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Abstract—In this paper, we propose an online SNR estimation scheme for
Nakagami-m fading channels with equal gain diversity combining. We de-
rive the SNR estimates based on the statistical ratio of certain observables
over a block of received data. An online SNR estimator for an AWGN
channel has been derived by Summers and Wilson. Recently, we derived
an SNR estimation scheme for Nakagami-m fading channels without di-
versity combining and used this estimate in the decoding of turbo codes.
Now, we extend the work and solve the SNR estimation problem on Nak-
agami fading channels with L�branch equal gain diversity combining. We
use our SNR estimates in the iterative decoding of turbo codes on Rayleigh
fading channels (m = 1) with 2-branch equal gain combining. We show
that the turbo decoder performance using our SNR estimates is quite close
(within 0.5 dB) to the performance using perfect knowledge of the SNR
and the fade amplitudes.

Keywords – SNR estimation, Nakagami fading, Diversity, Turbo codes.

I. INTRODUCTION

Turbo codes have been shown to offer near-capacity perfor-
mance on AWGN channels and significantly good performance
on fully-interleavedflat Rayleigh fading channels [1], [2]. Turbo
codes are typically generated using two (or more) constituent
recursive systematic convolutional encoders separated by large
interleavers [3]. Decoding of turbo codes involves processing
each constituent code by a separate decoder and estimating the
a posteriori probability of the various message bits. Each de-
coder incorporates a modified BCJR algorithm for performing
symbol-by-symbol maximum a posteriori probability (MAP)
decoding [4]. The decoders share bit-likelihood information
(called extrinsic information) in an iterative fashion. That is,
the bit-likelihood information computed by the first decoder
is used as a priori information by the second decoder. Us-
ing this a priori information, the second decoder computes the
bit-likelihood function again, which is then passed to the first
decoder for the next iteration of decoding. It is noted that since
the constituent encoders are separated by the turbo interleaver,
the first decoder essentially provides the extrinsic information
to the second decoder using only information not available to
the second decoder (i.e., first encoder parity). The second de-
coder does likewise to the first decoder.

In addition to the bit-likelihood information, optimum decod-
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ing of turbo codes (and concatenated coding schemes of sim-
ilar nature) requires knowledge of the channel signal-to-noise
ratio (SNR) and channel state information (CSI) for the case of
fading channels. For the AWGN case, Summers and Wilson
have recently addressed the issue of the sensitivity of the turbo
decoder performance to imperfect knowledge of the channel
SNR, and proposed an online SNR estimation scheme [5]. It
was shown that a simple estimator of SNR, based on both the
sum of the squared receiver output values and square of the sum
of their absolute values, can provide accurate estimates.

Performance of turbo codes on flat Rayleigh fading channels
has been addressed in [2],[6],[7]. In the performance evaluation
of turbo codes on fading channels, perfect knowledge of both
the Es=N0 (channel SNR) as well as the fade amplitudes of
each symbol (CSI) are typically assumed to be available at the
decoder. In practice, the channel SNR needs to be estimated at
the receiver for use in the turbo decoding.

A channel estimation technique suitable for decoding turbo codes
on flat Rayleigh fading channels is presented in [6]. But the
technique is based on sending known pilot symbols at regular
intervals in the transmit symbol sequence. In [7], a channel
estimator based on a low pass FIR filter is presented for flat
Rayleigh and Rician fading channels. Recently, we, in [8], de-
rived an SNR estimation scheme for Nakagami fading channels
without diversity combining and used this estimate in the de-
coding of turbo codes. Now, we extend the work and solve the
SNR estimation problem on Nakagami fading channels with
L�branch equal gain diversity combining.

In this paper, we propose an online SNR estimation scheme for
Nakagami-m fading with diversity combining. The proposed
estimation scheme does not require the transmission of known
training symbols. We derive the SNR estimates based on the
statistical ratio of certain observables over a block of received
data. As an example, we use our SNR estimates in the iterative
decoding of turbo codes on Rayleigh fading channels (m = 1)
with 2-branch equal gain combining. We show that the turbo
decoder performance using our SNR estimates is quite close
(within 0.5 dB) to the performance using perfect knowledge of
the SNR and the fade amplitudes.

The rest of the paper is organized as follows. In Section II, an
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SNR estimator forL-branch equal gain combining on Nakagami-
m fading is derived. The detailed derivations of the statistical
parameters of interest are moved to the Appendix. In Section
III, we present the modified log-MAP algorithm for decoding
turbo codes with equal gain combining. Section IV presents the
performance results of the turbo decoder using our proposed
online estimation scheme. Conclusions are provided in Section
V.

