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Abstract—We study the Gaussian one-to-many interference
network which is obtained as a special case of a general interfer-
ence network, where only one transmitter generates interference
in the network. We allow transmission of messages on all the links
of the network. This communication model is different from the
corresponding one-to-many interference channel. We formulate
two transmission strategies for the above network, which involve
using Gaussian codebooks and treating interference as noise at
a subset of the receivers. We use sum-rate as the criterion of
optimality for evaluating the strategies. For the first strategy,
we characterize the sum-rate capacity under certain channel
conditions, while for the second strategy, we derive a sum-rate
outer bound and characterize the gap between the outer bound
and the achievable sum-rate of the strategy. Next, we show that
the solution approach for the second strategy has applications to
the cascade Gaussian Z network, a network consisting of parallel
point-to-point links, where each transmitter except the last has a
communication link to the adjacent receiver. Lastly, we illustrate
the regions corresponding to the derived channel conditions for
each strategy.

keywords: one-to-many interference network, interference channel, sum

capacity.
I. INTRODUCTION

The one-to-many interference network is a special case of
general interference network (IN), where only one transmitter
generates interference in the entire network. The system model
is shown in Fig. 1. We allow transmission of messages on all
the links of the network. Without loss of generality, we assume
that transmitter 1 generates interference. The communication
model assumes that transmitter 1 has an independent message
for each receiver, while the other transmitters transmit only to
their corresponding receivers. Such a scheme of communica-
tion has not been studied before.

The one-to-many interference channel (IC) is a special case
of the one-to-many IN, where each transmitter (Tx i) is only
interested in communicating with its corresponding receiver
(Rx i), i.e., each transmitter has only one message. The one-
to-many IC is studied in [1,2], where the capacity region is
characterized to within a constant number of bits. In [3], sum-
rate capacity of the one-to-many IC is characterized in the
low-interference regime: a regime where using Gaussian inputs
and treating interference as noise is optimal.

The one-to-many IN can occur as a communication model
both in cellular downlink and uplink as we show below. In
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Fig. 1. One-to-many interference network system model with K-transmitters
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Fig. 2. Illustration of one-to-many interference network in cellular downlink.

cellular downlink, consider the illustration in Fig. 2, where
user 1 is within the communication range of base station
(BS) 1, whereas users 2 and 3 are at the cell edges of their
respective BSs. Users 2 and 3 can receive transmissions from
their respective BSs along with BS 1, provided the channel
conditions are conducive. In a reverse of the downlink model,
in cellular uplink, user 1 is at the cell edge and can transmit
to the nearby BSs along with BS 1, while users 2 and 3
communicate with their BSs.

For the one-to-many IN, based on the channel conditions,
we define the IN to be of either type I or type II. In type I one-
to-many IN, receiver 1 can decode all the cross messages from
transmitter 1, intended for the other receivers. We show that
the sum-rate of a one-to-many IN of type I is the same as that
of a one-to-many IC. In type II one-to-many IN, one or more
of the receivers can decode the message intended for receiver
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No. Strategy

O1 Transmitter 1 transmits only to receiver 1 and inter-
ference at the other receivers is treated as noise.

O2 Transmitter 1 transmits only to receiver r, r 6= 1, and
interference at other receivers is treated as noise.

TABLE I
TRANSMISSION STRATEGIES FOR ONE-TO-MANY IN

1. We show that the sum-rate of a one-to-many IN of type II is
the same as that the one-to-many IN obtained by eliminating
receiver 1. We define the transmission strategies for this
network in Table I. All strategies use Gaussian codebooks
and interference at a subset of receivers is treated as noise.
As for the choice of strategies O1 and O2, we recognize that
any transmission from receiver 1 has repercussions at all the
receivers. Thus, it is of interest to know when a transmission
from receiver 1 to any single receiver is sum-rate optimal.

The analysis of specific transmission strategies for one-
to-many IN that are sum-rate optimal is also of interest in
the study of half-duplex relay networks [4]. In half-duplex
relay networks, the set of transmitters and receivers form an
interference network, at any given time instant, including as a
special case the one-to-many IN. See [4] for examples of such
networks used in optimization of unicast information flow in
multistage decode-and-forward relay networks.

