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Abstract-In this paper, we analyze the performance of maximum- estimation in the system model, again for the single user sys- 
likelihood (ML) multiuser detection in space-time coded CDMA tem, 
systems with imperfect channel estimation. A K-user synchronous 
CDMA system which employs orthogonal space-time black For a multiuser system, bounds on the bit error probability of 
with M transmit antennas and N receive antennas is considered. 
A least-squam estimate of the channel matrix is obtained by 
sending a sequence of pilot bits from each user. The channel ma- 
trix is perturbed by an ermr matrix which depends on the ther- 
mal noise as well as the eomlation between the signature wave- 
forms of different users. Using the characteristic function ofthe 
decision variable, we derive an exact expression, in closed-form, 
for the painvise error probability (PEP) of the joint data vec- 
tor of hits from different users. Using this exact PEP expression, 
we obtain an upper bound on the average hit error rate (BER). 
The analytical BER bounds are compared with the BER obtained 
through simulations. The BER hounds are shown to be increas- 
ingly tight far large SNR values. It is shown that the degradation 
in BER performance due to imperfect channel estimation can he 
compensated by using more number of transmitlreceive anten- 
nas 

Keywords - ML multiuser detection, space-time codes. CDMA. imperfect 
channel estimation. 

1. INTRODUCTION 

Space-time coded transmission using multiple transmit anten- 
nas can offer the benefits of transmit diversity and high data 
rate transmission on fading channels [I]. Space-time cod- 
ing applied to code division multiple access (CDMA) sys- 
tems has been of interest [Z]. Multiuser detection schemes, 
which can significantly enhance the receiver performance and 
increase the capacity of CDMA systems, have been exten- 
sively studied in the literature, mainly for single transmit an- 
tenna systems [3]. Multiuser detection schemes and their per- 
formances in space-time coded CDMA systems with multi- 
ple transmit antennas has been a topic of recent investigations 
[41,[51,[6],[7]. The performance of the systems considered 
in [41-[6] were evaluated mainly through simulations. In [7], 
Uysal and Georghiades derived an exact analytical expression 
for the painvise error probability (PEP) and obtained approxi- 
mate bit error probability for a space-time coded CDMA sys- 
tem. However, the detector considered in [7] is not a mul- 
tiuser detector. In [SI, Taicco and Biglieri obtained an ex- 
pression for the PEP of space-time codes in a single user sys- 
tem, assuming perfect channel estimation at the receiver. Us- 
ing this PEP, they obtained bounds on the probability of e m r  
for maximum-likelihood (ML) detection. In [9], Garg er a/ 
extended the work in [SI by incorporating imperfect channel 

This work was supponed in p m  by be Swamajaymti Fellowship from the 
D e p m n t  of Science and Technology, Government of India. New Delhi. 
under scheme Ref No. 6/3/200Z-S.F 

the maximum-likelihood (ML) multiuser detector have been 
derived in [3] (Ch. 4.3) for a 1 - T d l - R ~  antenna system. In 
[IO], we cosidered a space-time coded CDMA system with 
multiple transmit and multiple receive antennas where we de- 
rived bounds' on the bit error probability of the ML multiuser 
detector. The analysis in [IO] assumed perfect knowledge of 
the channel coefficients at the receiver. Our new contribution 
in this paper is to analyze the performance when the channel 
estimates at the receiver are imperfect. A least-squares esti- 
mate of the channel matrix is obtained by sending a sequence 
of pilot bits from each user. The channel matrix'is perturbed 
by an error matrix which depends on the thermal noise as well 
as the correlation between the signature waveforms of differ-. 
ent users. 

Using a discrete-time vector model of the received signal in 
a space-time coded CDMA system with M transmit and N 
receive antennas as in [ I  I], and the characteristic function 
of the decision variable, we derive an exact expression, in 
closed-form, for the pairwise error probability (PEP) of the 
joint data vector of bits from different users. Using this exact 
PEP expression, we then obtain an upper bound on the average 
bit error rate (BER). We compare the analytical BER bounds 
with the BER obtained through simulations, and show that the 
BER bounds are increasingly tight for large S N R  values. It 
is shown that the degradation in BER performance due to im- 
perfect channel estimation can be compensated by using more 
number of transmidreceive antennas. 

The rest of the paper is organized as follows. In Section E, 
we present the system model. In Section Ill, we present the 
performance analysis. Section IV presents the results and dis- 
cussions. Conclusions are given in Section V. 

