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Abstract— In this paper, a packet combining method known as
symbol mapping diversity (SMD) is investigated. In an SMD sche-
me, the bit-to-symbol mapping in � -ary modulation is varied
among multiple transmissions of the same packet (e.g., ARQ). It
has been shown that multiple transmissions of the same packet
using SMD provide better bit error performance than a scheme
where the same bit-to-symbol mapping is used for all transmis-
sions of the same packet. A new contribution in this paper is that
we propose a new method to obtain optimum bit-to-symbol map-
pings for SMD schemes with � -QAM. In the proposed method,
the optimum mappings are so chosen to maximize a bit log-
likelihood ratio (LLR) based metric. We also derive analytical
expressions for the bit error rate (BER) of the SMD scheme us-
ing LLR based bit decision for 8-QAM. Analytical results are
shown to agree very well with the simulation results. Our perfor-
mance results show that the optimum mappings selected based
on our proposed LLR method performs better (in terms of BER)
than the mappings selected through other methods proposed in
the literature (e.g., the method proposed by Samra et al which
minimized an upper bound on the BER to obtain optimum map-
pings).

Keywords – � -ary modulation, symbol mapping diversity, packet com-

bining, log-likelihood ratio, ARQ.

I. INTRODUCTION

Achieving high data rates and low error rates is vital in wire-
less communications. High data rates can be achieved us-
ing spectrally efficient higher-order modulations (e.g., � -ary
QAM, � -ary PSK) [1]. Low error rates can be achieved us-
ing packet retransmissions in case of uncorrectable errors in a
packet (e.g., ARQ). Various packet combining methods have
been proposed in the literature to achieve diversity among
these multiple transmissions of the same packet. One of the
well known packet combining methods is the Chase com-
bining, which is a maximum-likelihood combining scheme
that concatenates multiple copies of a codeword into a sin-
gle codeword [2]. Other works on packet combining methods
include [3]-[6].

A method to achieve packet combining diversity that has been
recently investigated is the symbol mapping diversity (SMD),
where the bit-to-symbol mapping in � -ary modulation is var-
ied for each packet (re)transmission, i.e., � packet (re)transm-
issions of the same packet are made using � distinct bit-to-
symbol mappings [7]-[9]. Such a system has been shown to
enhance the diversity among the multiple (re)transmissions
and provide improved error performance compared to a sys-
tem where bit-to-symbol mapping is not employed, i.e., where
� packet (re)transmissions of the same packet are made using
the same mapping [7].

This work was supported in part by the Indo-French Centre for Promotion
of Advanced Research, New Delhi, under Project 2900-IT.

A key question in the design of SMD schemes is how to
choose optimum bit-to-symbol mappings for multiple packet
(re)transmissions of the same packet. Note that, for an � -ary
constellation, there are ��� possible mappings to choose from.
Samra et al, in [7],[8], addressed this question and proposed
a method to obtain the optimum mappings on AWGN and
fading channels. In their method, the optimum mappings are
obtained by minimizing an upper bound on the bit error rate
(BER) of the SMD system. In this paper, we propose an al-
ternate metric to optimize and obtain the optimum mappings
for � -QAM. Specifically, we use the log-likelihood ratios
(LLR) of the bits forming a � -QAM symbol in the optimum
selection of the mappings.

The motivation for our investigation of alternate methods to
choose the optimum mappings arises from the fact that the
method proposed by Samra et al in [7] chooses the mappings
that minimize only a bound on the BER (not the exact BER),
and hence better mappings may be possible. Here, we pro-
pose to choose the mappings for multiple (re)transmissions
such that the sum of the magnitudes of the LLR of the bits
forming the � -QAM symbols in different (re)transmissions
is maximized. We show that the mappings obtained by max-
imizing our proposed LLR based metric performs better than
the mappings obtained by the method proposed by Samra et
al in [7]. We also derive analytical expressions for the BER of
the SMD scheme using LLR based bit decision for 8-QAM.
Analytical results are shown to agree very well with the sim-
ulation results.