The sum-rate at all the receivers is used as the criterion for
optimality. We use a 3 transmitter one-to-many IN to analyze
the different strategies. For strategy O1, we characterize the
sum-rate capacity under certain channel conditions, and for
strategy O2, we characterize the gap between the achievable
sum-rate and a sum-rate outer bound. Lastly, we show that
the solution to strategy O2 has applications to the cascade
Gaussian Z network, a network consisting of parallel point-
to-point links, where each transmitter except the last has a
communication link to the adjacent receiver. As before, we
consider messages on all links of this network.

The rest of the paper is organized as follows. The system
model is presented in Section II. We discuss the classification
of one-to-many IN in Section III. In Section IV, we analyze the
two strategies defined earlier. We discuss the applications to
the cascade Gaussian Z network in Section V. Some numerical
computations regarding the optimality of the strategies are
presented in Section VI. Conclusions are presented in Section
VII.

II. SYSTEM MODEL

As shown in Fig. 1, the one-to-many IN with K transmitters
is characterized by the following input-output equations

y1 = h11 x̃1 + n1 (1)
yi = hi1 x̃1 + hii x̃i + ni, i = 2, 3, . . . ,K, (2)
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Fig. 3. One-to-many interference network with 3 transmitters in standard
form.

where x̃t is1 the transmitted symbol by transmitter t, hrt
denotes the complex channel gain from transmitter t to receiver
r, and nr is the additive complex Gaussian noise at the
receivers. hii are known as the direct channels, while hi1 are
the cross channels, i = 2, . . . ,K. The additive noise nr is a
circularly symmetric complex Gaussian (CSCG) random vari-
able with unit variance, i.e., nr ∼ CN (0, 1), r = 1, 2, . . . ,K.
Transmitter t is subject to a power constraint E[|x̃t|2] ≤ P̃t.

We analyze the 3-transmitter one-to-many interference net-
work written in standard form [5]:

y1 = x1 + n1 (3)
y2 = c x1 + x2 + n2 (4)
y3 = d x1 + x3 + n3, (5)

where we have used c = h21 / h11, d = h31 / h11, xi = hii x̃i,
and Pi = |hii|2P̃i are the new power constraints. As shown in
Fig. 3, the 3-transmitter one-to-many IN has five independent
messages, W11, W21, W31, W22 and W33, where Wij is the
message transmitted from transmitter j to receiver i.

III. CLASSIFICATION OF ONE-TO-MANY IN

We introduce some terminology useful in deriving the
results in this section. Let yn

i denote the vector of received
symbols of length n at receiver i. Let xn

i denote the n length
vector of transmitted symbols at transmitter i. By Fano’s
inequality, we have

H(Wii |yn
i ) ≤ nεn, i = 1, 2, 3

H(Wj1 |yn
j ) ≤ nεn, j = 2, 3,

where εn → 0 as n→∞.
A one-to-many IN is said to be stochastically degraded

if its conditional marginal distributions are the same as that
of a physically degraded IN. Since the error probabilities
Pr( Ŵ11 6= W11) and Pr( (Ŵi1, Ŵii) 6= (Wi1,Wii)) depend
only on the conditional marginal distributions p(y1|x1) and

1We use the following notation: lowercase letters for scalars and boldface
lowercase letters for vectors. [̄·] denotes complex conjugation and E{·}
denotes the expectation operation.
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p(yi|x1, xi), i = 2, . . . ,K, the capacity region of the stochas-
tically degraded one-to-many IN is the same as that of the
corresponding physically degraded IN.

Definition 1. We define a one-to-many IN to be of type I if
|c|2 ≤ 1 and |d|2 ≤ 1.

Definition 2. We define a one-to-many IN to be of type II if,
|c|2 ≥ 1, or |d|2 ≥ 1 or both.

From the above definitions, it is clear that any general one-
to-many IN can be classified into a one-to-many IN of either
type I or type II.

A. Implications of type I one-to-many IN

Consider the following set of equations.

y2 = c x1 + x2 + n2

= c (x1 + ñ1) + x2 + ñ2, (6)

where ñ1 ∼ CN (0, 1) and ñ2 ∼ CN (0, 1 − |c|2). Since the
variance of ñ2 cannot be negative, we have the necessary
condition |c|2 ≤ 1. From (6), if |c|2 ≤ 1, we have

I(W21 ; yn
2 |xn

2 ) ≤ I(W21 ; yn
1 )

Therefore, using the independence of xn
2 and W21, we have

H(W21 |yn
1 ) ≤ H(W21 |yn

2 , x
n
2 )

≤ H(W21 |yn
2 ) ≤ nεn. (7)

