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Abstract— In this paper, taking the view that a linear parallel
interference canceller (LPIC) can be seen as a linear matrix fil-
ter, we propose new linear matrix filters that can result in im-
proved bit error performance compared to other LPICs in the
literature. The motivation for the proposed filters arises from
the possibility of avoiding the generation of certain interference
and noise terms in a given stage that would have been present
in a conventional LPIC (CLPIC). In the proposed filters, we
achieve such avoidance of the generation of interference and
noise terms in a given stage by simply making the diagonal ele-
ments of a certain matrix in that stage equal to zero. Hence, the
proposed filters do not require additional complexity compared
to the CLPIC, and they can allow achieving a certain error per-
formance using fewer LPIC stages.
Keywords – Multiuser detection, linear parallel interference cancellation,

linear matrix filters, decorrelating detector, MMSE detector.

I. INTRODUCTION

Linear parallel interference cancellers (LPIC) have the advan-
tages of implementation simplicity, analytical tractability, and
good performance [1]-[10]. The conventional way to real-
ize LPIC schemes is to use unscaled values of the previous
stage soft outputs of different users for multiple access inter-
ference (MAI) estimation. In [3], Guo et al described and
analyzed LPIC schemes for CDMA using a matrix-algebraic
approach. They pointed out that an LPIC can be viewed as
a linear matrix filter applied directly to the chip matched fil-
ter (MF) output vector. While the matrix filter corresponding
to the conventional LPIC (CLPIC) converges to the decorre-
lating (DC) detector, they also proposed a modified matrix
filter which converges to a minimum mean square detector
(MMSE) detector. This was done by exploiting the equiva-
lence of the LPIC to a steepest descent optimization method
for minimizing the mean square error. For this optimization,
they obtained optimum step sizes for different stages that re-
move the excess mean square error in K stages (where K is
the number of users), leaving only the MSE in stages greater
than K. The condition for this convergence has been shown
to be that the maximum eigenvalue of the correlation matrix
must be less than two.

Our contribution in this paper is that we propose new lin-
ear matrix filters that can perform better than the matrix fil-
ters studied in [3]. The motivation for the proposed filters
arises from the possibility of avoiding the generation of cer-
tain interference and noise terms in a given stage that would
have been present in the CLPIC. In the proposed filters, we
achieve such avoidance of the generation of interference and
noise terms in a given stage by simply making the diagonal el-
ements of a certain matrix in that stage equal to zero. Hence,
the proposed filters do not require additional complexity com-
pared to the CLPIC. We show that the proposed matrix filters
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can achieve better performance compared to other filters in
the literature. This, in turn, can allow achieving a certain error
performance using fewer LPIC stages. We also propose filters
that use different step sizes for different stages (but the same
step size for all users at a given stage). In addition, we pro-
pose filters that use different weights for different users in dif-
ferent stages, where we also obtain closed-form expressions
for the optimum weights that maximize the output-average
SINR in a given stage.

The rest of the paper is organized as follows. In Sec. II, we
present the system model. The proposed filters are presented
in Sec. III. Performance results and comparisons are pre-
sented in Sec. IV. Conclusions are presented in Sec. V.

II. SYSTEM MODEL

We consider a K-user synchronous single-carrier CDMA sys-
tem. The received signal is given by

y(t) =
K∑

k=1

Akhkbksk(t) + n(t), t ∈ [0, T ], (1)

where bk ∈ {+1,−1} is the bit transmitted by the kth user,
Tb is one bit duration, Ak is the transmit amplitude of the
kth user’s signal, hk is the complex channel fade coefficient
corresponding to the kth user, sk(t) is a unit energy spreading
waveform of the kth user defined in the interval [0, Tb], i.e.,∫ Tb

0
s2

k(t)dt = 1, and n(t) is the AWGN with zero mean and
variance σ2. The fade coefficients hk’s are assumed to be i.i.d
complex Gaussian r.v’s with zero mean and variance 0.5 per
dimension. The channel fades are assumed to remain constant
over one bit interval.

