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Abstract— In a previous paper, we derived the optimum se-
lection combining (OSC) scheme for binary noncoherent FSK
(NCFSK) signals on independent (but not necessarily identi-
cally distributed) Rayleigh fading channels with L-antenna di-
versity reception. In the OSC scheme, the diversity branch hav-
ing the largest magnitude of the logarithm of the ratio of the a
posteriori probabilities (log-APP ratio — LAPPR) of the trans-
mitted information bi¢ is chosen. In this paper, we derive the
bit error performance of a (3, L) selection combining scheme
for binary NCFSK signals which combines the three branches
whose LAPPR magnitudes are the largest among the available

L branches in i.i.d Rayleigh fading. Numerical results for this
(3, L) selection scheme show that, for L = 5, combining the three
branches with the largest LAPPR magnitudes yields almost the
full performance of the square-law combining of all the L = 5
branches. For L = 7, the performance of combining the three
branches with the largest LAPPR magnitudes is just about 0.2 dB
worse from the performance of square-law combining of all the
L = 7 branches. We also compare the performance of the pro-
posed (3, L) selection scheme with the (3, L) selection combining
scheme of Chyi et o/,

1. INTRODUCTION

Diversity reception is a well known technique for mitigat-
ing the effects of fading in wireless communication systemns
f1]. Diversity reception can improve the wireless link qual-
ity and reduce the link budget. Combining of diversity sig-
nals can be done either coherently or noncoherently. Typical
diversity combining schemes include maximal ratio combin-
ing (MRC), equal gain combining {EGC), selection combining
(SC), and generalized selection (hybrid EGC/SC) combining.
In a (K, L) generalized selection combining {GSC) scheme,
K out of the L available branches are chosen and combined
[2]. In this paper, we are concerned with the performance of
generalized selection combining of binary nencoherent FSK
(NCFSK) signals on Rayleigh fading channels.

In a companion paper [3], we derived the optimum selec-
tion combining {OSC) scheme for noncoherent binary FSK
signals on independent (but not necessarily identically dis-
tributed) Rayleigh fading channels with L-antenna diversity
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reception. In the OSC scheme of [3], the diversity branch hav-
ing the largest magnitude of the logarithm of the ratio of the a
posteriori probabilities (log-APP ratio —- LAPPR) of the trans-
mitted information bit is chosen. It was shown that choosing
the branch with the largest magnitude of the LAPPR indeed
minimizes the probability of bit error, and hence is optimum.

Our focus now in this paper is the performance analysis
of a (K, L) GSC scheme for binary NCFSK signals which
combines the X branches whose LAPPR magnitudes are the
largest among the L available branches. Specifically, we
derive the bit error probability expression for a (3, L) GSC
scheme on ii.d Rayleigh fading channels. We compare the
performance of this proposed (3, L) GSC scheme with both
the square-law combining of all the L branches as well as the
(3, L) selection scheme of Chyi er al [4]. For L = 5, the pro-
posed combining of the three branches with the largest LAPPR
magnitudes (i.e., (3,5) GSC scheme) yields almost the full
performance of the square-law combining of all the L = 5
branches. For I, = 7, the performance of the proposed (3,7)
GSC scheme is just about 0.2 dB worse than the performance
of square-law combining of all the L = 7 branches.

The rest of the paper is organized as follows. In Section
1L, we introduce the system model and derive the log-a poste-
riori probabilities ratio (LAPPR) of bit detection. In Section
III, we derive the bit error probability expression for the pro-
posed (3, L)GS C scheme. In Section IV, we derive the bit
error probability expression for the (3, L) selection combining
scheme of Chyi et al. Results and discussions are presented in
Section V. Cenclusions are given in Section VI.

II. SYSTEM MODEL

We assume that the transmitted symbols are BFSK modu-
lated with g3 = [1,0]" and g, = [0, 1]7 denoting the BFSK
symbols, associated with the messages mg and my, respec-
tively. The complex orthonormal basis functions ¢y (t) =
exp(j2x f1t) and ¢2{t) = exp(j2n fot) represent the trans-
mitted information symbol s,, = That is,

$m(t) = 8m,z01(t) + 8m, yo2(L).

