
LLR based BER Analysis of Orthogonal STBCs using QAM on 
IRayleigh Fading Channels 

M. Surendra Raju*, A. Rameshi and A. Chockalingamt 
* Insilica Semiconductors India Pvt. Ltd., Bangalore-560001, India 

Department of ECIE, University of California, San Diego, La Jolla, CA 92093, U.S.A 
t Department of ECE, Indian Institute of Science, Bangalore 560012, India 

Abstract-In this paper, we derive analytical expressions for the 
bit error rate (BER) of space-time block codes (STBC) from 
complex orthogonal designs (COD) with quadrature amplitude 
modulation (QAM) on Rayleigh fading chlannels. We take a bit 
log-likelihood ratio (LLR) based approach to derive the BER 
expressions. We first derive the LLRs for the various bits form- 
ing the QAM symbol, and use these LLRs to derive analytical 
expressions for the error rate of the individual bits forming the 
QAM symbol, and hence the average BER of the system. The ap- 
proach presented in this paper can be used in the BER analysis 
of any STBC from COD with linear processing, for any value of 
M in a M-QAM system. Here, we present the BER analysis and 
results for a 16-QAM system with z) (2-Tx, L-Rx) antennas using 
Alamouti code (rate-1 STBC), i i )  (3-Tx, L-Rx) antennas using a 
rate-112 STBC, and iii) (5-Tx, L-Rx) antennas using a rate-7/11 
STBC. The LLRs derived can also be used as soft inputs to de- 
coders for various coded QAM schemes, iincluding turbo coded 
QAM with space-time coding. 

Keywords - STBC, complsr orthogonal design, QAM, BER analysis, log- 
likelihood ratio. 

I. INTRODUCTION 

The potential capacity gains achieved by using multiple an- 
tenna systems has led to considerable attention in the area 
of space-time coding [l]. Space-time block codes (STBC) 
from complex orthogonal designs (COD) are of interest as 
they can be used for complex constellations such as QAM to 
achieve higher data rates in wireless communication systems 
[2],[3]. Recent works have reported analytical expressions 
for the symbol error rate (SER) and the: bit error rate (BER) 
of orthogonal STBCs. In [4], Shin andl Lee derived expres- 
sions for the SER of orthogonal STBCs on Rayleigh fading 
channels. They derived the SER by converting the multiple 
input multiple output (MIMO) system model to an equivalent 
single input single output (SISO) model. Recently, Simon in 
[ 5 ] ,  and Taricco and Biglieri in [6],  have reported exact ex- 
pressions for the pairwise error probability (PEP) as well as 
approximate expressions for the BER for space-time codes. 

Our key contribution in this paper is the derivation of analyti- 
cal expressions for the BER for linear STBCs from COD with 
QAM modulation on Rayleigh fading channels. We adopt a 
bit log-likelihood ratio (LLR) based approach, where we first 
derive expressions for the LLRs of the individual bits forming 
the M-QAM symbol, and then use these LLRs to obtain the 
BER expressions. We present the BER analysis for 16-QAM 
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systems with i) (2-Tx, L-Rx) antennas using the rate-1 Alam- 
outi code, ii) (3-Tx, L-Rx) antennas using a rate-1/2 code, 
and iii) (5-Tx, L-Rx) antennas using a rate-711 1 code. Al- 
though we present the analysis and results only for 16-QAM 
in this paper, the approach applies for any value of M and 
for any arbitrary mapping of bits to the M-QAM symbol. In 
addition, the LLRs derived can also be used as soft inputs to 
decoders for various coded QAM schemes, including turbo 
coded QAM with space-time coding. 

The rest of the paper is organized as follows. We present the 
MIMO system model in Section 11. In Section 111, we derive 
the LLRs for the various bits forming a 16-QAM symbol. In 
Section IV, we derive the analytical expressions for the BER. 
Numerical results and discussions are presented in Section V. 
Section VI presents the conclusions. 