Consider a multistage LPIC at the receiver. The first stage is a
conventional matched filter (MF), which is a bank of K cor-
relators, each matched to a different user’s spreading wave-
form. The received vector y(1) at the output of the MF stage
(the superscript (1) in y(1) denotes the first stage) is given by

y(1) =
[
y
(1)
1 , y

(1)
2 , · · · , y

(1)
K

]T
= Rx + n, (2)

where [.]T denotes transpose operation, and y
(1)
k is the kth

user’s MF output, given by

y
(1)
k = Akhkbk︸ ︷︷ ︸

desired signal

+
K∑

j=1, j �=k

ρjkAjhjbj︸ ︷︷ ︸
MAI

+ nk︸︷︷︸
noise

. (3)

The vectors x, n and correlation matrix R are given by

x = [A1h1b1, A2h2b2, · · · , AKhKbK ]T , (4)

n = [n1, n2, · · · , nK ]T , (5)
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R =


1 ρ12 · · · ρ1K

ρ21 1 · · · ρ2K

...
...

. . .
...

ρK1 ρK2 · · · 1

 , (6)

where ρjk = ρkj is the normalized cross-correlation coef-
ficient between the spreading waveforms of users j and k,
given by ρjk =

∫ Tb

0
sj(t)sk(t)dt, |ρjk| ≤ 1, and nk’s are com-

plex Gaussian with zero mean and E[njn
∗
k] = σ2 when j = k

and E[njn
∗
k] = σ2ρjk when j �= k. Throughout the paper,

we denote vectors by boldface lowercase letters, matrices by
boldface uppercase letters. [.]T and [.]H denote transpose and
conjugate transpose operations, respectively.

A. Conventional LPIC
In conventional LPIC (CLPIC), an estimate of the MAI for
the desired user in the current stage is obtained using all the
other users’ soft outputs from the previous stage for cancella-
tion in the current stage. The mth stage output of the desired
user k, y

(m)
k , in CLPIC is given by [9]

y
(m)
k = y

(1)
k −

K∑
j=1, j �=k

ρjky
(m−1)
j︸ ︷︷ ︸

MAI estimate

. (7)

The kth user’s bit decision after MAI cancellation in the mth
stage, b̂

(m)
k , is obtained as

b̂
(m)
k = sgn

(
Re
(
h∗

ky
(m)
k

))
. (8)

The CLPIC output in (7) can be written in matrix form as [3]

y(m) =
[
I + (I − R) + (I − R)2 + · · · + (I − R)m−1

]
y(1) (9)

=

m∑
j=1

(I − R)j−1

︸ ︷︷ ︸
G(m)

y(1), (10)

where y(m) =
[
y
(m)
1 , y

(m)
2 , · · · , y

(m)
K

]T

. The G(m) filter in
(10) can be viewed as an equivalent one-shot linear matrix
filter for the mth stage of the CLPIC.

III. PROPOSED LINEAR MATRIX FILTERS

In this section, we propose new linear matrix filters that can
outperform the matrix filter G(m) in (10).

A. Proposed Matrix Filter Gp
(m)

We first propose a new linear matrix filter, denoted by Gp
(m).

The motivation for the Gp
(m) filter is explained as follows.

What does the matrix filter G(m) do?: It is noted that the be-
havior of the G(m) filter in (10) (i.e., CLPIC) at a given stage
m ≥ 2 is characterized by a) interference removal, b) genera-
tion of new interference terms, c) desired signal loss/gain, d)
desired signal recovery/removal, and e) noise enhancement.
For example, the cancellation operation in the 2nd stage (i.e.,
m = 2) results in i) interference removal, ii) generation of
new interference terms, iii) desired signal loss, and iv) noise
enhancement. This can be seen by observing the 2nd stage
output expression for the desired user k, which can be writ-
ten, using (7) and (3), as

y
(2)
k = y

(1)
k −

K∑
j=1, j �=k

ρjky
(1)
j

=

xk +

K∑
i=1,i�=k

ρkixi + nk



−
K∑

j=1,j �=k

ρjk

xj +

K∑
l = 1, l �= j︸ ︷︷ ︸

l can be k here

ρjlxl + nj


= xk − xk

K∑
j=1,j �=k

ρ2
jk︸ ︷︷ ︸

desired signal loss

−
K∑

j=1,j �=k

ρjk

K∑
l=1,l�=j,k

ρjlxl︸ ︷︷ ︸
new interference terms

+ nk −
K∑

j=1,j �=k

ρjknj

︸ ︷︷ ︸
additional noise terms

, (11)

where xk = Akhkbk, k = 1, 2, · · · ,K. Comparing the ex-
pression at the MF output, y

(1)
k , in (3) and the expression for

the 2nd stage output, y
(2)
k , in (11), it can be seen that the can-

cellation operation in the 2nd stage results in the following at
the 2nd stage output.