Similarly, if |d|2 ≤ 1, we have

H(W31 |yn
1 ) ≤ H(W31 |yn

3 ) ≤ nεn. (8)

From (7) and (8), we have shown that in type I one-to-many
IN, receiver 1 can decode W21,W31. The sum-rate can now
be bounded as follows

nS ≤ H(W11,W21,W31) +H(W22) +H(W33)

= I(xn
1 ; yn

1 ) +H(W11,W21,W31 |yn
1 ) + I(xn

2 ; yn
2 )

+H(W22 |yn
2 ) + I(xn

3 ; yn
3 ) +H(W33 |yn

3 )

=

3∑
i=1

I(xn
i ; yn

i ) +H(W11 |yn
1 ) +H(W21 |yn

1 ,W11)

+H(W31|yn
1 ,W21,W31)+H(W22|yn

2 )+H(W33|yn
3 )

≤
3∑

i=1

I(xn
i ; yn

i ) +H(W11 |yn
1 ) +H(W21 |yn

1 )

+H(W31 |yn
1 ) + H(W22 |yn

2 ) + H(W33 |yn
3 ) (9)

≤ I(xn
1 ; yn

1 ) + I(xn
2 ; yn

2 ) + I(xn
3 ; yn

3 ) + 5εn, (10)

where in (9), we have used the fact that removing conditioning
cannot reduce the conditional differential entropy, (10) follows
from (7), (8) and Fano’s inequality and as n → ∞, εn → 0.
Note that (10) represents the sum-rate capacity of the one-
to-many IC. From (10), we conclude that we can set W21 =
W31 = φ (without loss of sum-rate).

In summary, the sum-rate capacity for a type I one-to-many
IN is same as that of the corresponding one-to-many IC.

B. Implications of type II one-to-many IN

Let ỹ2 = c x1 + n2. If |c|2 ≥ 1, we have

I(W11 ; yn
1 ) ≤ I(W11 ; ỹn

2 ) = I(W11 ; cxn
1 + nn

2 )

= I(W11 ; yn
2 |xn

2 ).

Thus,

H(W11 |yn
2 , x

n
2 ) ≤ H(W11 |yn

1 ) ≤ nεn. (11)

From (11), we have shown that if |c|2 ≥ 1, receiver 2 can
decode W11 given xn

2 . Assume |c|2 ≥ 1, and further assume
that |c|2 ≥ |d|2. Let ỹ3 = d x1 + n3. Then, we have

I(W31 ; ỹn
3 ) ≤ I(W31 ; ỹn

2 )

I(W31 ; yn
3 |xn

3 ) ≤ I(W31 ; yn
2 |xn

2 ).

Therefore,

H(W31 |yn
2 , x

n
2 ) ≤ H(W31 |yn

3 , x
n
3 ) ≤ nεn. (12)

The sum-rate can now be bounded as follows

nS ≤ H(W11,W21,W31,W22) +H(W33)

= I(xn
1 , x

n
2 ; yn

2 ) +H(W11,W21,W31,W22 |yn
2 )

+ I(xn
3 ; yn

3 ) + h(xn
3 |yn

3 )

= I(xn
1 , x

n
2 ; yn

2 ) + h(xn
2 |yn

2 ) +H(W21 |yn
2 , x

n
2 )

+H(W11 |yn
2 , x

n
2 ,W21)+H(W31 |yn

2 , x
n
2 ,W11,W21)

≤ I(xn
1 , x

n
2 ; yn

2 ) + h(xn
2 |yn

2 ) +H(W21 |yn
2 )

+H(W11 |yn
2 , x

n
2 ) +H(W31 |yn

2 , x
n
2 )

+I(xn
3 ; yn

3 ) + h(xn
3 |yn

3 ) (13)
≤ I(xn

1 , x
n
2 ; yn

2 ) + I(xn
3 ; yn

3 ) + 5εn, (14)

where in (13), we have used the fact that removing condition-
ing cannot reduce the conditional entropy, and (14) follows
from (11), (12) and Fano’s inequality. As n→∞, εn → 0.

