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Abstract- In this paper, we consider the application of belief 
propagation (BP) to achieve near-optimal signal detection in lar
ge multiple-input mUltiple-output (MIMO) systems at low com
plexities. Large-MIMO architectures based on spatial multi
plexing (V-BLAST) as well as non-orthogonal space-time block 
codes (STBC) from cyclic division algebra (CDA) are consid
ered. We adopt graphical models based on Markov random 
fields (MRF) and factor graphs (FG). In the MRF based ap
proach, we use pairwise compatibility functions although the 
graphical models of MIMO systems are fully/densely connected. 
In the FG approach, we employ a Gaussian approximation (GA) 
of the multi-antenna interference, which significantly reduces 
the complexity while achieving very good performance for large 
dimensions. We show that i) both MRF and FG based BP ap
proaches exhibit large-system behavior, where increasingly closer 
to optimal performance is achieved with increasing number of 
dimensions, and ii) damping of messages/beliefs significantly im
proves the bit error performance. 

Keywords - Large-MIMO signal detection, V-BLAST, non-orthogonal 

STBC, near-optimal performance, belief propagation, damping. 

I. INTRODUCTION 

Multiple-input multiple-output (MIMO) systems that employ 
large number of transmit and receive antennas can offer very 
high spectral efficiencies of the order of tens to hundreds of 
bpslHz [1],[2]. Achieving near-optimal signal detection at 
low complexities in such large-dimension systems has been 
a challenge. In our recent works, we have shown that cer
tain algorithms from machine learning/artificial intelligence 
achieve near-optimal performance in large-MIMO systems 
that employ tens of transmit and receive antennas using V
BLAST and non-orthogonal space-time block codes (STBC) 
from cyclic division algebra [3] with tens to hundreds of di
mensions in space and time, at low complexities. Such algo
rithms include local neighborhood search based algorithms 
like a likelihood ascent search (LAS) algorithm [4],[5] and 
a reactive tabu search (RTS) algorithm [6], and algorithms 
based on probabilistic data association (PDA) [7] and belief 

propagation (BP) [8]1. In this paper, we present extensions 
to our BP based large-MIMO signal detection work in [8]. 

In systems characterized by fully/highly connected graphical 
models, BP based algorithms [9] may fail to converge, and if 
they do converge, the estimated marginals may be far from 
exact [12],[13]. It may be expected that BP might perform 
poorly in MIMO graphs due to the high density of connec
tions. However, several methods are known in the literature, 
including and double loop methods [14],[15] and damping 

[16],[17], which can be applied to improve things if BP does 
not converge (or converges too slowly). In [14], Heskes et al 

proposed the double-loop algorithm that is provably conver
gent for the minimization of Bethe and Kikuchi free energies 

1 Similar algorithms have been earlier reported in the context of multiuser 
detection. 

[9] that represent the cost function of BP. In [18], Pretti and 
Pelizzola proposed a new propagation algorithm for the mini
mization of the cost function (Bethe free energy) for a generic 
lattice model with pair interactions. The algorithm is shown 
to be more stable than BP, as it reaches a fixed point also for 
highly frustrated systems and faster than the provably conver
gent double loop algorithms. 

In [16], Pretti proposed a modified version of BP with over
relaxed BP dynamics. At each step of the algorithm, the eval
uation of messages is taken to be a weighted average between 
the old estimate and the new estimate. The weighted aver
age could either be applied to the messages (resulting in mes

sage damped BP) or to the estimate of the probability dis
tributionlbeliefs of the variables (probability/belief damped 

BP), or to both messages and beliefs (hybrid damped BP). 

It is shown, in [16], that the probability damping BP can be 
derived as a limit case in which the double-loop algorithm be
comes a single-loop one. We, in this paper, show that damp
ing is quite effective in achieving good performance in large
MIMO signal detection. 

In [8], we showed that BP on Markov random field (MRF) 
based graphical models of MIMO systems exhibits large-sys

tem behavior, where the bit error performance improves with 
increasing number of dimensions and approaches near-opti
mal performance for large number of dimensions. The use of 
pairwise compatibility functions in the MRFs was instrumen
tal in achieving such good performance at low complexities. 
Our contributions in this paper are two-fold: 

• First, we further improve the performance achieved in 
[8] through the use of belief/message damping. 