• The interference terms,
∑

j �=k ρjkxj , that were present
in the MF output in (3) are removed. In the process, i)
new interference terms proportional to ρ2, i.e.,∑

j �=k ρjk

∑
l �=j,k ρjlxl in (11), get generated, ii) a frac-

tion
∑

j �=k ρ2
jk of the desired signal component gets lost,

and iii) additional noise terms proportional to ρ, i.e.,∑
j �=k ρjknj in (11), get introduced.

In Appendix A, we present the expression for the 3rd stage
output in an expanded form. From (35) in Appendix A, we
can make the following observations which result from the
cancellation operation in the 3rd stage.

• The desired signal loss that occurred in the 2nd stage is
recovered (see the two A terms cancelling each other
in (35)). In the process, new interference terms propor-
tional to ρ3 (see the BI term in (35)) as well as addi-

tional noise terms proportional to ρ2 (see the BN term
in (35)) get generated.

• Interference terms generated in the 2nd stage are removed
(see the two C terms cancelling each other in (35)). In
the process, i) further desired signal loss/gain1 propor-
tional to ρ3 occurs (see the D term in (35)), and ii),
new interference terms proportional to ρ3 (see the EI

term in (35)) as well as additional noise terms propor-
tional to ρ2 (see the EN term in (35)) get generated.

Similar observations can be made on the expanded form of
the equations for the subsequent stages of the CLPIC2. For
m → ∞, the CLPIC is known to converge to the decorre-
lating detector, provided the eigenvalues of the R matrix are
less than two [3].

What is proposed to be achieved using the Gp
(m) filter?:

As explained above, in the G(m) filter, new interference and

1Depending on ρ’s being +ve or -ve, the term D in (35) can be +ve or
-ve, because of which there can be a desired signal gain or loss.

2The general expression for the mth stage output in expanded form, for
any m ≥ 3, and the corresponding observations, are given in [11].
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noise terms get generated in the process of interference re-
moval and recovery/removal of desired signal loss/gain. We
seek to avoid the generation of some of these new interference
and noise terms. For example, as will be explained regarding
the proposed Gp

(m) filter in the following subsection, the
generation of the BI and BN terms at the 3rd stage out-
put in (35) can be avoided by simply making the diagonal
elements of a certain matrix in the cancellation operation car-
ried out in the 3rd stage equal to zero. This, as we will see
later, can result in improved error performance compared to
the G(m) filter.

Proposed Gp
(m) filter: We propose to avoid the generation

of new interference and noise terms in T3 in Eqn. (5.4) of
[11], caused in the process of recovery/removal of desired
signal loss/gain in the previous stage. Since there is no de-
sired signal loss/gain in the 1st stage, the 2nd stage of the
proposed filter is the same as that of the G(m) filter, i.e.,
Gp

(2) = G(2). For stages greater than two, i.e., for m ≥ 3,
the mth stage output of the proposed filter Gp

(m), denoted

by y
(m)
k,p , is written as

y
(m)
k,p = y

(m−1)
k,p + (−1)m+1

K∑
k1 �=k

K∑
k2 �=k,k1

K∑
k3 �=k,k2

· · ·

K∑
km−2 �=k,km−3

K∑
km−1 �=k,km−2

ρkkm−1ρkm−1km−2 · · · ρk2k1 y
(1)
k1

. (12)

We note that the above expression is obtained by i) drop-
ping T3 and ii) modifying T4 in Eqn. (5.4) in [11] such
that all the summations in it exclude the desired user index
k. The above two modifications ensure that the proposed fil-
ter removes the previous stage interference while avoiding the
recovery/removal of the desired signal loss/gain3. Also, be-
cause of these modifications, the interference and noise terms
in a given stage of the proposed filter will be a subset of the
interference and noise terms in the same stage of the G(m)

filter. Equation (12) can be written in the following form:

y
(m)
k,p = y

(1)
k −

K∑
k1 �=k

(
ρkk1 −

K∑
k2 �=k,k1

ρkk2ρk2k1

+

K∑
k2 �=k,k1

K∑
k3 �=k,k2

ρkk3ρk3k2ρk2k1 − · · ·

+ (−1)m
K∑

k2 �=k,k1

K∑
k3 �=k,k2

· · ·
K∑

km−2 �=k,km−3

K∑
km−1 �=k,km−2

ρkkm−1ρkm−1km−2 · · · ρk3k2ρk2k1

)
y
(1)
k1

, (13)

which, in turn, can be expressed in matrix form as

y(m)
p =

(
m−1∑
j=0

Bj

)
︸ ︷︷ ︸

Gp
(m)

y(1), (14)

where Bn =
[
Bn−1 (I − R)