The rest of this paper is organized as follows. In Section II,
we describe the SMD scheme and present the optimum map-
pings selection based on minimizing an upper bound on the
BER. In Section III, we present our proposed LLR metric
based mappings selection. BER analysis and the BER perfor-
mance results are also presented in Section III. Conclusions
are presented in Section IV.

II. SYMBOL MAPPING DIVERSITY

In an � -ary modulation scheme, a bit block � consisting of�
	���
������ � bits are taken and mapped to a point in the
signal constellation via a bit-to-symbol mapping function � ,
and this signal point ������� is transmitted on the channel. The
number of possible bit-to-symbol mappings are ��� . In or-
der to achieve packet combining diversity, the same bit block
may be transmitted more than once. Let � be the number of
such transmissions. Multiple transmissions of the same bit
block � can either use the same bit-to-symbol mapping in
all transmissions, or vary the bit-to-symbol mapping in each
transmission; we call the former scheme as the maximum-
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Fig. 1. Symbol mapping diversity scheme

likelihood combining diversity (MLD) scheme and the latter
scheme as the symbol mapping diversity (SMD) scheme.

Figure 1 shows the SMD scheme where the same bit block �
is sent � times using � different mappings ����� � � ��������� �	� .
Assuming AWGN, the receiver obtains the received samples
�� � � � � ����
�� � � � ��� ������������� ��� (1)

where � � � � ��� 
���� ��� is a complex Gaussian r.v of zero
mean and variance  ��! � per dimension. The received sam-
ples 
 � ’s are combined at the receiver to make an estimate of
the transmitted bit block, "� . Given the observations 
 � ������� � 
 �
in (1), the receiver decides that the bit block "� was transmit-
ted according to the maximum-likelihood decision rule

min"� �$# � � ��������� �&% � �' ��( � ) 
 � % � � ��"� � ) ��* (2)

Note that for the MLD scheme, all the � mappings are the
same, i.e., � � � � � � ����� � � � � � . For the SMD
scheme, a key question is how to obtain optimal mapping
functions � � � � � ��������� � � . One way is to obtain expressions
for the BER/SER of the SMD scheme and choose the map-
pings that minimize this BER/SER. In the following subsec-
tion, we present a method (proposed by Samra et al [7]) where
the mapping functions ���+� � � �������,� �	� are obtained by mini-
mizing an upper bound on the BER of the SMD system. An
alternate way, which we propose in this paper, is to choose
the mappings so as to maximize a LLR based metric.

A. Mappings based on Minimizing a BER Upper Bound

An upper bound on the BER of the SMD scheme can be de-
rived as follows. Let � denote the decimal representation of
the bit block transmitted � times, and let "� be the decimal
representation of the decoded bit block at the receiver. The
probability of block error is given by-�. �$/10 �'. (,2 Pr 3 "�54� � ) � � Pr �����6� (3)

where Pr ����� is the apriori probability that � is transmitted,
which is assumed to be equally likely with probability � ! � .
The union bound on the Pr 3�"�74� � ) �98 can be written as

Pr :�;<>=? <�@A<CBEDGFIHKJLMON�PM�QN�R Pr S�T�U�VXWZY�[\T�U�V < Y�]] <�^,_ (4)

where `�� � ��� is the minimization metric given in (2), and
Pr S�T�U�VXWZY�[\T�U�V < Y�]] <�^ is the pairwise error probability (PEP)
of the transmitted bit block � being decoded as bit block a .
Using the above, an upper bound on the BER can be obtained
as b�c�dfehg$ikj

�
FIHhJlmhnpo FIHhJlMON�PM�QNqR�rtsfuwvAxzy Pr {}| U d x g,~ | U d u gp�� u � v (5)

where � 3 �1��a 8 is a function to account for the number of bit
errors caused by the block error, which is given by�E3 ����a 8 � # of differing bits between � and a