[8m 21 8m,y)-
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The transmitted symbols are passed through a fading chan-
nel and noise gets added to them at the receiver front end.
We assume that the fading process is slow, frequency non-
selective and remains constant over one symbol interval. As-
suming perfect symbol timing at the receiver, the equivalent
low pass representation of the received symbols, after the non-
coherent demodulation as shown in Fig. 1, is given by [5]

(H

t0 = oMy, cos0® 4,

) = oWgsing® 40l I=12... L (2

where g; is the transmitted BFSK signal point corresponding
to the message m;, ¢ € {0,1}, ﬂi) and 1_"9) denote the vec-
tor valued outputs of the quadrature demodulators at the [th
antenna. The random phase on the I*" antenna path, §, is
distributed uniformly over [0,27]. o is the random fade
experienced by the transmitted symbol g; on the I** antenna
path. The a{}’s are assumed to be independent Rayleigh ran-
dom variables with a t}ensity function on the I** antenna given
by fun(a) = é—‘:e_ﬁT, a > 0. The second moment of a{!)
is set to 0 (i.e., E([0d™?) = ), and ﬂ‘(,l) and ﬂﬂ” denote
the in phase and quadrature phase noise vectors on It* an-
tenna path whose components have zero mean and variance
o = Np/2E;, where E; /Ny is the SNR per bit. It is noted
that the 1_'5:”, ﬂ‘), 8 r_af,”, n_,w are vectors each having two di-
mensions. With the assumption of signal point g, being trans-
mitted corresponding to the data bit *1°, we have

O =, 78] = ), o cos0® 4+ 0], 3
P =D, 1] = 3D, o® sing® +nlll. @

The LAPPR of the transmitted information symbol s, on the
It antenna path is given by

= O G]
LAPPR“) g A(l) — lOg (Pr(’b(i‘ Qlltc 1y )) (5)

Prob(s, = g,|rt”, ri?

For equally pfobable message signals,
O TYR.
A(l) = lOg (f(zc 1Ly fﬁd §1)) . ‘ ©)

N
Fe g = 59)

The quantity f(g(:”,ﬁg)fgi = s.), m € {0,1}, can be calcu-
lated as follows [6]:

= i
“_,_.(:)lzg)(i'lf!i =1, )=FE ) {E,u) [fz(”:(';](:.g(zm. al ).0('))] } .
m
where E ) [-] and Egw[] denote the expectation operations

with respect to al® and 8%, respectively. The quantity
Fon 0 (2, Y] 8. a,8W) can be calculated as

= fﬂy) {z— a(')gm cos 6“))f2£r)(g - a(‘)g.m sin 61

e_[am]a g% EE,% (g-aq..a“) cos 8 4ya, oD ,;,,,,u))

2, x )

(a3 E m ) _gll)
R [af )]JN%e_NEm_a cos(& ¢m)) ®)
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Fig. . Proposed (K, L) GSC Scheme for Binary NCFSK Signals.

® ® -1 (¥
where X' = /(z.5,,)® + (4-8,,)° and ¢ = tan™! (ﬂ"‘)
From (8), £ ci (& ylgm, ™) is equal to

{1}
i ( £, ‘—(z+lm(')13)§%¢£59°ﬂa(f) w.(s(')_¢£,',)))
= Sl o

=g
E [
Stk L X B "
Ng '

where Ig(-) is the modified Bessel function of the zeroth order
and first kind [5]. Finally, we can ebtain f i (z,yls),
from (9), as -

a3 E o
Lo w@glsm) ~ Euo ( TR (hmmem,

o
1 (xhan 43

[Ri 10
1+ﬂrre ) (19)

~

wherey = Ej /Ny, Finally, substituting (10) in (6) and scaling
by 42, we obtain -

A0 = g (IXOP - (x0), ()
where g is the weighting factor on I*» antenna path and is
given by
T 1+ Sy )

9 (12)
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For i.i.d Rayeligh fading, ) = I = ... = 1y = 1. We
choose the K diversity branches whose magnitude of the LAP-
PRs in (6) are the largest among the L available branches. The
special cases of K = 1 and K = L cortrespond to the opti-
mum SC scheme presented in [3] and the traditional square-
law combining of all the L diversity branches, respectively.