]�
, (15)

[M]� denotes the matrix M with its diagonal elements made
equal to zero, and A0 = I. Note that, since (14) is struc-
turally the same as (9), and the [.]� operation in (15) does not

3Although possible signal loss recovery is avoided in the process, the net
effect can still be beneficial (we will see this in Sec. IV).

add to complexity, the proposed Gp
(m) filter has the same

complexity as the G(m) filter.

The G(m) filter is known to converge to the decorrelating de-
tector for m → ∞, provided the maximum eigenvalue of the
R matrix is less than two [3]. That is, G(∞) = R−1, which
results in the output vector(

y(∞)
)
G

= R−1y(1) = x + R−1n. (16)

As with G(m), all the interference terms in Gp
(m) also go to

zero for m → ∞. This can be shown as follows. From (14)
and (15), Gp

(∞) can be written in the form

Gp
(∞) = I︸︷︷︸

B0

+ [(I − R) − D1]︸ ︷︷ ︸
B1

+ {[(I − R) − D1] (I − R) − D2}︸ ︷︷ ︸
B2

+ · · · ,(17)

where Dn is a diagonal matrix with the diagonal elements the
same as those in the matrix Bn−1(I − R). Equation (17) can
be written as

Gp
(∞) =

(
I + (I − R) + (I − R)2 + · · · )︸ ︷︷ ︸

R−1

− D1

(
I + (I − R) + (I − R)2 + · · · )

− D2

(
I + (I − R) + (I − R)2 + · · · ) − · · ·

= (I − D1 − D2 − · · · )︸ ︷︷ ︸
�
= F

R−1. (18)

Hence, the output vector for m → ∞ is given by(
y(∞)

)
Gp

= FR−1y(1) = Fx + FR−1n. (19)

The diagonal matrix F defined in (18) can be written as

F = diag
(
f1, f2, · · · , fK

)
, (20)

where fk is given by

fk = 1 −
K∑

k1 �=k

ρkk1ρk1k +
K∑

k1 �=k

K∑
k2 �=k,k1

ρkk2ρk2k1ρk1k

−
K∑

k1 �=k

K∑
k2 �=k,k1

K∑
k3 �=k,k2

ρkk3ρk3k2ρk2k1ρk1k · · · (21)

For the case of equi-correlated users, fk in (21) can be shown
to converge to 1 − (

(K − 1)ρ2/(1 + (K − 2)ρ
)
, and there

are no interference terms in (19). Also, note that the outputs
of the G filter in (16) and the Gp filter in (19) have the same
SNR for m → ∞.

B. A Modified MMSE Converging Filter, Gpµ
(m)

As pointed out in Sec. I, Guo et al, in [3], have proposed
modifications to the G(m) filter so that the resulting modi-
fied matrix filter converges to the MMSE detector instead of
the decorrelating detector, by exploiting the equivalence of
the LPIC to the steepest descent method (SDM) of optimiza-
tion for minimizing the MSE. They also derived optimum
step sizes for various stages, which ensured convergence to
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the MMSE detector in K stages, where K is the number of
users. We refer to this MMSE converging matrix filter pro-
posed by Guo et al in [3] as the Gµ

(m) filter, which is given
by [3]

y(m) =

µmI +

m−1∑
i=1

µm−i

i∏
j=1

(I − µm−i+j(R + σ2I))


︸ ︷︷ ︸

Gµ
(m)

y(1), (22)

where µi is the step size at stage i, the optimum values of
which were obtained to be

µi =
1

λi + σ2
, i = 1, 2, · · · ,K, (23)

where λi, i = 1, 2, · · · ,K are eigenvalues of matrix R.