�
*

(6)

Now, using the maximum-likelihood criterion in (2),
Pr S�T�U�VXWZY�[\T�U�V < Y�]] <�^ can be written as

Pr � Ul� n J �� � ������� d x g �� � ~ Ul � n J �� � ���I��� d u g �� � ����� uwvAx��I� (7)

Since 
�� � � � ������
�� � , the above equation can reduce to

Pr � Ul � n J�� �O� ��� d u g v ��� d x gf���1� � � ��� d u g v ��� d x gf��� ��� ~�� ����� uwvAx � v (8)

where ��� ��� ��¡ is the Euclidean distance between points � and� . Assuming independence of the Gaussian noise variable � � ,
the above PEP expression can further be simplified as

Pr { | U d x g�~ | U d u gp�� u ��¢�£¥¤¦¨§©©ª j«6¬ � Ul � n J � � � ��� d u g v ��� d x g ��­® � (9)

Substituting (9) in (5) gives the expression for the upper bound
on the BER asb�c�dfehg¯i°j

�
FIHKJlmKn�o FIHhJlMON�PM�QNqR rtsfu±vAxzy £ ¤¦ §©©ª j«6¬ � Ul � n J²� � � ��� d u g v ��� d x gf�6­® �(10)

The next step is to determine the � mappings � � � � � ��������� � � ,
which minimize the BER upper bound in (10), i.e.,

min
� � �������,� � �´³¶µ -z· � � �6� (11)

where µ denotes the set of all possible mappings. Since the
number of possible mappings is � !, the above minimization
becomes a large combinatorial optimization problem whose
solution space contains ����� � � solutions. To solve this prob-
lem, a simpler sub-optimal iterative solution by computing
the � th mapping from the previous ��% � mappings can be
employed, where the optimization problem simplifies to

min
�	� ³\µ /10 �'. (,2 /�0 �' MON�PM�QN�R9¸Z¹ �1� �z� �����6��aº� �	� �»a �A¼p� (12)

where ¸w½ �1� ����aº�}��¾ is the pairwise BER that results by map-
ping � to symbol � and a to symbol � in the � th mapping,
given by
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8-QAM.

CED u±v F v»xzv GIH ¢ r�s uwvAxzy�
£KJML j«6¬ � {ON D u±vAxQP � � � D F v GIH �SR v (13)

where TVU < _ WXW ? U HhJL � n JZY �\[^] � V < Y _ ] � VXWZY`_ (14)

denotes the sum of the squared Euclidean distances in the pre-
viously chosen � % � mappings.

We obtained the optimum mappings for 8-QAM by carrying
out the optimization in (12). The resulting optimum map-
pings � � � � � � �Va�� �cb are shown in Fig. 2. It is noted that only
� � is a Gray map and others are not Gray maps.

III. OPTIMUM MAPPINGS BASED ON LLR METRIC

In this section, we present our proposed method of obtaining
optimum mappings for bit-to-symbol mapping diversity. Our
method takes advantage of the soft information given by the
LLRs of the bits forming a � -QAM symbol. Specifically, we
choose the mappings that maximize a bit LLR based metric.

In � -QAM, � 	 � 
���� � � bits constitute a QAM symbol.
Let d be the QAM symbol sent on an AWGN channel, and
let e����fe � ���������Oehgji denote the �
	 bits constituting the QAM
symbol d . The received signal k corresponding to the trans-
mitted symbol d is then given byk � d±
��	� (15)

where � � � � 
 ��� � is a complex Gaussian r.v of zero mean
and variance  � ! � per dimension. The LLR for bit e � , � �

� ������������� � 	 , is defined as

� �Xl �`e � � � 
����nm - epohe � ��� ) kMq- epohe � �$# ) kMqsr * (16)