• Next, we present an alternate approach based on fac
tor graphs (FG) [9], where we approximate the multi
antenna interference as Gaussian. We show that this 
FG approach also exhibits large-system behavior. The 
Gaussian approximation of the interference significantly 
reduces the complexity while achieving very good per
formance in detecting large-dimension MIMO signals. 

The rest of this paper is organized as follows. In Sec. II, 
we present the system model. MRF based and FG based ap
proaches for large-MIMO detection are presented in Secs. III 
and IV, respectively. Conclusions are given in Sec. V.  

II .  SYSTEM MODEL 

MIMO systems with Nt transmit and Nr receive antennas 
employing spatial multiplexing (V-BLAST) and non-orthogo
nal space-time block codes (STBC) from cyclic division alge
bra (CDA) [3] achieve the full rate of Nt symbols per chan
nel use. In addition, STBCs from CDA achieve full transmit 
diversity as well. We consider signal detection in both V
BLAST as well as non-orthogonal STBC MIMO systems. 



Consider a V-BLAST MIMO system with Nt transmit an
tennas and Nr receive antennas. Let x E ANt denote the 
transmitted symbol vector, where A is the modulation alpha
bet. Let HE CNrXNt denote the channel gain matrix whose 
entries are modeled as CN(O, 1). The received signal vector 
y E CNr is given by 

y = Hx + n, (1) 

where n is the noise vector whose entries are modeled as i.i.d 
CN(O, (Y2 = 

N\Es), where Es is the average energy of the 
transmitted symbols and 'Y is the average received SNR per 
receive antenna. 

A non-orthogonal STBC from CDA is an Nt x Nt matrix 
whose entries are formed using linear combinations of vari
ous data symbols [3]. Each STBC is constructed using Nt2 
data symbols and are sent in Nt channel uses. The received 
signal matrix can be vectorized and written in an equivalent 
real system model of the form (1), where the number of trans
mit and receive dimensions are 2N? and 2NtNr, respectively, 
forQAM [5]. 

The goal is to obtain an estimate of the transmitted symbol 
vector x, given y and the knowledge ofH. The optimal max
imum aposteriori probability (MAP) detector enumerates the 
joint posterior distribution 

p(xly, H) ex p(ylx, H) p(x), 
and marginalizes out each variable as 

X-i 

(2) 

(3) 

where X -i stands for all entries of x except Xi. The MAP 
estimate of the bit Xi, i = 1, ... ,S, is then given by 

arg max 
A p(Xi = a I y,H). 

a E II\. 
(4) 

We assume that the channel gain matrix is known perfectly at 
the receiver, but not at the transmitter. 

III. DETECTION USING MRF ApPROACH 

BP is a technique that solves inference problems using graph
ical models [9]. Well known graphical models include Baye
sian belief networks, factor graphs and MRFs. In this section, 
we present a detection scheme based BP on MRFs. 

An MRF is an undirected graph whose vertices are random 
variables [10],[11]. Usually, the variables in an MRF are con
strained by a compatibility function, also known as a clique 

potential in literature. An MRF is called a pairwise MRF, if 
the clique potentials are all functions of two variables. The 
clique potentials can then be denoted as 'l/Ji,j (Xi, Xj), where 
Xi, Xj are variables connected by an edge in the MRF. Con
sider a pairwise MRF in which the Xi'S denote underlying 
hidden variables on which the observed variables y/s are de
pendent. Let the dependence between the hidden variable Xi 
and the explicit variable Yi be represented by ajoint compat
ibility function ¢i (Xi, Yi) (also called as 'evidence' of Xi). 

The joint distribution of the hidden and explicit variables is 
given by 

p(x,y) ex II'l/Ji,j(xi,Xj)II¢i(xi,Yi) . (5) 
i,j 

Since Yi'S are fixed, we can drop them in the above equation 
and write 

P (x) ex II 'l/Ji,j (Xi, Xj) II ¢i (Xi) . (6) 
i,j 

In [8], even though the MRF of a MIMO system is fullylhighly 
connected (where the clique size is large), we defined clique 
potentials as functions of only pairs of neighboring variables, 
i.e., the clique potentials are denoted as 'l/Ji,j (Xi, X j ), where Xi 
and Xj are variables connected by an edge in the MRF. This 
is to say that the clique potentials are defined similar to those 
in pairwise MRFs [9] (where all cliques are of size two), al
though the MRF of the system itself is fullylhighly connected 
and hence not a pairwise MRF. For the vector channel model 
in 1, the following compatibility functions are adopted in [8]: 