We note that a similar SDM view can be taken to modify our
proposed matrix filter Gp

(m) so that it can converge to the
MMSE detector. We refer to such a modified version of our
proposed filter as Gpµ

(m) filter, where we avoid the genera-
tion of new interference and noise terms as in Gp

(m), while
using the step sizes obtained for Gµ

(m) in [3]. Accordingly,
the modified version of our proposed filter can be written as

y(m) =

(
µmI +

m−1∑
i=1

µm−iJi

)
︸ ︷︷ ︸

Gpµ
(m)

y(1), (24)

where Ji is given by

Ji =
[
Ji−1

(
I − µK−i+1(R + σ2I)

)]�
, J0 = I. (25)

C. A Weighted Matrix Filter, Gpw
(m)

In the Gµ
(m) and Gpµ

(m) filters above, different step sizes
are used in different stages (but the same step size for all users
in a stage). Improved performance can be achieved if differ-
ent scaling factors (weights) are used for different users in
different stages. Accordingly, we propose a weighted version
of our proposed filter Gp

(m). We refer to this weighted ver-
sion as Gpw

(m), which is derived as follows.

In a weighted LPIC (WLPIC), the MAI estimate in a given
stage is scaled by a weight before cancellation (unit weight
corresponds to CLPIC and zero weight corresponds to MF).
For example, the mth stage output of the desired user k, y(m)

k,w ,
in a WLPIC is given by

y
(m)
k,w = y

(1)
k − w

(m)
k

K∑
j=1, j �=k

ρjky
(m−1)
j,w , (26)

where w
(m)
k is the weight with which the MAI estimate for

the kth user in the mth stage is scaled. The above weighted
cancellation operation in (26) can be written in matrix form,
for m ≥ 2, as

y(m) =

(
I + W(m)(I − R) + W(m)(I − R)W(m−1)(I − R) + · · ·

+ W(m)(I − R)W(m−1)(I − R) · · ·W(2)(I − R)

)
y(1), (27)

where W(m) is the weight matrix at the mth stage, given by
W(m) = diag

(
w

(m)
1 , w

(m)
2 , · · · , w

(m)
K

)
, and W(1) = 0.

Now, as in G(m), in order to avoid the generation of new
interference and noise terms, we modify (27) as follows:

y(m) =

m−1∑
j=0

B̃j


︸ ︷︷ ︸

Gpw
(m)

y(1), (28)

where

B̃n =
[
(B̃n−1)(W(m−1+n))(I − R)

]�
, B̃0 = I. (29)

Note that Gpw
(m) becomes Gp

(m) when W(m) = I, ∀m > 1.

D. Optimum Weight Matrix W(m)
opt

The mth stage output of the kth user when Gpw
(m) filter is

used can be written as(
y
(m)
k

)
Gpw

= y
(1)
k − w

(m)
k

K∑
i �=k

r
(m)
k,i y

(1)
i

= xk

(
1 − w

(m)
k

K∑
i �=k

r
(m)
k,i ρki

)
︸ ︷︷ ︸

desired signal

+ nk − w
(m)
k

K∑
i�=k

r
(m)
k,i ni

︸ ︷︷ ︸
noise

+
K∑

i �=k

(
ρki − w

(m)
k

(
r
(m)
k,i +

K∑
k1 �=i,k

r
(m)
k,k1

ρk1i

))
xi

︸ ︷︷ ︸
interference

, (30)

where

r
(m)
k,i =

(
ρki −

K∑
k1 �=k,i

w
(m−1)
k1

ρkk1ρk1i +
K∑

k1 �=k,i

w
(m−2)
k1

K∑
k2 �=k,k1

w
(m−1)
k2

ρkk2ρk2k1ρk1i − · · · + (−1)
m

K∑
k1 �=k,i

w
(2)
k1

K∑
k2 �=k,k1

w
(3)
k2

· · ·
K∑

km−3 �=k,km−4

w
(m−2)
km−3

K∑
km−2 �=k,km−3

w
(m−1)
km−2

ρkkm−2ρkm−2km−3 · · · ρk3k2ρk2k1ρk1i

)
. (31)

Since the interference and noise terms in on the RHS of (30)
are the sum of linear combinations of complex Gaussian r.v’s
(since the channel fading coefficients hk are assumed to be
complex Gaussian), the average SINR for the kth user at the
mth stage output can be obtained, in closed-form, as

SINR
(m)

k =
A2

k

(
1 − aw

(m)
k

)2

σ2
I + σ2

N

, (32)

where
a =

K∑
i �=k

r
(m)
k,i ρki, σ2

I = b +
(
w

(m)
k

)2
c − 2 w

(m)
k d,

σ2
N = σ2

(
1 +

(
w

(m)
k

)2
e − 2 w

(m)
k a

)
, b =

K∑
i �=k

ρ2
kiA

2
i ,

c =

K∑
i �=k

(
r
(m)
k,i +

K∑
k1 �=i,k

r
(m)
k,k1

ρk1i

)2
A2

i , e =

K∑
i�=k

K∑
j �=k

r
(m)
k,i r

(m)
k,j ρij ,

d =

K∑
i �=k

ρki

(
r
(m)
k,i +

K∑
k1 �=i,k

r
(m)
k,k1

ρk1i

)
A2

i .