Using similar steps as above, it can be shown that when
|d|2 ≥ 1 and |d|2 ≥ |c|2, the following are true, respectively,

H(W11 |yn
3 , x

n
3 ) ≤ H(W11 |yn

1 ) ≤ nεn

H(W21 |yn
3 , x

n
3 ) ≤ H(W21 |yn

2 , x
n
2 ) ≤ nεn,

and receiver 3 can decode W11, W21 given xn
3 . The sum-rate

in this case is bounded as

nS ≤ I(xn
2 ; yn

2 ) + I(xn
1 , x

n
3 ; yn

3 ) + 5εn. (15)

From the above arguments, it is clear that, if either |c|2 ≥ 1
or |d|2 ≥ 1, or both, we can set W11 = φ without any loss in
sum-rate. Since W11 is the only message intended for receiver
1, this is equivalent to removing receiver 1 from the IN.

In summary, the sum-rate of a one-to-many IN of type II is
equivalent to the sum-rate of the channel shown in Fig. 4.
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Fig. 4. Equivalent sum-rate representation of type II one-to-many interference
network with 3 transmitters

IV. ANALYSIS OF STRATEGIES FOR 3-TRANSMITTER
ONE-TO-MANY INTERFERENCE NETWORK

A. Optimality of Strategy O1

Here, we are interested in a region where each transmitter
communicates with its corresponding receiver using Gaussian
inputs and interference at receivers 2 and 3 is treated as noise.
This is referred to in the IC literature as the low-interference
or the noisy-interference regime.
Theorem 1. The sum-rate capacity is achieved by transmitting
on the direct channels and treating interference as noise when

|c|2

|c|2 P1 + 1
+

|d|2

|d|2 P1 + 1
≤ 1

P1 + 1
(16)

Proof: Let |c|2 ≤ 1, |d|2 ≤ 1. By definition, this
constitutes a one-to-many IN of type I. From Section III-A,
we know that the sum-rate of a one-to-many IN of type
I is the same as that of a corresponding one-to-many IC.
The theorem follows from the characterization of the low-
interference regime for the one-to-many IC in [3, Theorem 5].
Lastly, it is not difficult to verify that (16) does not violate
the condition for type I one-to-many IN, i.e., |c|2 ≤ 1 and
|d|2 ≤ 1.

B. Optimality of Strategy O2

In strategy O2, transmitter 1 communicates solely with
either receiver 2 or receiver 3, with the interference at the other
receiver treated as noise. Thus, we can equivalently consider
the channel shown in Fig. 4. In the following theorem, we
derive a sum-rate outer bound for the one-to-many IN and
characterize the gap between the outer bound and the sum-
rate of strategy O2.
Theorem 2. When transmitter 1 transmits to receiver 2 and
interference at receiver 3 is treated as noise, if

|c|2 ≥ 1, and |d|2 ≤ |c|2|ρ|2

(1 + P2)2
, (17)

then the gap between the sum-rate outer bound and the sum-
rate of the above strategy is given by

log

(
1− (1 + P2)−1|ρ|2

1− |ρ|2

)
, (18)

where ρ is a constant with |ρ| ∈ [0, 1].
Proof: We assume |c|2 ≥ 1 and further that |c|2 ≥ |d|2

in the rest of the proof. Note that this belongs to a type II
one-to-many IN and the sum-rate is bounded as (14).

We use genie-aided bounding techniques to derive the
optimality of strategy O2. Specifically, we use the concept
of useful genie and smart genie introduced in [3] to obtain
an outer bound on the sum-rate of the one-to-many IN. Let a
genie provide the following side information to receiver 2:

s2 = d x1 + η z2, (19)

where z2 ∼ CN (0, 1) and η is a positive real number. We
allow z2 to be correlated to n2 with correlation coefficient ρ.

A genie is said to be useful if it results in a genie-aided
channel whose sum-rate capacity is achieved by Gaussian
inputs, i.e., the sum-rate capacity of the genie-aided channel
equals I(x1G, x2G ; y2G, s2G) + I(x3G ; y3G), where xiG ∼
CN (0, Pi), yiG, s2G are yi and s2 with xj = xjG, ∀ i, j.
Lemma 1. (Useful Genie) The sum-rate capacity of the genie-
aided channel with side information (19) given to receiver 2 is
achieved by using Gaussian inputs and by treating interference
as noise at other receivers, if the following condition holds:

η2 ≤ 1, (20)

and the sum-rate of the genie-aided channel is bounded as

S ≤ I(x1G, x2G ; y2G, s2G) + I(x3G ; y3G). (21)

Proof: From (14), the sum-rate of the genie-aided channel
is bounded as

S − 5εn ≤ I(xn
1 , x

n
2 ; yn

2 , s
n
2 ) + I(xn

3 ; yn
3 )