11. SYSTEM MODEL 

Consider a A'-user svnchronous CDMA system with M trans- 
mit antennas per user. Users transmit da& blocks with Q bits 
per data block. Let bi,, i E {1,2,  ..., K ) ,  q E {l, 2! ..., Q},  
be the qfh bit of the it" user, transmitted in a time interval 
of length T. The bits in a data block are mapped on to the 
A4 transmit antennas using orthogonal space-time block codes 
(STBC) [12]. We assume that the channel fading is quasi- 
static over one data block. Let A,, be the transmit amplitude 
on the pth transmit antenna of the i t h  user, hi, the complex 
channel gain from the pth transmit antenna of the ith user, 
and s; represent the unit energy signature waveform of the ith 
user. The demodulator on each receive antenna uses a bank of 
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where nl.  nz. . . , n L p  are complex Gaussian random vectors 
such that 

(9) E[n,] = O Q K ~ I , E  [npni] = ~ u ' I Q K .  

9, = FHB, + N,: 

- 
The received pilot matrix Y ,  can then be written as 

(10) 

whereN, = [ nl n2 . . .  n L ,  1. 
The least-sauares estimate of the channel matrix H can be ob- 

For the above equation to hold, the matrix (B,Bp') has to he 
invertible, i.e.. L, 2 Q S .  From (IO) and ( I  I), 

H = H + F-'N,B; (B,B;)-'. (12) 

B. ML Criterion 

Using the vector representation of the multiuser received sig- 
nal in (6). the maximum-likelihood (ML) multiuser detection 
criterion can be written as follows. From (1 1). we obtain the 
estimates of the channel gains at the receiver. The ML es- 
timate of the transmitted bit vector, b, (comprising the bits 
from all users) is then given by 

--Ha , I 

The vector model in (2) 
provided the matrices, H (of order Q K  x QIi) are defined ap- 
propriately. For values of A I  and Q other than 8 ( A l ,  Q < 8), 

where the superscript ( j )  in y and H denote the receive an- 
tenna index, and the minx is over all possible bit vectors of 
length Q S .  Substituting (6) in (13) 

I I. 

.~ 

111. PERFORMANCE ANALYSIS H is given by the upper leftmost submatrix of order Qh'x Qh' 
in (4). For the case of M $ {1,2,4,8}, M < Q. There- 
fore, only the elements H,, q = 1 , 2 ,  ..., AT, are non-zero, i.e., 
Hq = 0 for M < 4 5 Q. The entries ofthe channel matrix H 
are assumed to he i.i.d, zero-mean complex circular Gaussian 

matrix C to be positive definite. we do the Cholesky decom- 

(6)  
E[nnt] = ~ u ' I Q K ,  where (.)+ repre- 

In this section, we analyze the hit error performance of the 
ML multiuser detection scheme in (14). We first derive an 
expression for the painvise error probability (PEP), P(b + 
6).  and then obtain a bound on the.bit The 

random variables (Rayleigh fading). Assuming the correlation PEP is given 

C = F ~ F .  ( 5 )  
IIFH(J)(b-6) + n") - NP'B: (BpB:)-' 611' p o y n  of c 

- ~[,,(J)L~J(~)BT ~ I (BnBf)-' bll' < 0 
j? = (FT)-' y = FHb + n, 

where E[n] = 0qxx 
sents the Hermitian operation and I is the identity matrix. 

A. Channel Estimation N 

Each user is assumed to transmit a sequence of Q pilot bits 
L, for the purpose of channel estimation at the receiver. From 
(6), the received vector due to the kth set of Q pilot hits per 
user is obtained as 

Define the metric D as 

D = JJu(J)ll* - l l ~ ( j ) 1 1 ~ ,  (16) 
j=1 

where 

,,(I) 

"0) = ,(j) - N(')BT B B T ) - ' ~  

= F H O ) ( ~  - G) + ,(j) - N ~ ) B ;  (B~B;)-' 5 
j?r = FHbb + n h , l  5 k 5 L,, (7) - - ~ ~ ( j ) ( b  - +,U) - NWE P ,  

- , , ( j ) - ~ ( f l ~  v , ( P P  (171 
P I  - Let the matrix B, of dimension Q I i  x L, denote the sequence 

of composite pilot vectors bl ,  bz, . . . bL,. B, is given by e = B;(B~B;) - '~ ,  
B,= [ bi bz ... b L n  ] ~ (8) c = B;(BpBT)-'b. 