¢i (Xi) 
'l/Ji,j (Xi, Xj) 

exp (x[IlR {Zi} + In {p (Xi)}) (7) 

exp ( - x[IlR{Ri,j}xj), (8) 

where Zi is the ith element of the vector z � ;2 H H y, and 
Rij is the element in the ith row and jth column for the ma-

trix R � ;2 HHH. Message passing is carried out on this 
graphical model to compute the marginal probabilities of the 
variables. The belief at node i is 

bi (Xi) ex ¢i (Xi) II mj,i (Xi) , 
jEN'(i) 

(9) 

where N( i) denotes the neighboring nodes of node i, and the 
messages are defined as [9] 

mj,i (Xi) ex L rPj (Xj) 'ljJj,i (Xj, Xi) II mk,j (Xj) . (10) 
Xj kEN(j)\i 

A. Improvement through Message/Belief Damping 

In [16], Pretti proposed a modified version of BP with over
relaxed BP dynamics. At each step of the algorithm, the eval
uation of messages is taken to be a weighted average between 
the old estimate and the new estimate. The weighted average 
could either be applied to the messages (resulting in message 

damped BP) or to the estimate of the probability distribu
tionlbeliefs of the variables (probability/belief damped BP), 

or to both messages and beliefs (hybrid damped BP). 

Message Damped BP: Denoting m��] (x j ) as the updated mes
sage in iteration t obtained by message passing, the new mes
sage from node i to node j in iteration t, denoted by m��] (Xj), 
is computed as a convex combination of the old message and 
the updated message as 

m��] (Xj) ex L ¢i (Xi) 'l/Ji,j (Xi, Xj) II m���l) (Xi) , (11) 
Xi kEN'(i)\j 

m��](Xj) = am m��j-l)(Xj) + (1 - am ) m��](xj), (12) 

where am E [0, 1) is referred as the message damping factor. 
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Fig. 1. BER performance of the MRF based message damped BP algorithm 
as a function of message damping factor, Ctm, in V-BLAST with Nt 
NT = 16 at 8 dB SNR and BPSK. # BP iterations = 5. 

Belief Damping : Instead of damping the messages in each 
iteration, the beliefs of the variables can be computed in each 
iteration as a weighted average, as 

bY\Xi) ex (Pi(Xi) II mJ�l(xi)' (13) 
JEN(il 

where O'.b E [0, 1) is referred to as the belief damping factor. 

Hybrid Damping : As a more general damping strategy, we 
can update both the messages as well as the beliefs accord
ing to (12) and (14), respectively, in each iteration. Differ
ent combinations of (O'.m' O'.b ) values specializes to different 
strategies; for e.g., (Ctm = Ctb = 0) corresponds to undamped 
BP, (Ctm i= 0, Ctb = 0) corresponds to message damped BP, 
(Ctm = 0, Ctb i= 0) corresponds to belief damped BP, and 
(Ctm i= 0, Ctb i= 0) corresponds to hybrid damped BP. 

The above damping operations do not increase the order of 
complexity of the algorithm, which, for Nt = Nr, is G(Nl) 
per-symbol complexity for V-BLAST and G(Nt) per-symbol 
complexity for non-orthogonal STBC [8]. 

B. Simulation Results 

In Figs. I to 3, we present the simulated BER performance 
of the algorithm focusing on the effect of damping on the 
performance. The number of BP iterations is set to 5 in all 
these figures. Figure 1 shows the the variation of BER as a 
function of the message damping factor, O'.m, for V-BLAST 
with Nt = Nr = 16, 24 and SNR =8 dB. Note that O'.m = 0 
corresponds to the case of undamped BP. It can be observed 
from Fig. 1 that, depending on the choice of the value of O'.m, 
message damping can significantly improve the BER perfor
mance of the BP algorithm. There is an optimum value of 
O'.m at which the BER improvement over no damping case is 
maximum. For the chosen set of system parameters in Fig. 
1, the optimum value of O'.m is observed to be about 0.2. For 
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Fig. 2. BER performance of the MRF based message damped BP algorithm 
as a function of SNR in V-BLAST for different Nt = NT = 16 and BPSK. 
# BP iterations = 5, Ctm = 0.2. 
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Fig. 3. Effect of message, belief, and hybrid damping on the BER perfor

mance of 8 x 8 STBC from CDA with t = ei, Ii = eVSj at 8 dB SNR. 
BPSK, Nt = NT, # BP iterations = 5, Ctm = Ctb for hybrid damping. 

