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Abstract— In this paper, we derive bit error performance bounds for ~ ability of error, and:) we derive average bit error probability
S\J/fb? Coges_ on #'akagami fading channels Wti)thb‘_ili_"efsny Conﬁbi”i?g- bounds based on the pairwise error probability expressions
e first derive the average pairwise error probability expressions for . . .

turbo codes with maximal ratio combining (MRC), equal gain combin- and union bounding te_Chmq,ueS for MRC, _EGC’ and SC.
ing (EGC), and selection combining (SC) on Nakagami fading chan- We evaluate the analytlcal bit error probablllty bounds for
nels. Using the pairwise error probability expressions and the union g (1, 7/57 7/5)8 rate-1/3 turbo code with diversity schemes
bounding technique, we then obtain bounds on the bit error proba- and compare them with simulation results. We observe that
bility of turbo codes for MRC, EGC, and SC diversity schemes. We . . . ’ !
present the modified log-MAP turbo decoder for MRC, EGC, and SC, among other things, with turbo coding, EGC performs close

and compare the analytical bounds with simulation results for the spe- to MRC for i.i.d Rayleigh fading with two branch diversity
cial case of 2-antenna diversity with Nakagami parametern = 1 (i.e., combining.
Rayleigh fading). Results indicate that the EGC scheme with turbo

coding performs close to MRC scheme for i.i.d Rayleigh fading. The rest of the paper is Organized as follows. In Section

2, we present the system model and derive the pairwise
error probability expressions for MRC, EGC, and SC on
Nakagamim fading channels. In Section 3, the union bound
on the bit error probability of turbo codes with maximum
Turbo codes have been shown to offer near-capacity péikelihood decoding and uniform turbo interleaving is pre-
formance on AWGN channels and significantly enhancegénted. Section 4 presents the modified log-MAP BCJR al-
performance on fully-interleaved flat Rayleigh fading changorithm for decoding turbo codes in MRC, EGC, and SC di-
nels [1],[2]. Bit error probability bounds for turbo codesyersity schemes. In Section 5, we provide numerical results
on AWGN channels have been derived in [3] and [4] usingf the analytical bounds as well as the simulation results for
transfer function bounding techniques. The same boundifige special case of Nakagami parameter= 1 (Rayleigh

technique is extended to flat Rayleigh fading channels witgding). Conclusions are provided in Section 6.
and without channel correlation, in [2]. It is well known that

diversity reception can combat the performance degradation Il. SYSTEM MODEL
due to channel fading [5]. In this paper, we derive the peWe assume that the transmitted data symbols are BPSK mod-
formance bounds for turbo codes on generalized Nakagatated which are coherently demodulated at the receiver.

fading channels witti.-branch diversity reception. Our con- | € receiver employs antennas for diversity combining to
tribut?ons in this paper ares) we deri\)//e a CE) sed form ex- mitigate the multipath fading effect. Léf;, be the transmit-

ted symbol sequence. Then the received symbol sequence
pression for the pairwise error probability of the codewords y d 1) y a

h L
with maximum-likelihood decoding on Nakagamifading ©" "€/ antennag;”, is given by

channels with maximal ratio combiping (MR('b).,for equal PO =aPxp+0P k=12, N 1=1,2,...,L, (1)
gain combining (EGC) and selection combining (SC), we

provide exact analytical expressions (not in closed form) a&herea;c’) is the fade random variable, ané‘) is the AWGN

wellas simple bounds (in closed form) on the pairwise prolzomponent associated with ti& antenna path when the

This work was supported in part by the Office of Naval Research unc}g?‘nsmltted data symbol i¥, € {_1’ +1}' The data sym-

Grant N00014-98-1-0875, by the TRW Foundation, and by Nokia Mobileols X, are assumed to have unit energy andmﬁ’é ran-
Phones. dom variables are assumed to be i.i.d with zero mean and
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variances? = Ny/2E;, where Ny/2FE; is the two-sided wherey = # = £, By substltutlngr (m+ ) =
power spectral density of the underlying random process _
n(t). The data block Iength i&V code symbols. Further, t and noting thal[‘( = f e~tt™~1dt, we can further

the fade random variablegg s are assumed to be i.i.d andsimplify Eqn. (6) as =
Nakagamim distributed with the pdf