ITI. PROPOSED (K, L) SELECTION COMBINING

In this section, we consider the derivation of the bit er-
ror probability expression for combining K branches whose
LAPPR magnitudes are the largest among the available L
branches. We restrict the analysis to the case of i.i.d Rayleigh
fading, as the analysis appears to be prohibitively difficult for
independent fading channels. The decision statistic for the
(K,L)GS C scheme is the sum of the first K log-likelihood
ratios arranged in the decreasing order of their (absolute) val-
ues, and is given by

K
7G5 _ EA(”’ Al =A@l = = Auol, (13)
k=1

where Ay, A2y, -- ., Aqz) are the order statistics [7] of the
random variables A(} A(®, ... A(X), Note that the nota-
tion used here is that A(U, A(®)_ ALY are the original log-
likelihood ratios on each antenna path defined in (6), whereas
" Ay, MA@ Ay are the log-likelihood ratios obtained by
sorting the original log-likeiihood ratios in decreasing order
of absolute magnitude, Also, for a later derivation in Sec.
HI-A, we define A, Ajaj, . . - , Ajg] to be another order statis-

tic of the original log-likelihood ratios AW, A Al
such that Ayy) 2 Ap,...,Ap). For example, for L = 3, if
AW = 7, A® = Gand A® = -9, then Agyy = -9,
Ag) = =T and A(g) = 6, whereas Ay = 6, Ay = —7 and
A[g] = -

As shown in [8], the decision statistic Z%5C does not
change its sign for K = 2, because |A(| > IA(2)| In other
words, the sign of the decision statistic ZG5€ is same as that
of the optimum SC (OSC) receiver in [3], which implies that
the bit error probability of (2,L) GSC scheme is same as the
bit error probability of the OSC scheme. One difficulty in an-
alyzing the performance of the above (K,L) GSC receiver for
any K, for a given, L is that the decision regions over which
the error probability is to be evaluated grow exponentially as a
function of K [8]. In what follows, we detive the ertor prob-
ability expression for any L, but K is restricted to 3, i.e., for
the (3,L) GSC scheme.

Assuming that a binary ‘1" is transmitted, a decision error
occurs under the following conditions.

1) Ri:Agy < 0andAggy <0

2) Ra: A(l) <0, A(g) > 0, and A(a) <0

DR Ay < 0, Apy > 0, Agy > 0, and
%{m +Aa + A(a)) <0
4 Am Ay < 0, Agpy < 0, and

(Agy + Ay + A(a)) <o.

It is to be noted that the above error events are mutually
exclusive and therefore the probability of error is given by

PBLGSC = pr(R)) + Pr(R2) + Pr(Rg) + Pr(Ry). (14)

In the following sub-gection, we derive the probability of the
error events Ry, Ra, R3 and Ry,

A. Derivation of Pe(?"l')(;"‘;C

The error events R, Ra, Ra, R4 can be further simplified
as follows:

1

Pl‘(Rl) PT(AU) <0, A(g) <0}

Pr(A“] < 0) + PT(AD] >0, A[L_” < _A[1])

il

= f Jap () dz

[ [ tumeendsa a9
z=)y=—n00
From order statistics [7], we have
L
f_.\[”(ﬂ'.') = (L l)lfl\(x)[FA(x)}L -1 (16)

and

FA3 L-3
Aoy @9 = T PABMAWIAE) [Fate - ma] on
Substituting (16) and {17) in (15) and performing the integra-
tion, we obtain

L—3L-3-k

A L Lt L—3
P{R1) = (A—~l_:l\2) +———(L_3)!g ; ok (F 3

.(L—S—k)( L5 )"“ a ( Az )5

3 A+ A2 E+2\A+ Az
1

—— 18

M +1) + 22k +2) e

To derive Pr(R»), we simplify the expression for Pr(R2) as
follows:

MRz} = PlAgyy <0, Agg) >0, Ay < 0)
= PlApg Ag) <O AR+ ALy >0
Aa) HA—yy < hAp > O+

PI‘(AIU +Ay) < O, A[]] tAL_y) >0 A < [H]

oo Q - —-=
/f/ [ FApp ALy A g ppy (0 =) do di i de

*=0smomymd w=—oo

] Q a —n
+ -/- / / / ,A[u"\[ﬂ]‘A[L—I]'A[L] (#, ¥, 2, w) dw dy dx dw. {I9)

Am0zm—n yme v —oo
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From {7], we have

FappagpA oA 8 5w) =

(L 4), T A @ A falz) falw)

Fat) =~ Fa(a)]"™*. o)
Substituting (20) in (19) and performing the integration, we

obtain

L=4 L=d=hk )
PR - wpyite "" L-d-k
(R2) (L-mZZ‘ ) ( ( )
k=Q  F=0
L—4
i : : =S
[£91 +>«:)"+1+‘ T S TR s R P
k=0

L-4
Ay 1 1

A2 +2g)E=3 Ap +aglk +2) Mg+ A3(L = 1)

‘(L:'I)'

To derive Pr(R;), the expression Pr(R3) can be simplified as
follows:

2n

M(R3)