II. SNR ESTIMATION WITH DIVERSITY COMBINING

In this section, we derive an SNR estimate for the Nakagami-m
channel with diversity combining. Let the encoded data sym-
bols be BPSK modulated and transmitted over a Nakagami fad-
ing channel. We assume L antennas at the receiver with suffi-
cient spacing between them so that these antennas receive sig-
nals through independent fading paths. We denote the kth sym-
bol received at the ith antenna by r(k)i . We assume that the re-
ceiver performs equal gain combining (EGC), after coherently
demodulating the received symbols on these independent di-
versity paths. Then, the kth received symbol, vk, at the output
of the combiner is given by

vk =

LX
i=1

r
(k)

i
; (1)

where
r
(k)

i
= ��

(k)

i

p
Es + n

(k)

i
: (2)

Here, �(k)i is the random fade experienced by kth symbol on

the ith antenna path, Es is the symbol energy, and n(k)i is the
AWGN component at the receiver front end having zero mean
and variance �2 = No=2, where the two-sided power spectral
density of the channel noise process isN0=2W/Hz. We assume
that the �’s are Nakagami-m distributed [9] and independent of
the noise. Specifically,

p�(a) =
2mm

a
2m�1

�(m)
e
�ma

2

: (3)

In the above equation, we have normalized the second moment
of the fade, E(�2), to unity. The Nakagami-m distribution
spans, via the m parameter, the widest range of fading among
all the multipath distributions considered in this paper. For in-
stance, it includes the one sided Gaussian distribution (m=0.5)
and the Rayleigh distribution (m=1) as special cases [9]. In
the limit as m ! +1, the Nakagami fading channel con-
verges to a non-fading AWGN channel, i.e., as m ! 1 the
pdf approaches Æ(a � 1). When m � 1, a one-to-one map-
ping between them parameter and the Rician factor,K, allows
the Nakagami-m distribution to closely approximate the Rice
distribution. The Nakagami-m distribution often gives the best
fit to land-mobile and indoor-mobile multipath propagation, as
well as to scintillating ionospheric radio links [9]. In order to
obtain an SNR estimate for L-branch diversity combining, we
propose a scheme based on the parameter zdiv defined as

zdiv =

�
E(v2)

�
2

E(v4)
: (4)

The parameter zdiv in Eqn. (4) can be derived in closed-form
as (see the Appendix)

zdiv =

�
L+

�
(L2 � L)

�
�(m+

1
2
)

p
m�(m)

�
2

+ L

�
2


�
2

3L2 + 4�m
2 + 12L

�
L+ (L2 � L)

�
�(m+

1
2
)

p
m�(m)

�
2

�



; (5)

where

�m = LE(�4) + 4L(L� 1)E(�3)E(�) + 3L(L� 1)[E(�2)]2 +

6L(L � 1)(L � 2)E(�2)[E(�)]2 +

L(L� 1)(L � 2)(L � 3)[E(�)]4; (6)

with E(�k) =
�(m+k

2
)

�(m)m
k

2

. For the case when m = 1 (i.e.,

Rayleigh fading), Eqn. (5) becomes,

zdiv =

�
L+

L(�L+4��)
2




�2
3L2 + 4�1


2 + 3L2(�L+ 4� �)

: (7)

For a given value of z (computed from a block observation of
the vn’s), the corresponding estimate of 
 can be found from
(5). For easy implementation, an approximate relation between
zdiv and 
 can be obtained through an exponential curve fitting
for Eqn. (7). We use the exponential fit of the form


 = d3e

�
d0e

(d1zdiv)+d2zdiv

�
; (8)

where d0 = 7:25 � 10�8, d1 = 25:94, d2 = 10:44, and d3 =

6:72 � 10�3.
Figure 1 shows the 
 versus zdiv plots corresponding to Rayleigh
fading (m = 1) with two-branch receiver diversity and with
equal gain combining as per Eqn. (8), along with the true value
plot as per Eqn. (7). It is seen that the fit is very accurate over
the SNR values of interest. In order to obtain an estimate for
zdiv , we replace the expectations in Eqn. (4) with the corre-
sponding block averages, yielding

ẑdiv =
[v2]2

v4
: (9)

Substituting (9) into (8) we get the SNR estimates, b
. We tested
the accuracy of the fit by evaluating the mean and standard de-
viation of the SNR estimates b
, determined by over 20,000
blocks. The block sizes considered are 1000 and 5000 bits
and the code rate is 1/3 (3000 and 15000 code symbols). The
range ofEb=N0 values considered is from 0 dB to 8 dB in steps
of 1 dB. This corresponds to Es=N0 values from -4.77 dB to
3.23 dB, for rate 1/3 turbo code. The results are given in Ta-
ble I. From Table I, we observe that the mean SNR estimatesb
 through the exponential fit in Eqn. (8) are quite close to the
true value of SNR, 
, and the standard deviation of the estimate
reduces as the block size is increased.