= I(xn
1 ,x

n
2 ; sn2 ) + I(xn

1 ,x
n
2 ; yn

2 | sn2 ) + I(xn
3 ; yn

3 )

= h(sn2 )− h(sn2 |xn
1 , x

n
2 ) + h(yn

2 | sn2 )

−h(yn
2 | sn2 , xn

1 , x
n
2 ) + h(yn

3 )− h(yn
3 |xn

3 )

= h(sn2 )− h(η zn2 ) + h(yn
2 | sn2 )

−h(nn
2 | zn2 ) + h(yn

3 )− h(yn
3 |xn

3 )

= h(sn2 )− nh(η z2) + nh(y2G | s2G)

−nh(n2 | z2) + nh(y3G)− h(yn
3 |xn

3 ) (22)

where in (22) we have used Lemma 1 in [3] and the fact that
Gaussian inputs maximize the differential entropy for a given
covariance constraint.

Thus, it remains to show that h(sn2 ) − h(yn
3 |xn

3 ) is maxi-
mized by x1G. Consider the following set of equations,

h(sn2 )− h(yn
3 |xn

3 ) = h(dxn
1 + η zn2 )− h(dxn

1 + nn
3 )

(a)

≤ nh(d x1G + η z2)− nh(dx1G + n3)

= nh(s2G)− nh(y3G |x3G),

where (a) follows from condition (20) and Lemma 1 in [6],
which is a special case of the extremal inequality considered
in [7]. Thus, the sum-rate is bounded as (21).

A smart genie is one which does not increase the sum-rate
when Gaussian inputs are used. In this case, since the genie
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does in fact increase the sum-rate, it is not smart. However,
we can choose the parameters ρ and η to get a good sum-rate
outer bound as follows. Consider

I(x1G, x2G ; y2G, s2G)

= I(x1G, x2G ; y2G) + I(x1G, x2G ; s2G | y2G).

The second term on the right hand side can be expanded as

I(x1G ; s2G | y2G) + I(x2G ; s2G | y2G, x1G).

Note that

I(x1G; s2G | y2G) = I(x1G; dx1G + ηz2 | cx1G + x2G + n2)

= I(x1G ; x1G + η z2/d |x1G + (x2G + n2)/c).

Lemma 8 in [3] says that when x, n, z are Gaussian with x
being independent of the two zero-mean random variables n,
z, then I(x ; x+z |x+n) = 0, iff E(z n̄) = E(|n|2), where n̄
denotes the complex conjugate of n. Thus, the above equation
reduces to zero if

η ρ

d c̄
=

1 + P2

|c|2
⇒ η ρ =

d

c
(1 + P2) (23)

Now, consider

I(x2G; s2G | y2G, x1G) = I(x2G ; η z2 |x2G + n2)

= h(η z2 |x2G + n2)− h(η z2 |n2)
(a)
= h(η z2 |x2G + n2)− h(η z̃2)

= log

(
η2(1 + P2)− η2|ρ|2

(1 + P2)η2(1− |ρ|2)

)
= log

(
1− (1 + P2)−1|ρ|2

1− |ρ|2

)
, (24)

where z̃2 ∼ CN (0, 1− |ρ|2) and (a) follows from [3, Lemma
6]. Note that (24) represents the gap between the sum-rate
outer bound and the sum-rate of strategy O2. Eliminating η
from (20) and (23), we get |d|2 ≤ |c|2|ρ|2/(1 + P2)2.

A similar result can be proved for the case where transmitter
1 transmits to receiver 3 and interference at receiver 2 is treated
as noise. We summarize the results for the 3 transmitter one-
to-many IN in Table II.

V. APPLICATIONS TO CASCADE GAUSSIAN Z NETWORK

As shown in Fig. 5, we consider the cascade Gaussian
Z network with three transmitters, written in standard form.
It consists of three parallel point-to-point channels and each
transmitter except the last has a communication link to the
adjacent receiver. We allow messages on all links of the
network.

