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A b s t r a G  In a previous paper, we derived the optimum se- 
lection combining (OSC) scheme for binary noncoherent FSK 
(NCFSK) signak on independent (but not necessarily identi- 
cally distributed) Rayleigh fading chanuels with Lautenna di- 
versity reception. In the OSC scheme, the diversity branch hav- 
ing the largest magnitude of the logarithm of the ratio of the a 
posteriori probabilities (log-APP ratio - LAPPR) of the trans- 
mitted information hit is chosen. In this paper, we derive. the 
bit error performance of a (3, L) selection combining scheme 
for binary NCFSK signak which combines the three branches 
whose LAPPR magnitudes are the largest among the available 
L branches in i.i.d Rayleigh fading. Numerical resnlb for this 
(3, L) selection scheme show that, for L = 5, combining the three 
branches with the largest LAPPR magnitudes yields almost the 
f d  performance of the square-law combining of all the L = 5 
branches. For L = 7, the performance of combining the three 
hrancheswith thelargest LAPPRmagnitudesis just about 0.2 dB 
worse from the performance of square-law combining of all the 
L = 7 branches. We also compare the performance of the pro- 
posed (3, L) selection scheme with the (3, L) selection combining 
scheme of Chyi er al. 

1. INTRODUCTION 

Diversity reception is a well known technique for mitigat- 
ing the effects of fading in wireless communication systems 
[I]. Diversity reception can improve the wireless link qual- 
ity and reduce the link budget. Combining of diversity sig- 
nals can be done either coherently or noncoberently. Typical 
diversity combining schemes include maximal ratio combin- 
ing (MRC), equal gain combining (EGC), selection combining 
(SC), and generalized selection (hybrid EGC/SC) combining. 
In a (K, L) generalized selection combining (GSC) scheme, 
K out of the L available branches are chosen and combined 
[Z]. In this paper, we are concemed with the performance of 
generalized selection combining of binary noncoherent FSK 
(NCFSK) signals on Rayleigh fading channels. 

In a companion paper [3], we derived the optimum selec- 
tion combining (OSC) scheme for noncoherent binary FSK 
signals on independent (but not necessarily identically dis- 
tributed) Rayleigh fading channels with L-antenna diversity 
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reception. In the OSC scheme of [3], the diversity branch bav- 
ing the largest magnitude of the logarithm of the ratio of the a 
posteriori probabilities (log-APP ratio - LAPPR) of the trans- 
mitted information bit is chosen. It was shown that choosing 
the branch with the largest magnitude of the LAPPR indeed 
minimizes the probability of bit error, and hence is optimum. 

Our focus now in this paper is the performance analysis 
of a (K, L) GSC scheme for binary NCFSK signals which 
combines the K branches whose LAPPR magnitudes are the 
largest among the L available branches. Specifically, we 
derive the bit error probability expression for a (3, L) GSC 
scheme on i.i.d Rayleigh fading channels. We compare the 
performance of this proposed (3, L) GSC scheme with both 
the square-law combining of all the L branches as well as the 
(3, L) selection scheme of Cbyi er ai [4]. For L = 5, the pro- 
posed combining of the three branches with the largest LAPPR 
magnitudes (i.e., (3,5) GSC scheme) yields almost the full 
performance of the square-law combining of all the L = 5 
branches. For L = 7, the performance of the proposed (3,7) 
GSC scheme is just about 0.2 dB worse than the performance 
of square-law combining of all the L = 7 branches. 

The rest of the paper is organized as follows. In Section 
11, we introduce the system model and derive the log-a poste- 
riori probabilities ratio (LAPPR) of bit detection. In Section 
111, we derive the bit error probability expression for the pro- 
posed (3, L)GS C scheme. In Section IV, we derive the bit 
error probability expression for the (3, L) selection combining 
scheme of Chyi er al. Results and discussions are presented in 
Section V. Conclusions are given in Section VI. 