this optimum value of O'.m = 0.2, it is observed that about an 
order of BER improvement is achieved with message damp
ing compared to that without damping. From Fig. 1, it can 
further be seen that the performance improves for increasing 
Nt = Nr (i.e., performance of the Nt = Nr = 24 system 
is better that of the Nt = Nr = 16 system). This illustrates 
the large system behavior of the algorithm, where the perfor
mance moves more towards SISO A WON performance when 
Nt = Nr is increased from 16 to 24. The large-system behav
ior of the algorithm is further illustrated in Fig. 2, where we 
plot the BER performance of V-BLAST as a function of SNR 
for different Nt = Nr = 4, 8, 16, 24 and 32 for O'.m = 0.2. 

In Fig. 3, we present a comparison of the BER performance 
achieved using message damping, belief damping and hybrid 
damping based BP detection of 8 x 8 non-orthogonal STBC 
from CDA with t = ei, 6 = eV5j [3] at 8 dB SNR. For mes
sage damping and belief damping, O'.m and O'.b are varied in 
the range 0 to 1. For hybrid damping, we set O'.m = O'.b and 



varied it in the range 0 to 1. From Fig. 3, it can be seen 
that i) with damping, there is an optimum value of the damp
ing factor at which the BER performance is the best (e.g., for 
message damping, the optimum damping factor is about 0.3 
in Fig. 3), ii) message damping performs better than belief 
damping for small values of the damping factor, whereas be
lief damping performs better at high values of the damping 
factor; however, over the entire range of the damping factor, 
the best performance of message damping is significantly bet
ter than the best performance of belief damping, and iii) for 
the chosen condition of am = ab, hybrid damping perfor
mance is similar to that of message damping; however, if the 
damping factors am and ab are jointly optimized in hybrid 
damping, then the best performance with hybrid damping is 
expected to be better than the best performances of both mes
sage damping and belief damping. 

IV. DETECTION USING FACTOR GRAPH ApPROACH 

In this section, we present a detection scheme based on BP on 
factor graphs of MIMO systems. Consider the linear vector 
channel model in (1). Each entry of the observation vector 
y will be treated as a function node (observation node), and 
each transmitted symbol will be a variable node. In each it
eration of the algorithm, messages are passed back and forth 
the variable nodes and the observation nodes. The received 
signal at the ith receive antenna can be written as 

Nt 
Yi L hijXj + ni 

j=l 
Nt 

hikXk + L hijXj + ni, (15) 
j=l,j#k 
� Inter f erence 

where hij denotes the channel coefficient from jth transmit 
to ith receive antenna. We approximate the interference from 
other streams to be Gaussian. That is, 

Yi 
Nt 

hikXk + L hijXj + ni, 
j=l,j# , 

(16) 

where the interference plus noise term, Zik. is modeled as 

CN(/-tZik' (J";ik) with 

and 

2 aZik 
NI, 

Nt 
L hijlE(Xj), 

j=l,j# 

L Ihijl2 Var(xj) + (J"2. 
j=l,j# 

(17) 

(18) 

Now, for BPSK signaling, the log-likelihood ratio (LLR) of 
the symbol Xk E {+1, -I} at observation node i, denoted by 
A7, can be written as 

1 p(Yi IH,Xk = 1) 
og p- (,--'y-'-i I H=-=-, X-k-=-----'l--:- ) 

--i-� (h7k (Yi - /-tZik )) . (JZik 
(19) 

Q 1\] V 

Fig, 4. Message passing between variable nodes and observation nodes, 

The LLR values computed at the observation nodes are passed 
to the variable nodes (Fig. 4). Using these LLRs, the variable 
nodes compute the probabilities 

6. 

exp(Ll#i An 
= Pi(Xk = +lly) = 

1 + exp(Ll#i An ' 
(20) 

and pass them back to the observation nodes (Fig. 4). This 
message passing is carried out for a certain number of itera
tions. Messages can be damped as described in Sec. III and 
then passed. At the end, Xk is detected as 