III. LOG-MAP DECODER WITH EQUAL GAIN COMBINING

In this section, we modify the log-MAP decoder [10]-[13] for
the case of L-branch diversity with equal gain combining. To
do so, we need to calculate the transition metric defined by

k(s; t) = Prob(yk ; Sk = tjSk�1 = s), where yk = (ysk; y

p

k
),

p 2 fp1; p2g, for a rate 1/3 turbo code [3]. Here, ysk is the
received symbol corresponding to the transmitted information
symbol xsk, and y

p

k
is the received symbol corresponding to the

transmitted parity symbol, xp
k
. p1; p2 are the parity symbols

generated by the constituent convolutional encoders [3]. Also,
Sk, Sk�1 are the encoder states at time instants k, k � 1, re-
spectively [15]. When the symbol xk is transmitted, it will
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True SNR, 
 Block size=1000 bits Block Size=5000 bits
(dB) E[b
], dB SD [b
], dB E[b
], dB SD[b
], dB
-4.77 -4.01 0.397 -4.03 0.181
-3.77 -3.32 0.395 -3.34 0.180
-2.77 -2.54 0.396 -2.57 0.178
-1.77 -1.69 0.395 -1.71 0.176
-0.77 -0.77 0.394 -0.78 0.176
0.23 0.18 0.395 0.17 0.178
1.23 1.19 0.407 1.66 0.182
2.23 2.18 0.421 2.16 0.189
3.23 3.19 0.443 3.17 0.200

TABLE I

MEAN AND STANDARD DEVIATION OF THE SNR ESTIMATE,b
 , FOR

DIFFERENT VALUES OF THE TRUE SNR, 
 , FOR TWO-BRANCH DIVERSITY

AND EQUAL GAIN COMBINING.

be received through L independent paths and the output of the
combiner will be

yk = xk

LX
l=1

�k;l +

LX
l=1

nk;l; (10)

where �k;l is the random fade experienced by the kth symbol
at the lth antenna path. Conditioning on xk and �k;1, �k;2,

� � �, �k;L, we have yk � N

�
xk
PL

l=1 �k;l; L�
2

�
. Applying

Bayes’ theorem, we can write 
k(s; t) as


k(s; t) = Prob(yk; Sk = tjSk�1 = s)

= Prob(ykjSk�1 = s; Sk = t)Prob(Sk = tjSk�1 = s)

= p(ykjxk)Prob(Sk = tjSk�1 = s)

= p(ykjxk)p(x
s
k): (11)

The last step in the above equation is due to the fact that the
state transition between any given pair of states s and t uniquely
determines the information bit xsk . Define

ck(s; t) = log (
k(s; t))

= log(p(ykjxk)p(x
s
k))

= log(p(ykjxk)) + log(p(xsk)): (12)

The first term in the above equation is derived as follows. With
perfect channel interleaving and knowledge of fade amplitudes,
we get

p(ykjxk; �
s
k; �

p

k
) = p(yskjx

s
k; �

s
k)p(y

p

k
jxp

k
; �

p

k
) (13)

where �s
k = (�s

k;1; �
s
k;2; : : : ; �

s
k;L) and

�
p

k = (�p

k;1; �
p

k;2; : : : ; �
p

k;L). Upon simplifying the above ex-
pression, we arrive at

p(ykjxk; �
s
k; �

p

k
) =

1

(2�L�2)
e
�

�
y
s

k
�x

s

k

P
L

l=1

�
s

k;l

�
2

2L�2

e
�

�
y
p

k
�x

p

k

P
L

l=1

�
p

k;l

�
2

2L�2 : (14)

Discarding all the constant terms and terms which do not de-
pend on the code symbols fxkg, and taking logarithm of both
sides of Eqn. (14), we obtain

log(p(ykjxk)) =
2Es

LN0

 
LX
l=1

y
s
kx

s
k�

s
k;l +

LX
l=1

y
p

k
x
p

k
�
p

k;l

!
:(15)

