2)

2 (2 + µ2)

−1

4
(1 − µ3)

2 (2 + µ3)

]
, (40)

where µ3 is given by µ3 =
√

25Eb/No

5+25Eb/No
. Using (39) and (40),

we can write the average BER, Pb, as Pb = 1
2 (Pb1 + Pb3) .
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Fig. 3. BER performance of uncoded 16-QAM with transmit diversity. 2
transmit antennas and 1 receive antenna.

We computed the average BER from the above expression and
plotted the numerical results in Fig. 3. Fig. 3 shows Pb as
a function of Eb/No for 16-QAM without and with transmit
diversity (2 transmit, 1 receive antenna). It can be seen that
when transmit diversity is employed, the BER performance
improves as expected.

B. Two Transmit Antennas and L Receive Antennas

We now consider a receiver with L, L > 1 receive anten-
nas. The transmitter remains the same as discussed in Sec-
tion III-A. We denote the channel fading coefficients as fol-
lows: h2i−1 represents the fading coefficient from transmit
antenna 1 to receive antenna i, i = 1 · · ·L, and h2i repre-
sent the fading coefficient from transmit antenna 2 to receive
antenna i, i = 1 · · ·L. Let y2i−1 and y2i, i = 1 · · ·L be
the received signal at the ith antenna during two consecutive
symbol intervals, respectively.

Assuming perfect knowledge of the fading coefficients at the
receiver, we have (as in Sec. III-A)

â1 =

L∑
i=1

(
h∗

2i−1 y2i−1 + h2i y∗
2i

)
(41)

â2 =

L∑
i=1

(
h∗

2i−1 y2i − h2i y∗
2i−1

)
. (42)

After further simplification, â1 and â2 can be rewritten as

â1 =
( 2L∑

i=1

‖hi‖2
)
a1 + ζ1 (43)

â2 =
( 2L∑

i=1

‖hi‖2
)
a2 + ζ2, (44)

where ζ1 and ζ2 are complex Gaussian random variables with
zero mean and variance {∑2L

i=1 ‖hi‖2}σ2.

1) Log-Likelihood Ratios : Following a similar approach as
in Sec. III-A.1, it can be shown that the log-likelihood ratios
for bits r1, r2, r3 and r4 are given by

LLRaj (r1) =


−
(∑2L

i=1
‖hi‖2

)
ẑjId |ẑjI | ≤ 2d

2
(∑2L

i=1
‖hi‖2

)
d(d − ẑjI) ẑjI(k) > 2d

− 2
(∑2L

i=1
‖hi‖2

)
d(d + ẑjI) ẑjI(k) < −2d

(45)
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Fig. 4. BER performance of uncoded 16-QAM with transmit diversity. 2
transmit antennas and L receive antennas. L = 1, 2, 3, 4, 20.

LLRaj (r2) =


−
(∑2L

i=1
‖hi‖2

)
ẑjQd |ẑjQ| ≤ 2d

2
(∑2L

i=1
‖hi‖2

)
d(d − ẑjQ) ẑjQ > 2d

− 2
(∑2L

i=1
‖hi‖2

)
d(d + ẑjQ) ẑjQ < −2d

(46)

LLRaj (r3) =
( 2L∑

i=1

‖hi‖2
)
d{|ẑjI | − 2d}, (47)

LLRaj (r4) =
( 2L∑

i=1

‖hi‖2
)
d{|ẑjQ| − 2d}. (48)

In the above equations, ẑj , j = 1, 2, are given by

ẑj =
âj∑2L

i=1 ‖hi‖2
, (49)

and ẑjI and ẑjQ are the real and imaginary parts of ẑj .

2) Probability of Bit Error: The probability of error can be
derived following similar lines in Sec. III-A.2. The error prob-
abilities for bits r1, r2 r3 and r4 can be derived to be:

Pb1 = Pb2 =
1

2

(
P1 + P2

)
(50)

Pb3 = Pb4 =
1

2

(
2P1 + P2 − P3

)
, (51)

where Pi, i = 1, 2, 3, are given by

Pi =
[
1

2

(
1 − µi

)]2L
2L−1∑
k=0

(
2L − 1 + k

k

)[
1

2

(
1 + µi

)]k

, (52)

where µ1 =
√

Eb/No

5L+Eb/No
, µ2 =

√
9Eb/No

5L+9Eb/No
, and

µ3 =
√

25Eb/No

5L+25Eb/No
.

Fig. 4 provides the numerical results of the average BER, Pb, com-
puted using the BER expression derived above, for the case of two
transmit and multiple receive antennas. The various values of L con-
sidered are 1, 2, 3, 4, and 20. It is seen that the performance improves
as L increases due to the increased diversity order. We point out that
the performance of (2-Tx,L-Rx) scheme is same as that of (1-Tx,2L-
Rx) scheme. Thus our analysis provides a means to analytically eval-
uate the BER of QAM with ‘receive-only diversity’ using MRC when
the number of receive antennas is even.
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Fig. 5. BER performance of rate-1/3 turbo coded 16-QAM scheme with
transmit diversity in Rayleigh fading. LLRs of bits in QAM symbols used as
soft inputs to the turbo decoder.

C. LLRs as Soft Inputs to Decoders

We note that, in addition to being used in the BER analysis above, the
derived LLRs for the individual bits in the QAM symbols can be used
as soft inputs to the decoders in various coded QAM schemes. As an
example, we employed the LLRs as soft inputs to the turbo decoder in
a rate-1/3 turbo coded 16-QAM scheme in Rayleigh fading without
and with transmit diversity using Alamouti scheme. Fig. 5 shows the
simulated BER performance of turbo coded 16-QAM system using
the derived LLRs as soft inputs to the decoder. The turbo code used in
the simulations is the one specified in the 3GPP standard. Likewise,
the LLRs can be used as soft inputs to decoders in DVB and IEEE
802.11a, where convolutionally coded QAM with OFDM is used.

IV. CONCLUSIONS

We analyzed the BER performance of QAM schemes in Rayleigh
fading channels without and with transmit diversity. The key contri-
butions in this paper are two fold – first, we presented an alternate
method of deriving the BER for QAM on fading channels using log-
likelihood ratios (LLRs) of the individual bits that form the QAM
symbol, and second, using the LLRs, we derived the BER for QAM
with transmit diversity in a system that uses two transmit antennas
and multiple receive antennas. Although we derived the LLRs and
BER for a 16-QAM scheme in this paper, the analytical technique
applies to any higher order (M > 16) QAM constellation and for
any arbitrary mapping of bits to QAM symbols. We also pointed out
another major application of the LLRs derived; that is, the LLRs pro-
vide a soft metric for each bit in the mapping, which can be used as
soft inputs to decoders for various coded QAM schemes, including
turbo coded QAM with transmit diversity as specified in high speed
downlink packet access (HSDPA) in 3G.
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