11. SYSTEM MODEL 

We consider a wireless communication system with Lt trans- 
mit and L, receive antennas. The channel is assumed to be 
a flat, slowly varying (quasi-static), Rayleigh fading channel. 
We consider space-time block codes, where each codeword is 
a matrix with P rows and Lt columns, with complex valued 
symbols as its entries. Here, P is the number of time slots 
required to transmit one codeword. For some K informa- 
tion symbols, SI, s2,. . . , S K ,  which are selected from the 16- 
QAM constellation (see Fig. l)', the entries of the codeword 
X = {xi, t = 1 , 2 , - . . , P ;  i = 1 , 2 , - - . , L t }  are a linear 
combination of the information symbols s k ,  IC = 1,2, . . . , K 
and their complex conjugates. At time slot t ,  t = 1,2, . . , P ,  
the tth row of the codeword X (i.e., xz, x:, . . . , xf') is trans- 
mitted simultaneously from Lt antennas. The symbol trans- 
mission rate, R, is defined as the number of information sym- 
bols transmitted per time slot, i.e., R = K / P .  The received 
codeword, Y, can be written as 

Y = XHfN, (1) 

whereY = {y i  : t = 1 , 2 , - . - , P ;  j = 1 ,2 , . - . ,L ,} i sa  
matrix of size P x L,, whose entry y i  is the signal received 
at antenna j at time slot t ;  H = {hi, j}  is the channel ma- 
trix of size Lt x L,, whose entry hi j  is the complex channel 
gain from the transmit antenna i to the receive antenna j .  The 

'4 bits, (r1,rzlr3,r4) are mapped on to a complex symbol sk = Skl + 
j S k Q .  The horizontalhertical line pieces in Fig. 1 denote that all bits under 
these lines take the value 1. and the rest take the value 0. 
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Assuming that all the symbols are equally likely and that 
the fading is independent of the transmitted symbols, using 

4 0 Bayes' rule, we have 

I 
Fig. 1. 16-QAM Constellation 

Using the approximation, log(& exp(-Xj)) x - minj(Xj), 
we can approximate LLR,, (Ti) as* 

LLR,k 

random variables Ih,,j I 'S are assumed to be i.i.d Rayleigh dis- 
tributed with E(lhi,j12) = R; N = {n:} is the noise matrix 
of size P x L,, whose entries are i.i.d complex Gaussian noise = - l2 { min l l d i  -Akfi l la-  min I l i k  - A k C v I l ' } .  (8) 
with zero mean and variance oz. P € S j O )  &Si(l) 

Let C( .) be a mapping from a K-tuple complex message vec- 
tor s = (51, s2,  . . - , SK) to the columnwise orthogonal P x Lt 
codeword X = C(s) .  Due to the columnwise orthogonality 
of the linear orthogonal space-time block codes considered, 
the Lt x Lt matrix C ( S ) ~  C(s) is given by 

K 

where ( . ) H  denotes the Hermitian operator, and G = {gm,n} 
is a matrix of size K x Lt whose entries can take non-negative 
integer values (for example, for the Alamouti code gm,n = 
1, Vm, n). Assuming perfect knowledge of the channel co- 
efficients at the receiver, the combined signal output for the 
symbol sk is given by 

Define k complex variables, 2k, k = 1 , 2 ,  . . . , K ,  as 

(9) 

Using (9) in (8) and normalizing by 4/$k2,  LLR,,(ri) is 
written as 

Note that the set partitions Si') and Sio) are delimited by hor- 
izontal or vertical boundaries. As a consequence, two sym- 
bols in different sets closest to the received symbol always lie 
either on the same row (if the delimiting boundaries are ver- 
tical) or on the same column (if the delimiting boundaries are 
horizontal). Using the above fact, the log-likelihood ratios for 
each of the bits forming the symbol, s k ,  are given as 

-& fkQd I2kQl 5 2d 

-2Ak d ( d  + Z k Q )  2kQ < -2d,  

j = 1  

and ( k  is a complex Gaussian random variable with zero LLRsk(r2) = 2Ak d ( d  - &.Q) &Q > 2d (12) 
mean and variance A ,  u2. 