By differentiating the average SINR expression in (32) w.r.t
w

(m)
k , the optimum weights w

(m)
k,opt can be obtained, in closed-

form, as
w

(m)
k,opt =

d − ab

c − ad + σ2(e − a2)
. (33)
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IV. RESULTS AND DISCUSSION

In this section, we present a comparison of the bit error rate
(BER) performance of different matrix filters. The various
matrix filters considered include:

1) the conventional filter, G(m), given by (10),
2) the proposed filter, Gp

(m), given by (14),
3) the MMSE converging filter in [3], Gµ

(m), given by
(22),

4) the modified MMSE converging filter, Gpµ
(m), given

by (24), and
5) the proposed weighted filter, Gpw

(m), given by (28).

In Fig. 1, we plot the BER performance of the conventional
filter, G(m), and the proposed filter, Gp

(m), as a function of
the stage index, m, for K = 10, processing gain P = 64,
and SNR = 15 dB, for both no near-far (i.e., A1 = A2 =
· · · = AK) as well as near-far conditions. In all the simula-
tions, user 1 is taken to be the desired user. Random binary
sequences are used as spreading sequences. For the near-far
condition, odd-indexed users (users 3, 5, 7, · · · ) transmit with
the same amplitude as the desired user 1, whereas the even-
indexed users (users 2, 4, 6, · · · ) transmit at 10 times larger
amplitude than the desired user. The performance of the MF
detector and the DC detector are also plotted for comparison.
From Fig. 1, it can be seen that the conventional G(m) fil-
ter approaches the DC detector performance rather slowly for
increasing m. Observe that the performance of the proposed
Gp

(m) filter and the conventional G(m) filter are the same
for m = 2 because of no desired signal loss recovery at the
2nd stage of both G(m) and Gp

(m). However, for m ≥ 3,
the Gp

(m) filter performs better than the G(m) filter. This is
because the Gp

(m) filter, as intended, avoids the generation
of new interference and noise terms (e.g., BI and BN terms

for m = 3) compared to the G(m) filter. The Gp
(m) filter is

found to offer greater advantage in near-far conditions, since
strong other-user interference terms in BI are avoided in the

Gp
(m) filter.

Next, in Fig. 2, we present a comparison of the performance
of the MMSE converging Gµ

(m) filter in [3], and the modi-
fied MMSE converging Gpµ

(m) filter, for the same system
conditions in Fig. 1. The performance of the MF detec-
tor and the MMSE detector are also plotted for comparison.
Here again, the Gµ

(m) and Gpµ
(m) filters perform the same

for m = 2. Also, both Gµ
(m) and Gpµ

(m) are seen to
approach the MMSE performance as m is increased. For
m ≥ 3, Gpµ

(m) performs better than Gµ
(m) because of the

avoidance of new interference and noise terms. In generat-
ing the plot for Gpµ

(m), we have used the step sizes in (23),
which are actually optimum for Gµ

(m). Even with these step
sizes (which can be suboptimum for Gpµ

(m)), the proposed
Gpµ

(m) filter approaches MMSE performance faster than the
Gµ

(m) filter.

Finally, in Fig. 3, we illustrate the performance of all the
matrix filters considered in this paper, including the proposed
weighted filter, Gpw

(m), under the no near-far condition. The
performance of the MF, DC and MMSE detectors are also
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Fig. 1. BER performance of various linear matrix filters – i) conventional
filter G(m), and ii) proposed filter Gp

(m). K = 20, P = 64, SNR = 15
dB. Near-far as well as no near-far conditions.

plotted. It can be observed that among all the filters con-
sidered, the proposed weighted filter Gpw

(m) performs the
best for small values of m (m < 6, for example). In other
words, Gpw

(m) performs best in terms of convergence, i.e.,
fewer stages are sufficient to yield close to DC detector per-
formance. This may be expected, because in the Gµ

(m) and
Gpµ

(m) filters the optimum step sizes are obtained only on
a per-stage basis, whereas in the Gpw

(m) filter the optimum
weights are obtained on a per-stage as well as a per-user ba-
sis. Th computation of the optimum weights, w

(m)
k,opt, for the

Gpw
(m) filter, using the closed-form expression in (33), adds

to the receiver complexity. However, since these optimum
weights are computed by using the average SINR expres-
sion, the weights computation can be carried out offline once
(or whenever users exit from or enter into the system, which
changes the correlation matrix), and this need not add to the
per-bit complexity of the canceller. Also, in terms of conver-
gence as well as complexity, the proposed filter Gpµ

(m) is
also quite attractive.