0-7803-8255-WZ0.W @ux)4 IEE. 1665 



Eqn. (16) can be written in the form 

where Defining G as 
1,- B XlQK -1, e d q K  D = VtSV, (18) 

,(I) a = [ ( ~ F ( B  - B)(B - BI'F? +oiqh-) - - a ~ ~ ~  , oo, 
"IOK -dah. 1 

(28) can he written as 
1 

V =  [!I, , (19)  @ D ( j W )  = ~IZQK - 2 j ~ u ~ ~ / " '  

- .  (31) 

(20) where XI,. . . , X 2 q ~  are the eigenvalues of G. For the case 
when the amplitudes of all hits from all the users are the same, 
i.e., Ai, = Ajq = A, i ,  j = 1 , 2 ,  . . I ,  fi, q = 1,2,. . . , Q, and 
AT = Q, (3 1) can be written in the form 

1 V(.v 2 9  K 
- - 

- - - 
The decision variable D in (18) is in ~ ~ ~ i ~ i ~ ~  q u a h t i c  form 
in the complex Gaussian random vector V. This form, from a 
result in [ 131, allows us to write the characteristic function of 
D, aD(ju),  in closed-form. In order to do that, let 1 

@,(?U) = 
II2h. - Z j W U Z G l A ' * '  

(32) 
1 

11 - 2 j ~ u Z X ~ l A l N '  

ZK 
T = E[VVt]. (21) 

To evaluate T in the above, we write H ( J ) b  in an altemate - - 
k l  form [2] 

(22) 
where B is a QK x QK matrix, which for A t  = Q = 8 is 

where G is given by H(J)b = Bh(J), 

defined as e= [ !$PAPT+PI~ 
K I K  

where P is the Cholesky decomposition of the R matrix (i.e., 
R = PTP), A is given by 

(34) 
1 Q  

A2 ;=I 
A = - C(Bi - B;)', 

1 - 1  a3 ai  e6 Be a; B g  ea -e, -a, B3 -a, Bs Bg -B, 
a3 e, -e, -a* -a: -es Bs a, 

8% -B, -Bg e: - -Be  a, 

e; -Be -a5 e6 Bg -e, -a, Bz 
Be e7 -aB -Be e, B3 -aZ -e, 

a, Bg -a, --a2 -a3 -el ' '1') 
B g  -R; Bz -e, B, -BJ 

whereB, =A,diag{b,},A, =diag{A1,,Az,,...,A~~} . 
q = 1 , 2 , .  . . , Q. For values ofilland Qotherthan 8, (M,Q < 
8) B is obtained as follows. For M = Q E { 1,2,4} ,  B is 

(23). For !\I $ {l, 2,4,8} ,  M < Q. In thiscase, B is given by 

and XI, ' .  ' , X Z K  are the eigenvalues G. Substituting : = 

(35) 
the Qh'x QK upper leftmost submatrix in (23) with all the en- 
tries in the qth ~ 0 1 ~ ~  (fir < 4 5 Q) as zeros. Defining hq = F~~~ the above characteristic function of D,  the PEP in (??) 

1 
given by the upper leftmost submatrix of order &I< x QK in 2jwu2, we have 2 h' 

i= l  

[ h ~ q , h z q ~ " ' ~ h ~ q l ~  and h = [ h T , h F , - ' ' , h ~ l T .  E[hl = canbeobtainedas [16], p] 
O ~ ~ ~ ~ a n d E [ h h t ]  = R I ~ ~ . A l s o , l e t P =  ( l + E T E ) , ~ =  1 ,p-' 
(1 + ETc) and B = (1 + cTc). With the above definitions. P(b - b, = - 

we obtain where XI; are theiegative eigenvalues of G, Re(&) < 0, and 
p k  is the multiplicity of X k .  We obtain (36) in closed-form as 
follows. The characteristic equation of G is given by 

i # j  

. .  z = j  
04' R F ( B  - B)(B - B)'FT 

(25) where y = 

(26) 

(27) 

from which T can be evaluated. Now, the the characteristic 
function of D, @ D ( ~ w )  can be written as (Ref. [13], Eqn. 