Defining the quantity L̂k,

L̂k = log

�
Prob(xs

k
= +1)

Prob(xs
k
= �1)

�
; (16)

and discarding all the terms independent of xsk, we can calcu-
late log(p(xsk)) as [15]

log(p(xsk)) =
L̂kx

s
k

2
: (17)

Combining the results of Eqns. (15) and (17) and substituting
in Eqn. (12), we obtain

ck(s; t) =
L̂kx

s
k

2
+

2Es

LN0

 
LX
l=1

y
s
kx

s
k�

s
k;l +

LX
l=1

y
p

k
x
p

k
�
p

k;l

!
: (18)

The above quantity ck(s; t) can then be used in the computation
of the forward and backward recursion metrics in the log-MAP
algorithm [15].

IV. TURBO DECODER PERFORMANCE RESULTS

Simulations were performed using the proposed online estima-
tor to provide b
 for the iterative decoding of turbo codes on
flat Rayleigh fading channels (m = 1). We consider a rate-1/3
turbo code using two 16-state (constraint length = 5) recursive
systematic code (RSC) encoders with generator (21=37)8. A
random turbo interleaver is employed. The number of infor-
mation bits per frame is 5000. The transmitted symbols are
corrupted by flat Rayleigh fading and AWGN. In this paper we
restrict ourselves to i.i.d. Rayleigh fading. The number of de-
coding iterations is set to eight.

We consider the turbo decoder performance in the case of 2-
branch diversity with equal gain combining. We evaluate the
turbo decoder performance using our SNR estimate derived in
Section II and compare it with the performance using perfect
SNR and CSI. In the ideal case, where perfect knowledge of the
channel SNR as well as the symbol-by-symbol fade amplitudes
(CSI) are required, the metric derived in Section III (Eqn. (18))
is used. In the non-ideal case, however, since we are estimat-
ing only the channel SNR, we propose a simple sub-optimum
decoder which uses only the estimated SNR and ignore the es-
timation of fade amplitudes. This decoder then essentially em-
ploys the AWGN channel metric, which is equivalent to setting
the fade amplitudes to unity. The metric used in this case is the
following:

c
sub�opt

k
(s; t) =

L̂kx
s
k

2
+ 2b
 �yskxsk + y

p

k
x
p

k

�
: (19)

Figure 2 shows the simulated BER performance plots for 2-
branch Rayleigh fading with equal gain combining. Perfor-
mance in AWGN as well as 1-branch Rayleigh fading (i.e., no
diversity combining) are also plotted. Note that, in Fig. 2, the
AWGN performance using the estimated SNR is obtained by
letting L = 1 and m ! 1 in Eqn. (5). Likewise, the perfor-
mance in 1-branch Rayleigh fading is obtained by substituting
L = 1 and m = 1 in Eqn. (5). From Fig. 2 we observe that,
in the case of diversity combining, the performance using our
SNR estimate is very close to the perfect side information case
(to within 0.5 dB).
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V. CONCLUSION

We proposed an online SNR estimation scheme for Nakagami-
m fading channels with equal gain diversity combining. We de-
rived SNR estimates based on the statistical ratio of certain ob-
servables over a block of received data. Our generalized Nak-
agami fading results provided the SNR estimates on AWGN
and Rayleigh fading channels as special cases of the Nakagami
parameter m = 1 and m = 1, respectively. We applied our
SNR estimation scheme to the iterative decoding of turbo codes
on Rayleigh fading channels with equal gain combining. It was
shown that the turbo decoder performance using our SNR es-
timates is quite close to the performance using perfect knowl-
edge of the fade amplitudes and Es=No (to within about 0.5
dB). In addition to its application in turbo decoding on fading
channels, the proposed online SNR estimation scheme could
as well be applied in other problems where knowledge of the
fading channel SNR is necessary.