11. SYSTEM MODEL 

We assume that the transmitted symbols are BFSK modu- 
lated with &, = [1,OIT and s, = [0, 1IT denoting the BFSK 
symbols, associated with the messages mo and ml, respec- 
tively. The complex orthonormal basis functions &(t) = 
ezp(j2rrflt) and & ( t )  = ezp(j2nf2t)  represent the trans- 
mitted information symbol s, = [ s ~ , . , s ~ , ~ ] .  That is, 
sm(t) = s m , . h ( t )  + sm,y&(t). 
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For i.i.d Rayeligh fading, RI = Rz = _ _ _  = n~ = 1. We 
choose the K diversity branches whose magnitude ofthe LAP- 
PRs in (6) are the largest among the L available branches. The 
special cases of K = 1 and K = L correspond to the opti- 
mum SC scheme presented in [3] and the traditional square- 
law combining of all the L diversity branches, respectively. 

111. PROPOSED ( K ,  L )  SELECTION COMBINING 

In this section, we consider the derivation of the bit er- 
ror probability expression for combining K branches whose 
LAPPR magnitudes are the largest among the available L 
branches. We restrict the analysis to the case of i.i.d Rayleigh 
fading, as the analysis appears to he prohibitively difficult for 
independent fading channels. The decision statistic for the 
(K,L)GS C scheme is the sum of the first K log-likelihood 
ratios arranged in the decreasing order of their (absolute) val- 
ues, and is given by 

X 

zGsc =C^(i), lA(1)1 t IA(z)I t 2 IA(K)L (13) 

where A(I), Ap) ,  . . . , A ( g  are the order statistics [7] of the 
random variables I ~ ( ~ ) , A ( ~ ) , .  .. ,A@). Note that the nota- 
tion used here is that A ( ' ) , J ~ ( ~ ) . . . , A ( ~ )  are the original log- 
likelihood ratios on each antenna path defined in (6),  whereas 
A(l),  A(L) are the log-likelihood ratios obtained by 
sorting the original log-likelihood ratios in decreasing order 
of absolute magnitude. Also, for a later derivation in Sec. 
111-A, we define Ap],Ap], . . . ,8161 to he another order statis- 
tic of the original log-likelihood ratios A('), A('), . . . , A ( L )  
such that 2 Ap], . . . , A y ] .  For example, for L = 3, if 
A(') = -7, = 6 and A(3) = -9, then A(l) = -9, 
A(z) = -7 and A(3) = 6, whereas A[,] = 6, Ap] = -7 and 

As shown in [SI, the decision statistic ZGSC does not 
change its sign for K = 2, because lA(l)l 2 1A(2)1. In other 
words, the sign of the decision statistic ZGSC is same as that 
of the optimum SC (OSC) receiver in [3], which implies that 
the hit ermr probability of (2,L) GSC scheme is same as the 
bit error probability of the OSC scheme. One difficulty in an- 
alyzing the performance of the above (K,L)  GSC receiver for 
any K, for a given,L is that the decision regions over which 
the error probability is to be evaluated grow exponentially as a 
function of K [SI. In what follows, we derive the error proh- 
ability expression for any L, but K is restricted to 3, i.e., for 
the (3,L) GSC scheme. 

Assuming that a binary ' I '  is transmitted, a decision error 
occurs under the following conditions. 

k = I  

Ap1 = -9. 

It is to he noted that the above error events are mutually 
exclusive and therefore the probability of error is given by 

Pi3*L)GSC = Pr(RI) +Pr(R2) + Pr(R3) + Pr(R4). (14) 

In the following sub-section, we derive the probability of the 
error events 'RI, Rz, 'R3 and 724. 

From order statistics [7], we have 

and 
'I - -%1~)/*1")/~1=1 p,¶1.1 - F*f")JL-~<8n 

h[, I .A[ ' - , ] l - ,  U) (L - S)f 

Substituting (16) and (17) in (15) and performing the integra- 
tion, we obtain 

L - 3 L - 3 - k  
L - 3  

k=O j=O 

1 
X i l i  + 1) + h ( b  + 2)  
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From [7], we have Substituting (20) in (24) and integrating, we obtain 

Substituting (20) in (19) and performing the integration, we 
obtain 

'-4 '-.-L 

hl4.1 - - I-,l~+~(("; ')("-;-") 

k-0 j-0 

To derive Pr(R3). the expression h(R3) can be simplified as 
follows: 

Again, substituting (20) in (22) and integrating, we get 

where A(k)  = (XI + X z ( k +  2))(2X1+ X l ( k +  Z ) ) ,  B ( j ,  k) = 
 XI(^ + 2 )  + Xz(k + Z ) ) ( X l ( j  + 3) + X z ( k  + Z)), and C = 
( X I  + X z ( L  - 1))(2X1 + Xz(L - 1)). Combining (18), (21), 
(23) and (25), we obtain the final expression for P$3'L)csc. 