We define the LLR for the bit ri, i = 1 , 2 , 3 , 4  of symbol sk,  
k = 1 , 2 , .  . . , K ,  as 

(14) 

In the above equations, .&I and &Q are the real and imagi- 
nary parts of & ,  respectively, and 2d is the minimum distance 
between pairs of signal points. 

'This is quite a standard approximation [9], and, as we will see in Sec. V, 
the analytical BER evaluated using this approximate LLR is almost the same 
as the BER evaluated through simulations without this approximation. 

. ( 5 )  

P ~ ( r i  = lIY, H) 
P r ( ~ i  = OIY, H) 

LLR,,(ri) = log { 
= log{ Pr(ri = 1(&, H) 

P r ( ~ i  = OlSjc, H) 
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IV. DERIVATION OF EiER 

In this section, we derive the probability of error for the bit 
r i ,  i = 1,2 ,3 ,4 ,  forming a 16-QAM symbol. The probability 
of error for bit T I  in symbol sk, Ptl can be written as 

pt1 = Pfllskr=-d.Pr{Skl = - d }  + Pfqskr=-3d.Pr{skl = - 3 4  

+ Pbkl~skr=d'Pr{Skl = d }  + Pf11Skr==3d. p r { S k l  = 3d} ,  (15) 

where SkI  represents the real part of sk,, Let us first consider 
P[l lskr=-d,  which is given by 

-- 
(16) 

where the overline indicates averaging over the complex ran- 

k 
pbl  1 s k ~  =- d 1 skr  :=- d , H  > 

Pr(LLR,, ( T I )  <: 0 I skI = -d, H) 

where ai = a2/2.  Let us define 

A i = l k = l  

We then have 5 = JZ7 where E6 is the energy per 
bit per transmit antenna and R is the rate of the STBC used. 
From the above, we can write 

To obtain P ~ l l s k r = - d ,  we need to uncosndition P;lllskr=-d,H 
w.r.t A h ,  which is given by 

Let us define 8, = (hn,j12, n := 1 , 2 , .  . . , Lt.  Since 
Ihi,jI2 are i.i.d exponential with mean! 0, the random vari- 
ables 8, are i.i.d Gamma random variables with density func- 
tion 

and the moment generating function3 (MGF) is given by 

E [ ~ x P ( - s & ) ]  
3The moment generating function, Me, (s) is defined as N,, (s) = 

Using the above and Craig's formula [lo], we can show that 

2 R  where p1 = & and ' y b  = F. Note that the expres- 

'ion + S:L nn=1 Lt (*) sin Lrd+ in the above can be 

evaluated numerically and accurately using Gauss-Chebyshev 
Quadrature rule. Similarly, the conditional error probability 
P&skr=-3d,H is given by 

- where p2 = w. It can further be shown that P[l lar=-d - 
- P:1lar=d and P&ar=-3d - P&ar=3d. Moreover, for the 16- 

QAM constellation considered, it can be shown that Ptl = 
Pt2 and Pb3 = Pt4. With the above, the BER expressions for 
the bits r1,7-2, r3, ~4 of the symbol s k  can be written as 

where P: , j = 1,2,3,  are given by 
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Fig. 2. Comparison of the analytical BER evaluated using approximate 
LLRs vs the simulated BER using the LLRs without approximation. 16- 
QAM with rate-1 STBC (Alamouti code). 2Tx/2Rx and 2TxilRx antennas. 

and 

Again, note that (28) can be evaluated numerically and ac- 
curately using the Gauss-Chebyshev Quadrature rule. The 
average BER for symbol S k ,  k = 1'2, . . . K ,  Pt ,  is given 
by 

(30) 
1 

Pb" = 4 (Ptl + P& + Pf3 + Pt4) . 

Finally, the average BER of the system, Pb, is given by 

. K  

v. RESULTS AND DISCUSSION 

We computed the BER performance of 16-QAM as a function 
of average SNR for the following space time block codes: 

and 

3 1  -34 

-33 52 

s; s; ' 
s; -si 
s; s; 

-s; ",: :: s; 

C1 is the well known Alamouti code with parameters P = 
K = Lt = 2, R = 1, and CFCl is a 2 x 2 diagonal ma- 
trix with the (ili)th diagonal element, D(i , i ) ,  of the form 
E",=, Ilskl12. 