Nr 
Xk = sgn ( L A�) . (21) 

i=l 
A. Computational Complexity 

The computation complexity of the algorithm involves i) LLR 
calculations at the observation nodes as per (19), which has 
O(NtNr) complexity, and ii) calculation of probabilities at 
variable nodes as per (20), which also requires O(NtNr) com
plexity. Hence, the overall complexity of the algorithm is 
o (NtNr ) for detecting Nt number of transmitted symbols. 
So the per-symbol complexity is O(Nt) for Nt = NT. It is 
noted that this complexity is one order less than that of the 
MRF based approach in the previous section. This is because 
the computation of HTH, which is needed in the MRF ap
proach, is not needed in the FG approach due to the Gaussian 
approximation of the interference. The Gaussian approxima
tion thus reduces the complexity significantly, while achiev
ing very good performance as well in large dimensions (we'll 
see this in the following subsection on performance results). 
For non-orthogonal STBC, the complexity of FG based ap
proach is O(Nl) per-symbol. 

B. Simulation Results 

We evaluated the BER performance of the Gaussian approx
imation (GA) based BP algorithm through simulations. Fig
ures 5 and 6 show uncoded BER performance for V-BLAST 
and non-orthogonal STBCs, respectively, for 4-QAM. For V
BLAST, the number of antennas considered are Nt = Nr = 
8, 16, 24, 32, 64; V-BLAST with Nt = 64 and 4-QAM has 
128 real dimensions). For non-orthogonal STBC MIMO, 4 x 

4, 8 x 8, and 16 x 16 information loss less STBCs from CDA 
(with 8 = t = 1 [3]) are considered; 16 x 16 STBC from 
CDA with 4-QAM has 512 real dimensions2• The number of 

2Since the simulation of MAP for such large number of dimensions is pro
hibitively complex, we have plotted the SISO AWGN performance as a lower 
bound for comparison, 
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NT = 8, 16,24,32,64, 4-QAM, # BP iterations = 20, am = 0.4. 
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Fig. 6. BER performance of the FG based BP algorithm with Gaussian ap
proximation of interference in large non-orthogonal STBC MIMO systems. 
4 x 4,8 x 8,16 x 16 STBCs from CDA with b = t = 1. Nt = NT. 
4-QAM, # BP iterations = 20, am = 0.4. 

BP iterations used is 20. In our simulations, we found that 
a message damping factor of 0.4 is optimum for the system 
parameters considered. Accordingly, we have used 0.4 as the 
message damping factor in Figs. 5 and 6. From Figs. 5 and 
6, we observe that the GA based algorithm exhibits large sys
tem behavior in both large V-BLAST as well as large non
orthogonal STBC MIMO systems. We have also evaluated 
the coded BER performance of the algorithm for 64 x 64 
V-BLAST with 4-QAM and rate-1I2 turbo code (64 bps/Hz 
spectral efficiency), and found that the algorithm performs 
close to the theoretical minimum SNR for a 64 x 64 MIMO 
channel, to within about 4.5 dB. 

V. CONCLUSIONS 

We presented BP algorithms, based on Markov random field 
(MRF) and factor graph (FG) representations of MIMO sys
tems, for signal detection in large-MIMO systems. The al-

gorithms exhibited large-system behavior, which makes BP 
a natural choice for detection in large-dimension systems in
cluding large-MIMO systems. Belief/message damping was 
shown to significantly improve the bit error performance. The 
MRF approach achieved reduced complexity through the use 
of pairwise compatibility functions. The FG approach em
ployed Gaussian approximation (GA) of the multi-antenna 
interference. The GA is found to be very effective in reduc
ing the complexity (by an order compared to that of the MRF 
approach), while achieving near-optimal performance as well 
when the number of dimensions is large. The illustrated fea
sibility of BP based algorithms for large-MIMO signal de
tection is significant, given that practical 12 x 12 V-BLAST 
MIMO systems operating at 50 bps/Hz have been already 
demonstrated [19], and 16 x 16,24 x 24 and 32 x 32 MIMO 
systems can be potentially considered in wireless standards 
like IEEE 802.11 V HT and IEEE 802. 16/LTE-A. 
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