The cascade Gaussian Z channel is a special case of the
above network, where each transmitter is interested in commu-
nicating with its corresponding receiver. This channel model
is studied in [8]. The cascade Z network with 3 transmitters
is characterized by the following input-output equations

y1 = x1 + n1

y2 = hx1 + x2 + n2

y3 = k x2 + x3 + n3,

Strat. Channel conditions Gap from Outer-bound

O1 |c|2(1 + P1)

|c|2 P1 + 1
+
|d|2(1 + P1)

|d|2 P1 + 1
≤ 1 0

O2 (i) |c|2 ≥ 1, |d|2 ≤ |c|2|ρ|2

(1 + P2)2
log

[
1− |ρ|2

1 + P2

1− |ρ|2

]

(ii) |d|2 ≥ 1, |c|2 ≤ |d|2|ρ|2

(1 + P3)2
log

[
1− |ρ|2

1 + P3

1− |ρ|2

]

TABLE II
SUMMARY OF RESULTS FOR ONE-TO-MANY INTERFERENCE NETWORK
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Fig. 5. Cascade Gaussian Z network with 3 transmitters in standard form.

It has five independent messages, W11, W21, W22, W32 and
W33. Transmitter t is subject to a power constraint E[|xt|2] ≤
P̂t. We define the transmission strategies for this network in
Table III.

In strategy CZ1, since transmitters 1 and 2 form a MAC
at receiver 2, receiver 1 can be ignored. Likewise, in CZ2,
since transmitter 1 transmits to receiver 2, and interference
at receiver 1 is treated as noise, receiver 1 can be ignored.
Eliminating receiver 1 from Fig. 5 results in the channel
shown in Fig. 6, which is similar to the channel shown in
Fig. 4. Note that the channel from transmitter 1 to receiver 2
can be normalized to 1 by modifying the power constraint at
transmitter 1 from P̂1 to |h|2 P̂1. This would make the channel
model of Fig. 6 identical to that in Fig. 4. The sum-rate wise
optimality of the above strategies can now be bounded by
directly applying Theorem 2 to Fig. 6 after bounding the sum-
rate.

Thus, we have shown that the solution approach for strategy
O2 has applications to the cascade Gaussian Z network.

VI. NUMERICAL RESULTS

In this section, we numerically analyze the sum-rate outer
bound for the optimality of O2, given in Theorem 2. Let the
gap between the sum-rate outer bound and the achievable sum-
rate of strategy O2 given in (24) be denoted by ∆. Using (24)

IEEE WCNC'14 Track 1 (PHY and Fundamentals)

16



No. Strategy

CZ1 Transmitters 1 and 2 form a MAC at receiver 2,
while interference at receiver 3 is treated as noise.

CZ2 Transmitter 1 transmits to receiver 2, while trans-
mitters 2 and 3 form a MAC at receiver 3 and
interference is treated as noise.

TABLE III
TRANSMISSION STRATEGIES FOR CASCADE GAUSSIAN Z NETWORK

h
Rx 2

Rx 3

k

1

1

Tx 1

Tx 2

Tx 3

Fig. 6. Equivalent representation of Cascade Gaussian Z network for
strategies CZ1 and CZ2.

and solving for ρ in terms of ∆, we get

|ρ|2 =
2∆ − 1

2∆ − 1/(1 + P2)
(25)

In Fig. 7, we plot |ρ|2 as a function of ∆ for different
values of P2. It can be observed that |ρ|2 is a monotonically
increasing function of ∆. Thus, to obtain a lower gap from
the outer bound, a lower value of |ρ|2 must be chosen. This
in turn makes the sub region in (17) smaller. This relationship
is explored further is the next figure.

In Fig. 8, we plot the sub region (17) given in Theorem 2 for
strategy O2 as a graph in the |c|− |d| plane for various values
of ∆, along with the low-interference region (16) for strategy
O1. We assume P1 = P2 = P3 = 0 dB. As mentioned above,
the sub region in (17) shrinks for increasing values of ∆.

VII. CONCLUSIONS

We considered the 3-transmitter Gaussian one-to-many in-
terference network with messages on all the links. We first
classified the one-to-many interference network into one-to-
many interference network of either type I or type II. Next,
we formulated two transmission strategies for this network.
Sum-rate capacity was characterized under certain channel
conditions for the first strategy whereas for the second strategy,
we characterized the gap between the achievable sum-rate
and a sum-rate outer bound. Lastly, we showed that the
solution approach for the second strategy has applications to
the cascade Gaussian Z network.
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Fig. 7. Variation of |ρ|2 as a function of the gap ∆ in bits
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Fig. 8. A plot of the sub regions (16) and (17) for strategies O1, O2,
respectively, for ∆ = 0.25, 0.5 or 1 bit. P1 = P2 = P3 = 0 dB.
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