Define two set partitions tju �Ov� and twu 2 v� such that tju �xv� com-

prises symbols with e � = 1, and t u 2 v� comprises symbols withe � = 0. Then we haveyzyz{ V}| � Y ?�~��h�����������S�^�`���� |���� ? T @ ������ ��� � P �� � |���� ?�� @ ����� (17)

Assuming that all symbols are equally likely and using Bayes’
rule, we have

� ��l ��e � � � 
 �����¡ £¢¥¤p¦ �^�`��¨§�©�ª « o�k ) d � `�q ­¬s¤p¦ � P ��¨§�©�ª « o�k ) d �­® q�¯ * (18)

Since §�©�ª « ohk ) d � `°q = �±S² ³ exp ´ 0 �±�µc¶ k�%�` ¶ ��· , (18) can be

written as

� ��l �`e � � � 
����¹¸º  »¢s¤p¦ �¼�½�� exp ´ 0 �±�µ ¶ k % ` ¶ � ·  ¬s¤p¦ � P �� exp ´ 0 �± µV¶ k % ® ¶ � ·¿¾À *
(19)

Using the approximation 
���� 3  ÂÁÄÃÆÅ�Ç �}%ÉÈ Á �}8¿Ê�%ÌËÎÍÐÏ Á �`È Á � ,
we can approximate (19) as

� ��l ��e � � � � ��Ñ ËÒÍÐÏ¬M¤p¦ � P �� ¶ kz% ® ¶ � %ÓËÎÍÐÏ¢¥¤p¦ �¼�½�� ¶ kz%9` ¶ ��ÔC* (20)

We formulate our optimization problem as follows. We it-
eratively compute the � th mapping from the ��% � previous
mappings. Our optimization problem is choose the � th map-
ping such that

max
�z� ³\µ /'Á ( � log µ /' ��( �ÖÕÕÕÕÕ

× �X���»� ��
 � ��l u �sv� Á ÕÕÕÕÕ � (21)

where × �X���»� � � � 0 �'g ( � � �Xl u gjv� Á (22)

denotes the sum of LLRs of a given bit in the previous � % �
mappings, and � ��l u gjv� Á is the average LLR computed for the� th bit of the � th symbol in the mapping of the � th transmis-
sion and the averaging is over the noise samples. The terms
inside the absolute operator in (21) essentially give the sum
of the LLRs of a specific bit in a specific bit block � in � dif-
ferent mappings; the summation with index � adds the mag-
nitudes of all these LLR sums for all the bits in a specific bit
block (there are �
	 � log � � of them); and the summation
with index � is over all the possible bit blocks (there are �
of them).

We carried out the optimization in (21) and obtained the bit-
to-symbol mappings ����� � � � � a � � b for 8-QAM. The map-
pings thus obtained are shown in Fig. 3. It is interesting
to note that all the four maps obtained through this LLR met-
ric maximization procedure are Gray maps. In the following
subsection, we present the BER analysis of the SMD scheme
and the BER performance results.
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A. BER Analysis and Results
We are interested in evaluating and comparing the BER per-
formance of the SMD scheme using the LLR based map-
pings versus using the BER upper bound based mappings.
We consider two decision methods; Euclidean distance (ED)
based symbol decision and LLR based bit decision. In ED
based symbol decision, the symbol with the least distance (in
squared Euclidean distance sense) from the received signal
point is decoded as the received symbol. For this ED based
symbol decision, an upper bound on the BER can be analyti-
cally evaluated using (10) for a given choice of mappings. In
LLR based bit decision, on the other hand, decisions are made
bit-wise (not symbol-wise as in ED based symbol decision);� th bit of the QAM symbol is decoded as 1 if � ��l �`e � � A # ,
and as 0 otherwise. For the case of LLR based bit decision,
analytical expressions for the BER can be derived. The com-
plexity of the analysis increases with � , however. This is be-
cause, unlike MLD scheme where the decision boundaries for
each data block sent remain the same in all � transmissions,
in SMD scheme the decision boundaries for a given bit block
keep changing from one transmission to the other. Tracking
down the joint decision boundaries for the � transmissions
of a given bit block analytically becomes increasingly com-
plex as � increases. We, however, have carried out such an
exercise for the case of � � � for 8-QAM, and derived the
analytical BER expression. The outline of the derivation is
given in the Appendix.