[=}

— 2m™ —-mz?, 2m—1 % ) Ldm
fa(z) = F(m)e T , >0, () PMRC,(q) = 1 / |:S;r170:| do. @)
) ] s sin? 0 + %
wherel'(m) is the standard Gamma integral [5]. Here, we 0=0

normalized the second moment of fadi&n %), to unity. We

L To evaluate (7) in closed-form, we recall the result [8
assume thatn takes positive integer valuksThe fade am- ) (8]

plitudeSag)s are assumed to remain constant over one code b
symbol duration. In the following subsections, we derive the In(c) 2 / [ sin? 0 } W
pairwise error probability for MRC, EGC, and SC diversity J sin? 0 + ¢
schemes. - -
—1+k
A. Maximal Ratio Combining = w[P(c)] Z (n & Ji-PEF,  ®
k=0

In MRC, the receiver weights the incoming signals bn

antennas by the respective conjugates of the complex f _1(1_ /
ing random variables. For the BPSK case, the output of t?]%/hereP( ) =12 (1 Z+1) z 2 0. Using Eqn. (8)in

combinerry, is given by (7), PMEC,(d) can be evaluated in closed-form as

L L L
— 0,0 — x My2 4 0,0 3) N Lmd—1 e a 7
T ;ak Ty k;(ak ) lzzlzak n. —PMRCZ(d)= [P (i)]L d Z (L d 1+k) [17p(%)]k. ©

k

k=0
LetXy = (z1, 22, --,zn) be the transmitted code symboI
sequence and let the recelver decode this sequence 'n%)rEqual Gain Combining
rectly asX; = («),z},---,2%). Then the pairwise error

probability of decoding o mcorrectly asX ;, PMEC (d|q), In EGC, the combiner cophases and equally weights the sig-
is given by [7] nals on each branch and combines them. So the output of

the combineryy, is given by
PR (d)a)

P (Xo — Xj|a)

L L L
o [VE 1zl P n= Y=Yl 3l o)
=1 =1 =1

= @4

The conditional pairwise error probability of decodiXg,
wherea = (a{",a!?,...,a""",al"), d is the number of incorrectly asX ;, PF%“ (d|a), is given by
positions in whichXo differs fromX;, and

EGC _ (d> )
Q(z) = m f e=*% qu. To evaluate the average pairwise By (de) = (Xo = Xjla)
u=a RO
error probability, PMEC, (d), we have to average Eqn. (4) - \/E" (Ei EEY)
overq. To do this, we use the alternative form@f-) when VLo

the argument takes nonnegative values [6], given by
The average pairwise error probabilit,#<C, (d), aver-

_1 (5205) >0 5) aged overy is given by
- > 0.
=0 Z [E MO
R n=1 1=1"m
. . GC =
Then,PMRC,(d) is given by [7] PECC@ = / / / / Q
«Da® LU @)
o (1)12 1 1 d
PMR(‘Z(d) / / / / =1 l 1 f (1)(0‘51)) f ( )(a(L))da(l) da;L)_ 12
*1
(1) (2) (L 1 (L) .
W ()00 aal®) Deflnlngvn = Zl 1 o', the above integral can be written
(1)(a Y- f ( Ly (ay )da - da

ﬂ

\ iy

7 = Vs v
_ Y v
m"m sin2 = =1 "n
2 —ma? 2m-1, ( i 6) aebd a0, (@ PEGC,(d) = N o) v =n= -
rom Vi
vy vg

6=0 z=0

LIn [7], we have generalized the analysis for any real value.af 0.5 for(v1) -+ foy(vg)dvr ... dvg. (13)
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Using Eqn. (5) and observing that, vz, - - - ,vg are alli.i.d, _ _(LLzs)
we can reduce the above expression to with I'(0,n) = I'(n). Sincel(d) and FT| e

z are real, we can writé(8) in Eqn. (16) as
PPGO,d) = ~ / [1(0)) db, (14) - )
T ) _( 102 )
6=0 100) = = / FT Lo ) N R{®F(w)}dw,  (21)
e
where . w=0
1(0) 2 / . (ﬁ) Fo(v)do. sy WhereR{-} denotes the real part of the complex number.
Upon substitutingl (6) of Eqn. (21) into Egn. (14) we
v=0