Iv. CHYI'S ( K ,  L) SELECTION COMBINING 

In [4], Chyi et al studied a selection combining scheme in 
which the diversity branch with the largest square-law detec- 
tor output is chosen. But [4] does not consider a (K, L)se- 
lection combining scheme which combines the K branches 
whose square-law detector outputs are the largest among the 
L available branch outputs. In order to compare with our pro- 
posed ( K ,  L) GSC scheme, we, in this section, derive the bit 
error probability expression for the (K, L) selection combin- 
ing scheme of Chyi et al. 

We denote x ? : L .  X?:L.. . . . XP' and 
XA!L, XZ:L 0 ,... 1 X$L as the order 

arranged in decreasing order, respectively. #urther, define 
statistics of X:'), X?), . . . ,X,(L) and X:),X('), . . . , X o  ( L )  , 

U = c:=1[XrL]2 and V = c:=i[X,fL]z. The (K,L) Chyi 
scheme compares the two decision statistics U and V in the 
bit detection process. Assuming that the hit ' I '  is transmitted. 
the bit error probability, P$K'L)Ch"i , IS ' given by 

PjK'LIChyi = Prob(U < V )  = Prob(U - V < 0) 

= FU-V(O), (26) 

where F"-v(.) is the cumulative distribution function (CDF) 
of the random variable U - V. We use the Laplace trans- 
form approach in [9] and the moment generating functions of 
the random variables L' and V to simplify the above equation. 
From [9], (26) can be simplified as 

8=0 

Here, L z ( s )  = E[e-bz]  is the Laplace transform of the ran- 
dom variable Z and Imagw]  the imaginary component 
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of complex number W .  Since U and V are independent, 
we have L U - v ( s )  = E[e-'(u-V)] = L,(s )Lv( -s ) .  Ob- 
serve that each [X?I2 is exponentially distributed with mean, 
pu = and each [Xi"]2 is exponentially distributed with 
mean, pv = $. With this and from [2], the Laplace trans- 
forms of U and V are given by 

(I, 

+m.F--,-i lis) 
Fig. 2. 
Fayleigh fading for L = 5, 6 and 7.  

Bit error performance of the proposed (3,L) GSC %heme on i.i.d 
,=I(+* 

respectively. Substituting (28) and (29) in (27) and perform- 
ing numerical integration, we can evaluate the expression 
pLK,L)Chvi 

V. RESULTS AND DISCUSSION 

Fig. 2 shows the performance of the proposed (3,L) GSC 
scheme for i.i.d Rayleigh fading when L = 5, 6 and 7. The 
performances of both the optimum selection combining (1, L) 
scheme proposed in [3] as well as the scheme which square- 
law combines all the L branches are also plotted for compar- 
ison. it is observed that the proposed (3, L) GSC scheme 
performs better than the OSC scheme in [3], and performs 
slightly poorer compared the square-law combining of all the 
L branches. For L = 5, the (3, L) GSC scheme yields almost 
the Same performance as the L-branch 
For L = 7, the (3, L) GSC scheme performs just about 0.2 dB 
worse than the performance of square-law combining of all the 
L = 7 branches. In Fig. 3, the performance of both the pro- 
posed (3, L) GSC scheme as well as Chyi's (3, L )  scheme are 
plotted for L = 5. The perfomances of OSC and the square- 
law combining of all L branches are also shown, it can be 

Chyi's (3, L) scheme, and that both the schemes perform vem 

E&w-.- 

Fig. 3. 
Chyi's (3, L) scheme on i.i.d Rayleigh fading for L = 5. 

Bit ermr performance of the proposed (3,L)G SC scheme and the 
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