In Fig. 4, we illustrate the BER performance of the SMD
scheme using LLR based bit decision for the case of � � �
for 8-QAM. The optimum mappings obtained through max-
imizing the LLR metric (shown in Fig. 3) are used. Results
obtained through both analysis (evaluated using the BER ex-
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pression derived in the Appendix) as well as bit error sim-
ulations are shown. It is observed that both analytical and
simulation results agree very well.

In Fig. 5, we show the BER performance comparison be-
tween using our LLR based mappings (SMD-LLR) shown
in Fig. 3 versus using the BER upper bound based map-
pings (SMD-UB) shown in Fig. 2, for � � �p�DC��FE . LLR
based bit decision is considered. The BER plots for � � �
are obtained through analytical expressions. Since analysis
for � � C��FE is difficult, we obtained the performance plots
for � � Cp�DE through simulations. From Fig. 5, it can be
observed that the LLR based mappings result in better BER
performance than the BER upper bound mappings. For ex-
ample, at a BER of ��# 0 � the LLR based mappings result in
about 1 dB of G · !IH 2 advantage compared to the BER upper
bound based mappings. A similar comparison is made in Fig.
6 for the case of Euclidean distance based symbol decision.
Here again, we see that the optimum mappings obtained by
the proposed LLR based method result in better performance
compared to those obtained by the BER upper bound based
method proposed by Samra et al in [7].
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IV. CONCLUSIONS

We proposed a new method to obtain optimum bit-to-symbol
mappings for SMD schemes with � -QAM. In the proposed
method, the optimum mappings were so chosen to maximize
a bit log-likelihood ratio (LLR) based metric. We also de-
rived analytical expressions for the BER of the SMD scheme
using LLR based bit decision for 8-QAM. Analytical results
were shown to agree well with the simulation results. Our
performance results showed that the optimum mappings se-
lected based on our proposed LLR method results in better
BER performance than the mappings selected through mini-
mizing a BER upper bound proposed earlier in the literature.
Several extensions are possible to this work. For example,
LLR based optimum mappings for fading channels can be
obtained. SMD schemes using other � -ary modulations like
� -PSK can be also investigated.

APPENDIX - BER ANALYSIS FOR � � �
Consider the 8-QAM symbol mappings �w� and � � in Fig. 3.
Consider LLR based bit decision. Taking ��� as the spacing
between adjacent symbols as shown in Fig. 3, and based on
the definition of bit LLRs in Sec. III, the LLRs for the bitse²�+�Oe � �fe a for the 1st mapping ��� can be obtained asehe�� j d�� J g ¢ � � ��� � 	 � � 	 i1� �� � d � � � � g � � 
 � �� � � d � � � � g � � ~ � � � v (23)ehe�� j d�� � g ¢ � d 	 � � 	 � � � g 
 � � v (24)ehe�� j d�� A g ¢ ����� 
 ��� � (25)

Likewise, the LLRs for the bits e+���fe � �fe a for the 2nd mapping
� � can be obtained asehe�����d�� J g ¢ � d 	 � � 	 � � � g 
 � � v (26)eKe�����d�� � g ¢ � ��� � 	 � � 	 i � �� � d � � � � g � � 
 � �� � d � � � � g � � ~ � � � v (27)ehe�����d�� A g ¢ � ��� � 
 � � � (28)

The expression for the average BER,
- ·

is given byb�c ¢ jB { b�c � � b�c µ � b�c�� � � (29)

where bpc � ¢ j� s b c ��� � � n�o y ��j� s b c ��� � � n J yhv � ¢ j v � v B � (30)