APPENDIX

A. Derivation of Eqn. (5)

Here, we derive the expressions for the numerator and the de-
nominator of Eqn. (5). Removing the superscript for conve-
nience, the denominatorE(v4) is given by

E(v4) =

LX
i=1

LX
j=1

LX
k=1

LX
l=1

E(rirjrkrl): (20)

Substituting ri = �iX + ni, rj = �jX + nj , rk = �kX + nk

and rl = �lX + nl, we obtain

E(v4) = E2

s

LX
i=1

LX
j=1

LX
k=1

LX
l=1

E(�i�j�k�l) +

Es

LX
i=1

LX
j=1

E(�i�j)

LX
k=1

LX
l=1

E(nknl) +

Es

LX
i=1

LX
k=1

E(�i�k)

LX
j=1

LX
l=1

E(njnl) +

Es

LX
i=1

LX
l=1

E(�i�l)

LX
j=1

LX
k=1

E(njnk) +

Es

LX
j=1

LX
k=1

E(�j�k)

LX
i=1

LX
l=1

E(ninl) +

Es

LX
j=1

LX
l=1

E(�j�l)

LX
i=1

LX
k=1

E(nink) +

Es

LX
k=1

LX
l=1

E(�k�l)

LX
i=1

LX
j=1

E(ninj) +

LX
i=1

LX
j=1

LX
k=1

LX
l=1

E(ninjnknl): (21)

Since � is Nakagami-m distributed with E(�2) = 1, we have

E(�) =
�(m+ 1

2
)

p
m�(m)

. Assuming the �’s are i.i.d, and the n’s are

i.i.d, and assuming these groups are independent, and also in-
dependent ofX , we obtain

LX
p=1

LX
q=1

E(�p�q) = L+ (L2 � L)

�
�(m+ 1

2
)

p
m�(m)

�2

; (22)

and
LX

p=1

LX
q=1

E(npnq) = L�2: (23)

Defining �m =
P

L

i=1

P
L

j=1

P
L

k=1

P
L

l=1E(�i�j�k�l), the
expression for�m can be obtained as

�m =

LX
i=1

LX
j=1

LX
k=1

LX
l=1

E(�i�j�k�l)

= E(�1 + �2 + � � �+ �L)
4: (24)

Applying the multinomial theorem to the above equation, we
get

�m =
�L
1

�
E(�4) +

�L
2

� 4!

1!3!
E(�3)E(�) +

�L
2

� 4!

2!2!
[E(�2)]2 +�L

3

� 4!

1!1!2!
3E(�2)[E(�)]2 +

�L
4

� 4!

1!1!1!1!
[E(�)]4: (25)

Simplifying the above equation, we arrive at

�m = LE(�4) + 4L(L� 1)E(�3)E(�) + 3L(L� 1)[E(�2)]2 +

6L(L � 1)(L � 2)E(�2)[E(�)]2 +

L(L� 1)(L � 2)(L � 3)[E(�)]4; (26)

where E(�k) =
�(m+ k

2
)

m
k

2 �(m)
. In the case of Rayleigh fading,

E(�) =

p
�

2
, E(�2) = 1, E(�3) = 3

p
�

4
, and E(�4) = 2.

Substituting these values of expectations in Eqn. (26), we get
�1 as

�1 = 2L+ L(L� 1)

�
3 +

3(L � 1)�

2
+ (L� 2)(L � 3)

�2

16

�
: (27)

Next, to compute
P

L

i=1

P
L

j=1

P
L

k=1

P
L

l=1E(ninjnknl), we
use the result of Eqn. (26) with � replaced by n. Also, by
recalling that the odd moments of a Gaussian random variable
n with zero mean and variance �2 are all zero, E(n2) = �

2

and E(n4) = 3�
4, we arrive at

LX
i=1

LX
j=1

LX
k=1

LX
l=1

E(ninjnknl) = 3L2�4 : (28)

Combining Equations (22), (23), (26) and (28), we get E(v4)
as

E(v4) = E2

s�m + 3L2�4 +

6L

"
L+ (L2 � L)

�
�(m+ 1

2
)

p
m�(m)

�2
#
Es�

2

= �4f3L2 +
E2
s

�4
�m +

6L

"
L+ (L2 � L)

�
�(m+ 1

2
)

p
m�(m)

�2
#
Es

�2
g: (29)
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Similarly, E(v2) can be calculated as follows

E(v2) =

LX
i=1

LX
j=1

E(rirj)

=

LX
i=1

LX
j=1

E(�i�jX
2 + �iXnj + �jXni + ninj)

=

"
L+ (L2 � L)

�
�(m + 1

2
)

p
m�(m)

�
2

#
Es + L�2

= �2

(
L+

"
L+ (L2 � L)

�
�(m + 1

2
)

p
m�(m)

�
2

#
Es

�2

)
:(30)

Squaring Eqn. (30) and dividing it by Eqn. (29), and defining

 = Es

2�2
, we get the Eqn. (5). By substituting m = 1 in Eqn.

(5), we get Eqn. (7).
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