(28) 

where G = TS. From (20). (21), (24), (25). we can write G 
BS 

is the average SNR, and J = PAPT. Eqn. 
(37) can be shown to reduce to the form [I41 

i # j  
I = { ~ U z d Q t i  i = 3 

i # j  
2UZdQti  i = j ,  

= 

E[v(")u(i)t 
detl(X - p)(X + B ) I K  - y(X + E)J + ~ ~ 1 ~ 1  = 0. (38) 

If p l , .  . . , pL are the L distinct eigenvalues of J, each with 
multiplicity U<. i.e. E:=, U; = 2K. then (38) reduces to 
L 

(A2 - (0 - € +  yp;)X - (0, - K2 + y /&s) }V '  = 0. (39) 
,=I 

1 

II~NQK - 2jwu'GI '  
From Sylvester's Law of Inertia [15], the eigenvalues of J 
are non-negative (i.e., pi 2 0). Hence, the roots of (39) are 
all real. Denote the negative roots as Xi ,  with multiplicities 
g j , j  = 1,2,. . . ,LA, and the non-negative roots as pi. with 

( 4 4 )  
@ D ( j W )  = 



multiplicities v,. i = 1 ,2 . .  . . , L p ,  so that C g + E, T, = 
2Ii. With this, we can now follow the steps sinular to the ones 
in [9], and obtain the closed-form expression for the PEP as 

1.' 

c r I I t  

where I%' is the number of users, A 1  is the number of trans- 
mit antennas per user. and A' is the number of antennas at the 
receiver. 

Bound on the Pmbabiliry of Bit Ermr 

Using the expression for PEP in the above, we obtain an upper 
bound on the bit error probability as follows. Let b(J), 1 5 
j 5 2Qk- be the set of QA-bit vectors comprising of Q hits 
from each of the I%' users. Suppose b(kl was the transmitted 
vector. Define 

(41) 
where F, F and H are as defined in (13). If b(') is the received 
vector, define 

(43) 

P',,,t (b(') - b(')) = Pr ( 
m+i 

It is noted that the PEP in (40) is nothing hut 

P (bo - b(')) = Pr (Dl < Dk) . 
It is clear that 

, = I  

IV. RESULTS AND DISCUSSION 

In this section, we present the numerical results of the error 
performance of the ML multiuser detection scheme. Fig. 1 
shows the PEP plots for the cases of both perfect channel es- 
timation as well as imperfect channel estimation. for a two 
user system (IC = 2). with two transmit antennas ( A 1  = 2) 
at each user, and one antenna at the receiver ( N  = 1). The 
correlation coefficient between the two users' signature wave- 
forms, p = 0.2. The power imbalance between the two users 
is characterized by the near-far ratio (NFR)I. In Fig. I, the 
NFR is taken to be 0 dB (i.e., equal power users). It can be 
seen that, as expected, the PEP degrades with imperfect chan- 
nel estimation compared to the perfect channel estimates case. 
These plots are from the PEP exact expressions given in (40). 
We also verified the correctness of these plots thmugh simu- 
lation results, which were found to match with the analytical 
results. Fig. 2 presents the bit error rate performance obtained 
through the analytical bound as well as simulations for I< = 2, 
AI = 2, N = 1 and NFR = 0 dB. Plots for both perfect as well 
as imperfect channel estimates are shown. It can be observed 
that the analytical bounds become increasingly tight for large 
S N R  values. Also, imperfect channel estimates are seen to de- 
grade the BER performance. For example, at a BER of lo-', 
the performance loss is about 4 dB in the case of imperfect 
channel estimation, compared to the perfect channel estima- 
tion case. Figs. 3 and 4 shows the bound on the BER as a 
function of average S N R  for M = 2, N = 1,2, and N = 2, 
A 1  = 1,2, respectively, both for the cases of perfect as well as 
imperfect channel estimates. From Figs. 3 and 4, it is seen that 
the degradation in BER performance due to imperfect channel 
estimates can be compensated by using more number of re- 
ceiveltransmit antennas. 

V. CONCLUSION 
We analyzed the bit error performance of maximum-likelihood 
(ML) multiuser detection in space-time coded CDMA sys- 
tems. We considered a A-user synchronous CDMA system 
which employs onhogonal space-time block coding with M 
transmit antennas and N receive antennas. We derived a closed- 
form exact expression for the painvise error probability, using 
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Fig, 1. Pairwise error pmhsbairy as a function of average SNR for IC = 
2.M = 2 . N  = 1,NFR=OdB.Casesofperfectaswellasimperfectchannel 
estimates. 

Fig. 4. Uit error probability hound as a function of average SNR for different 
number of Tn antennas, Af = 1,2. K = 2, h' = 1. NRi= 0 dB. Cases of 
perfect w well as imperfect channel estimates. 

which we obtained an upper bound on the hit error probability. 
We showed that the analytical BER hounds are increasingly 
tight for large SNR values. 
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