= BAgy <O Ag) > 0Ag >0,

Ay Ay tAg <0

FAQ) +A[L) €0 Agy) + A) 4 Apz) €O ALy > 0) 4
PA[y) + Dambdag| < 0, Al +Ajg) + A <O,

Az +ALi) > O ALy <0

— -y

j f f / h\[“ Apl A(L—[] A[Ll(- y U, whdw ds dy de

zwmdyml rm0 wn—oo

oo - [}] —.—y
+ff f [ I“El]*"\[?]'A[L—l]-A[L]("v"'“)d“d'd"d.' [543

r=ly=(s=—y wm-co
Again, substituting (20) in (22} and integrating, we get

L-4 h L-4-k

I P 3) DD DG [ W

Wl jm0 =D
agHd=t 1 1
(g 4 g+ 2k 3) d20g Ay (S + 145} +2Ag
L—4L—4—k
. Liat z Z‘ 1,‘_H-(L-1)(L—4—k A;'A;_l
(L - 4)¢ ! k i ) [Ay + Ag)eti+l
km0  jm0
1 1
M5 +3) +30g MU +2) + Aalk+9)

n

Finally, the expression for Pr(R4) can be obtained as

M(Ry)

= F{Agy >0, Acgy < 0,Ag) <0, Ay + Ay +Argy < 0)
BrlApy] + Ar) > 0, Ay + AL_y) < O
A F ALy +AL] €0 A >0) 4

PlAp) + Agz) > & ) + A1) ¥ Az <0 Ay <O

- —5—w

-]

b0 Emw YO B

lAm,Al,l.AlL_ll,.\iLl (. 3,7, w)dadydidw

0 =s=w

J1

WM—00 fimw ymy wm—w

IA g A AL -] A (5 B0 = e) dn duds Gu. 24

Substituting (20} in (24) and integrating, we obtain

L—4L—4—-k
L -l Load— b
I PO I GO (G
k=0 j=0
A1 1 1
T g+ ARG E ) [:TE T Bu.n]
. L—4
Lia wfL—4
+[L—l)‘. Z(—l) ( ® )
=0
*f's'l 1 1
RalL 8 - WiAy + AgE—D [Tﬁ) - E] ‘ @
where A(k} = (A + Aok +2))(241 + A2 (k +2)), B(j,k) =

MG +2)+ X +2){ME+3) +A2(k+2)),and C =
A+ A2 (L~ 1)}2A + A2(L — 1)). Combining (18), (21),
(23) and (25), we obtain the final expression for PP’L)GSC.

IV. CuYI's {K, L) SELECTION COMBINING

In [4], Chyi et al studied a selection combining scheme in
which the diversity branch with the largest square-law detec-
tor output is chosen. But [4] does not consider a {K, L)se-
lection combining scheme which combines the K branches
whose square-law detector outputs are the largest among the
L available branch outputs. [n order to compare with our pro-
posed (K, L) GSC scheme, we, in this section, derive the bit
error probability expression for the (K, L) selection combin-
ing scheme of Chyi et al.

We denote XpE o xEe L xEBL and
X3E XEL XL as ~ the order
statistics of X“) X(z) X and X, X xiD,
arranged in decreasmg order respectlvely Fourther deﬁne

:L .
U=y X" and V = TIC [X$]2. The (), L) Chyi
scheme compares the two decision statistics U and V' in the
bit detection process. Assuming that the bit ‘1’ is transmitted,

the bit error probability, PYYCM is given by
PUOLIGME = prob(U < V) = Preb(U — V < 0)
= Fu_v{0), 26)

where Fiy_v(-) is the cumulative distribution function {(CDF)
of the randem variable IJ — V. We use the Laplace trans-
form approach in {9] and the moment generating functions of
the random variables {7 and V to simplify the above equation.

From [9], (26) can be simplified as

- .
pURLIChYS 11 f tmag (Lu—v (=54 ,,
2 7 t
t=0
3
. 1 2 f ImaglCy_y(—jtand)
T2 oz [ © sin28 a8 @n
6=o0

Here, £z(s) = E[e~*%] is the Laplace transform of the ran-
dom variable Z and Imag{3V] the imaginary component
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of complex number W. Since U and V are independent,
we have Cy_v(s) = E[le="V~V)] = Ly (s)Lyv(—s). Ob-
serve that each [X l(‘)jz is exponentially distributed with mean,
By = 1—':7- and each [Xéi)F is exponentially distributed with
mean, py = % With this and from [2], the Laplace trans-
forms of I/ and V are given by

1
14 pgre

i

) 11 e

t=K 41

Lyt 28

L

) I e

I=K 41

Lyle) = z 29
T4 pyps

respectively. Substituting (28) and (29) in (27) and perform-
ing numerical integration, we can evaluate the expression
p{K.L)Chyi

e .