C2 is a rate-1/2 STBC with parameters P = 8, K = 4, Lt = 
3, R = 112, and C f C 2  is a 3 x 3 diagonal matrix with 
the (it i ) t h  diagonal element, D(i ,  i), of the form E",=, (2 . 
llsk112)- 

C3 is a rate-74 1 STBC with parameters P = 11, K = 7, Lt = 
5, R = 7/11, and C?C3 is a 5 x 5 diagonal matrix with the 
(i, i ) th diagonal element, D(i , i ) ,  of the form 

7 

D(1, 1) = 0 ( 2 , 2 )  = 0 ( 3 , 3 )  = 0(4,4) = 115k1121 (32) 
k=l 

3 7 

D(5i5) = c ( 2 - 1 1 s k 1 1 2 )  -k llsk112- (33) 
k=l k=3 

In Fig. 2, we compare the analytical BER evaluated using the 
approximate LLRs derived versus the simulated BER using 
the LLRs without approximation, for 16-QAM rate- 1 STBC 
(Alamouti code) for 2Tx/2Rx and 2TdlRx antennas. It is 
observed that the analytically computed BER is almost the 
same as the simulated BER, indicating that the approximation 
to the LLRs results in insignificant difference between the 
analytically computed BER and the true BER. 

Figures 3, 4, 5 provide the analytical results of the average 
BER performance as a function of the average SNR, Tb, for 
different STBCs C1, C2 and C3, respectively. The number of 
receive antennas considered include L = 1,2,4,10. Figure 
6 presents the comparative BER performance of the different 
STBCs C1, C2 and C3 when the number of receive antennas 
L = 2.  The performance in AWGN is also shown for compar- 
ison. We also point out that the LLRs derived can also be used 
as soft inputs to decoders for various coded QAM schemes, 
including turbo coded QAM with space-time coding. 

VI. CONCLUSIONS 

Using a bit LLR based approach, we derived analytical ex- 
pressions for the BER of STBCs from complex orthogonal 
designs with QAM on Rayleigh fading. We first derived the 
LLRs for the various bits forming the QAM symbol, and used 
these LLRs to derive analytical expressions for the error rate 
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Fig. 3. BER performance of 16-QAM with 2 transmit antennas and L, = 
1,2,4,10 receive antennas using rate-1 STBC (Alamouti code). 

of the individual bits forming the QAM symbol, and hence 
the average BER of the system. Although the analysis was 
given only for 16-QAM in this paper, the approach applies 
to the BER analysis of M-QAM systems for any value of 
A4 (any arbitrary mapping of bits to QAM symbols) for any 
STBC from COD with linear processing. We presented the 
analytical BER results for 16-QAM with[ i) (2-Tx, L-Rx) an- 
tennas using Alamouti code (rate-1 STBC), ii) (3-Tx, L-Rx) 
antennas using a rate-1/2 STBC and iii) (5-Tx, L-Rx) an- 
tennas using a rate-7/11 STBC. The LL,Rs derived can also 
be used as soft inputs to decoders for various coded QAM 
schemes, including turbo coded QAM with space-time cod- 
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Fig. 4. 
1,2,4,10 receive antennas using rate-1/2 STBC. 

BER performance of 16-QAM with 3 transmit antennas and L,  = 

2 4 6 8 10 12 14 
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Fig. 5 .  
1,2,4,10 receive antennas using rate-7/11 STBC. 

BER performance of 16-QAM with 5 transmit antennas and Lr = 

Fig. 6. BER performance of 16-QAM with different STBCs - i) 2 Tx an- 
tennas using rate-1 STBC (Alamouti code), ii) 3 Tx antennas using rate-112 
STBC, izi) 5 Tx antennas using rate-7/11 STBC. Number of receive anten- 
nas, LZ = 2. 
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