V. CONCLUSIONS

We proposed improved LPIC schemes by viewing an LPIC
as a linear matrix filter. Specifically, we proposed new linear
matrix filters which achieved better performance than other
linear matrix filters in the literature. This was made pos-
sible by avoiding the generation of certain new interference
and noise terms by making the diagonal elements of a certain
matrix equal to zero in each stage, without adding complex-
ity. We point out that, although we have illustrated the pro-
posed matrix filters for a single carrier CDMA system, they
are also applicable to other multiuser systems such as mul-
ticarrier CDMA, OFDMA, and multiuser MIMO, which can
be characterized by a linear vector channel model.

APPENDIX A

3RD STAGE OUTPUT EXPRESSION FOR G(m) FILTER

In this appendix, we write the expression for the 3rd stage
output of the G(m) filter (i.e., CLPIC) in an expanded form.
From (10), y(3) can be written as
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y(3) =
[
I + (I − R) + (I − R)2

]
y(1)

= y(2) + (I − R)2 y(1)

= y
(2)
k +

K∑
j=1

K∑
i�=k,j

ρkiρijy
(1)
j

= y
(2)
k +

K∑
i�=k

ρkiρiky
(1)
k︸ ︷︷ ︸

T1: case ofj=k

+

K∑
j �=k

K∑
i�=k,j

ρkiρijy
(1)
j︸ ︷︷ ︸

T2: case of j �=k

. (34)

We point out that the term T1 in the above equation recov-
ers the desired signal lost in the 2nd stage, and the term T2

removes the interference terms generated in the 2nd stage.
Substituting (11) and (3) in (34), we can write

y
(3)
k = xk

1 −
K∑

j �=k

ρkjρjk

 −
K∑

j �=k

K∑
l�=j,k

ρkjρjlxl + nk −
K∑

j �=k

ρkjnj

+

K∑
i �=k

ρkiρik

xk +

K∑
j �=k

ρkjxj + nk


+

K∑
j �=k

K∑
i �=k,j

ρkiρij

xj +

K∑
l �=j

ρjlxl + nj


= xk −

K∑
j �=k

ρkjρjkxk −
K∑

j �=k

K∑
l �=j,k

ρkjρjlxl + nk −
K∑

j �=k

ρkjnj

+

K∑
i �=k

ρkiρikxk +

K∑
i �=k

ρkiρik

K∑
j �=k

ρkjxj +

K∑
i �=k

ρkiρiknk

+

K∑
j �=k

K∑
i �=k,j

ρkiρijxj +

K∑
j �=k

K∑
i�=k,j

ρkiρij

K∑
l �=j

ρjlxl

+

K∑
j �=k

K∑
i �=k,j

ρkiρijnj

= xk −
K∑

j �=k

ρkjρjkxk︸ ︷︷ ︸
A

−
K∑

j �=k

K∑
l �=j,k

ρkjρjlxl︸ ︷︷ ︸
C

+ nk −
K∑

j �=k

ρkjnj

+

K∑
i�=k

ρkiρikxk︸ ︷︷ ︸
A

+

K∑
i�=k

ρkiρik

K∑
j �=k

ρkjxj

︸ ︷︷ ︸
BI

+

K∑
i �=k

ρkiρiknk︸ ︷︷ ︸
BN

+

K∑
j �=k

K∑
i �=k,j

ρkiρijxj

︸ ︷︷ ︸
C

+
K∑

j �=k

K∑
i �=k,j

ρkiρijρjkxk︸ ︷︷ ︸
D

+

K∑
j �=k

K∑
i �=k,j

ρkiρij

K∑
l�=k,j

ρjlxl︸ ︷︷ ︸
EI

+

K∑
j �=k

K∑
i �=k,j

ρkiρijnj

︸ ︷︷ ︸
EN

. (35)
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