V. RESULTS AND DISCUSSION

Fig. 2 shows the performance of the proposed (3,L) GSC
scheme for i.i.d Rayleigh fading when I. = 5, 6 and 7. The
performances of both the optimum selection combining (1, L)
scheme proposed in [3] as well as the scheme which square-
law combines all the L branches are also plotted for compat-
ison. It is observed that the proposed (3, L) GSC scheme
performs better than the OSC scheme in [3], and performs
slightly poorer compared the square-law combining of all the
L branches. For L = 5, the (3, L) GSC scheme yields almost
the same performance as the L-branch square-law combiner.
For L = T, the (3, L) GSC scheme performs just about 0.2 dB
worse than the performance of square-law combining of all the
L = 7 branches. In Fig. 3, the performance of both the pro-
posed (3, L) GSC scheme as well as Chyi’s (3, L) scheme are
plotted for I. = 5. The performances of OSC and the square-
law combining of all L branches are also shown. It can be
seen that the (3, L) GSC scheme performs slightly better than
Chyi’s (3, L) scheme, and that both the schemes perform very
close to the square law combining of all L = 5 branches.

V1. CONCLUSIONS

We derived the bit error performance of a (3, L) selection
combining scheme for binary NCFSK signals which combines
the three branches whose LAPPR magnitudes are the largest
among the available L branches in i.i.d Rayleigh fading. For
L =5, we showed that combining the three branches with
the largest LAPPR magnitudes yields almost the full perfor-
mance of the square-law combining of all the L = 5 branches.
For L = 7, it was shown that the performance of combin-
ing the three branches with the largest LAPPR magnitudes is
just about 0.2 dB worse than the performance of square-law
combining of all the L = 7 branches. We also compared the
performance of the proposed (3, L) selection scheme with the
{3, L) selection combining scheme of Chyi.

o
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Fig. 2.  Bit error performance of the proposed (3,L) GSC scheme on i.id
Rayleigh fading for L = 5, 6 and 7.

1 . L . n L :
Q 2 4 L3 a 10 12
£,y par branch, 46

Fig. 3.  Bit error performance of the proposed {3,L)G SC scheme and the
Chyi’s (3, L) scheme on i.i.d Rayleigh fading for L = 5.

14

REFERENCES
[1] M. K. Simon and M. S, Alouini, “Digital Communications Over Gener-
alized Fading Channels: A Unified Approach to the Performance Anal-
ysis,” Wiley & Sons, Inc., 2000.
M. S. Alouini and M. K. Simon, “An MGF-based Performance Anal-
ysis of Generalized Selection Combining over Rayleigh Fading,” [EEE
Trans. Commun., vol. 48, pp- 401-415, March 2000.
A. Ramesh, A, Chockalingam, and L. B, Milstein, “Optiroum Selection
Combining of Binary NCFSK Signals on Independent Rayleigh Fading
Channels,” Proc. IEEE GLOBECOM 20002, Taipet, November 2002.
G. Chyi, I. G. Proakis, and C. M. Keller, “On the Symbol Error Prob-
ability of Maximum-Selection Diversity Reception Schemes over a
Rayleigh Fading Channel,” IEEE Trans. Commun., vol. 37, pp. 79-83,
January 1989,
J. M. Wozencraft and L. M. Jacobs, Principles of Communication Engi-
neering, New York: Wiley, 1965.
A. Ramesh, A. Chockalingam, and L. B. Milstein, “Performance of
Noncoherent Turbo Detection On Rayleigh Fading Channels,” Proc.
[EEE GLOBECOM 2001 N ovember 2001.
H. A. David, Ordered Statistics, John Wiley & Sons, Inc., 1981,
Y. G. Kim and §. W. Kim, “New Generalized Selection Combining
for BPSK Signals in Rayleigh Fading Channels,” Proc. TEEE GLOBE-
COM2001, November 2001.
A. Annamalai, C. Tellambura, and V. K. Bhargava, “Simple and Accu-
rate Methods for Qutage Analysis in Cellular Mobile Radio Systemns-A
Unified Approach,” I[EEE Trans. Commun., pp. 303-316, Feb.2 001.

{21

(3}

[4}

[5]

(6]

[7)
(8}

9

1398