. _ get the exact analytical expression 8#%5(d). The re-
Applying Parseval's theorem [5],[9] to the integddb), we  suiting expression can be computed numerically (which in-

get oo volves computation of multi-dimensional integrals). For the
oy = L / e <6(%:26>> o ()i 16) special case of. = 2, however, we have derived an alter-
T v ’ nate expression fdPF<C, (d), which requires only a single
w=—00 numerical integration [7].

where FT-) is the Fourier transform operator afd, (w) is

the characteristic function (CHF). The Fourier transféwh C. Sdlection Combining

_( yo2 In SC the output of the selection combiner is expressed as
Lsin26 | :
e is given by = apXe 4+, 22)
1}2 < 1}2 y .
el (L;nze) _ / S (L;nze)ejwdv wherea;, = max (a;”,a;j% .. ,aff)), andny, is Gaus-
Lo sian distributed with zero mean and variance With this

statistic at the output of the demodulator, the conditional
_ L g e 47y Ppairwise error probability,P;’“ (d|a), conditioned on the
v

fading random variables, , as, ..., ay, is given by
The CHF of the random variable E[e/“?], can be obtained ¢ a2
as P59 dla) = PP (Xo » Xjla) =Q | Y ———|. (3
g
. L
Dy (w) = E[ejwv} =F |:8')wzl1 al:|
Letn, = o> = max(afb(l),ai(z), ... ,ai(L)) andy =

L . . . . —
. . %y . With this, we can simplify the above ex-
T st = (i) = ol am) Sldiors ) o

=1

x d 2
The CHF of the Nakagami distributed random variable L z - <ﬁ>
can be computed as follows [7] PSCyd) = = [ e Fay (a1) faz(a2) ... fay(aq)
™
[>S) 6=0
I'(m) I’ d
a=0 1 (=
) I = = / / fn(@)e (%5) do. (24)
= ™M Z k (Jw) N
I'(m)vm Pt (vm)k \2m
) B The pdf ofy, f,(z), can be obtained by first deriving the
r <‘”~ , ﬂ) , @9) c.d.fF,(z) and then differentiating it with respect toas
dm =2 follows.
where Fy(z) = Prob(max(a%, a3,...,a2) < :1;)
r mx L
I(a,n) = / e “u" tdu (20) [ 1 -|
= — e tu™ tdul . (25)
u=a [F(m) / J
u=0

2We define the FT of a functionf(t) as F(w) = E[¢¥!] =
[ f(t)e?+tdt to be consistent with the definition of characteristic func?'fge)"earg'atmg the above with respecttowe get the p.d.f,
T
—0o0 n
tion and its inverse FT used in [5]. This differs from the usual definition of
FT by a negative sign in the exponential.

m
e~ mT pm— 1 (26)
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where['(+, ) is defined by Egn. (20). Upon substitutingwhere A(d) is the number of codewords with Hamming
Eqn. (26)in Eqn. (24), we obtain the expressionfforC, (d) Weightd and P;(d) is the probability of incorrectly decod-
as ing to a codeword with weighd. For a turbo code with a
fixed interleaver, the construction df(d) requires exhaus-

. , . tive search. To avoid this, [3] and [4] propose an average
P5C,a) = —% /( sin” 6 ) _ upper bound averaged over all possible interleavers. With

sy

T (m)Ed sin? 0+ o this framework, the average weight distribution is given by
6=0
o d Ko
[/ e Uy 1 (F(m) -r ( _u;;niev ,m))L71 du] de. (27) A(d) = Z ( 7 )p(d\i), (31)
n26+ L —
=0
. . where (X) is the number of input words with Hammin
The above equation can be computed numerically. How:- (l) P 9

; : weight ¢ and p(d|i) is the probability that an input word
ever, for the special case of Nakagami parameter 1 iy’ Hamming weighti produces a codeword with Ham-
(i.e., Rayleigh fading), an alternate expression?i»(d), ming weightd. Substituting Eqgn. (31) in Eqn. (30), the av-
which is much simpler to compute than Eqn. (27), can berage upper bound for word and bit error probabilities can
derived as follows: be written as

The p.d.ff,(z) for the case of Rayleigh fading can be ob-  __ ¥
tained by substituting: = 1 in Egn. (26), i.e., P

(]