Taking into account the different decision boundaries for a
symbol in the � � and � � , - · � ª � � (,2 can be written as��� � � � � N�P N�� �"!$#%#%& �½� � � ��' #%#%& µ � � � �)( P �+*-, �/. *�, µ%0N�� �"!2143 , � 5 ' 5 � � 3 , µ � 1 µ 5 �6( P . � 3 , � ��7 µ 5 0' �8��! µ 5 � 59143 , � ��' 5 � � 3 , µ � 1 µ 5 ��( P . 3 , � : µ 5 0' �8� ! 1 µ 5 � 5 ' 3 , � ��' 5 � � 3 , µ � 1 µ 5 ��( P . 3 , � ; 1 µ 5 0�< (31)

When e�� � # , the possible values of k � � are �Z
\���²� C��Z
 ��� ,
and the possible values of k � µ are %=� 
 � � �9� 
 � � , where���²� � �?> � � # �� �� � and  �� �  �� �  � ! � . For the case whenk � � � �Z
´��� and k � µ � %=�±
´� � , - · � ª � � (�2"@ A , � (CB @ A , µ ( 0 B can
be written asD � � � � � N�P . *-, � N)5 . *�, µ NE1)5 NF� �"!$#%#%& �½� � � ��' #%#%& µ � � � �)( P �+*-, � NG5 . *-, µ NH1)5 0NJI 5K NE1 � 5 I�LM N K '�N 59O�P � K � O�Q � M � 5 M 5 K ' I 5K N21 � 5 I 1 K 1 µM NE1 L O�P � K � O�Q � M � 5 M 5 K

' I�LK N)5 I�LM N µ K ' � 5EO+P � K � O+Q � M � 5 M 5 K ' I�LK NR5 I 1 µ K 1)5M NE1 L O�P � K � O�Q � M � 5 M 5 K
' I 1 � 5K N21 L I�LM N)5SO P � K � O Q � M � 5 M 5 K ' I 1 � 5K N21 L I 5M NE1 L O P � K � O Q � M � 5 M 5 K . (32)

and for the case when k � � � C)� 
 ��� and k � µ � � 
 � � ,- · � ª � � (,2"@ A , � ( a B @ A , µ (TB can be written asD � � � � � N�P . *-, � N � 5 . *-, µ N)5 NF�8��!�#%#%& � � � � �"' #%#%& µ � � � �6( P ��*�, � N � 5 . *�, µ NU5 0NSI 1)5K N21�V$5 ISLM N K '6N 5EO�P � K � O+Q � M � 5 M 5 K ' I 1)5K NE1�VW5 I 1 K 1�X$5M NE1 L O�P � K � O+Q � M � 5 M 5 K
' I�LK NE1)5 ISLM N µ K ' VW5SO+P � K � O�Q � M � 5 M 5 K ' ISLK N21)5 I 1 µ K 1)YZ5M N21 L O+P � K � O�Q � M � 5 M 5 K
' I 1�VW5K NE1 L ISLM N21)5EO P � K � O Q � M � 5 M 5 K ' I 1�V$5K NE1 L I 1)5M N21 L O P � K � O Q � M � 5 M 5 K . (33)

where §6[ �+\ � , §6] � 
 � are pdfs of � � �}� � , respectively, given

by ^`_ VbapY ? Jc �$d e µ,2f 1 K µµWg µ, and ^�h�Vbi�Y ? Jc �$d"e µ,Rf 1 M µµWg µ, . From (32)

and (33), we have� � � � � � N�P N �µkj D � � � � � N�P . *-, � N)5 . *�, µ NE1)5ml ' �µnj D � � � � � N�P . *�, � N � 5 . *�, µ NR5ml <(34)

Other conditional probabilities in (30), can be derived like-
wise. Eqn. (34) and expressions for other conditional proba-
bilities in (30) when substituted in (29) gives the average BER
expression for the SMD scheme with LLR based bit decision
(Note: Expressions for the other conditional probabilities and
the final expression for the average BER are given in [9]).
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