N K
R K
A(DPy(d) = E E (" )rtaipea
k3
d=d i=1

min min

fo(z) = L1 — e~®)E e, (28) K

Z (%) Eatraan, @2
Now, ;

i=1

4 and
anln" K
Q - J— i (K
- Py < E — () Papitpacn, @)

i=1

Py (d|n)

PSOo@ = By [P ] respectively, wherdZ,;[-] is an expectation with respect to
T, 4 the distributionp(d|i). The distributiorp(d|:) can be com-
L [Z (7 sin? 6 ] 0.9 PUtEdfromthe state transition matrix of the constituent RSC
! A+ Dein 6+ encoders [3],[4]. With the above formulation, the bit error
performance of turbo codes on Nakagami fading channels
The above expression can be evaluated by numerical intith diversity combining can be evaluated by substituting
gration for giveny, L andd. Note that computation of Eqn. P*%%2(d), PEGC5(d), P55 (d) for P»(d) in Eqn. (33),
(27) requires evaluation of two integrals, whereas Eqn. (28" MRC, EGC and SC diversity schemes, respectively.
requires only a single integral.

™

6—0 =0

IV. LoG-MAP TURBO DECODER WITHDIVERSITY

I1l. UNION BOUND ONBER i i i
In this section, we modify the log-MAP decoder for the case

To determine the bit error performance of turbo codes isf L-branch diversity combining. To do so, we need to cal-
high SNR regions where the “error floor” occurs, we requireulate the transition metric defined by

long BER simulation runs or an analytical performance bous: (s,t) = Prolys, S = t|Sk—1 = s), wherey, =
nding technique. The upper bound on the average bit errG#;» y) for a rate-1/3 turbo code. Herg; is the received

probability for turbo codes on AWGN channels was deveg_)ymbol corresponding to the transmitted information sym-

oped in [3] and [4], and was later extended to Rayleigh fa ol z§, andy}, represents the received symbol correspond-

. . 4
ing channels in [2]. Following the same notation in [2], wdnd {0 the transmitted parity symbaly. Herep € {p1, p2},

. ) - wherep; signifies the first parity ang, signifies the sec-
obtain upper bounds on the average bit error probability foy 4 pgrlity. gIt is to be notegl tha}llt, fo%zthegﬁrst decoder the

turbo codes on generalized Nakagami fading diversity chagsceived symbols due to transmitted symbol and parity sym-
nels with MRC, EGC, and SC. bol (i.e. first parity) have the same time alignment, whereas
. . . .. for the second decoder the received symbols are due to the
The traditional union upper bound for the maximum likelijnterieaved version of the transmitted symbols and again
hood (ML) decoding of aV, K') block code can be de- have the same time alignment with the second parity sym-
rived as follows. Without loss of generality, we assume th@fol. Also, S, S;_; are the encoder states at time instants
the all-zero codeword was sent, so the upper bound on the- 1, respectively [7]. When the symbgl, is transmitted,
probability of word error is given by it is received througHL independent paths, and the output
of the combiner will be

N
Py < ) A(d)P2(d), (30) L o
dz:; MRC : y, = zg Z[QI(CD]Z + an(cl)al(CD (34)
=1 =1
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L L
EGC : y, = xp Z oz](vl) + Z n](vl) (35)
=1 =1

SC: yp =z, max (ag),ag),...,a,(f)) + ng. (36)
.. . N . .. .
Here, n; has the same distribution ah{ , i.e., it is dis-

tributed Gaussian with zero mean and variamée Apply-
ing Bayes’ theorem, we can writg, (s, t) as

Te(s,t) =
= Pro(yp|Sp_1 =s,Sp = t)Pro(Sy =t|S_1 = s)

Prol(yy, Sp = t|Sg_1 = s)

= p(yplxp)Pro(Sy, =¢t[Sy_1 =s) = p(ylxp)p(zy). (37

In the above, Prdly:|Sx—1 = 5,5k = t) = p(yrlx)
because the knowledge of states at times 1 andk is

equivalent to knowing the transmitted code symbol vector
x. Also, Prol§Sy, = t|Sp—1 = s) = p(z;) because, for a

B. EGC Diversity

For EGC, conditioning oy, al”,a\® ..., al"), y, ~
N (xk SE ag),L(ﬁ). With perfect knowledge of the
fade amplitudes, we get

p(yelxr, af,ap) = plyilel,af)p(ypley,af),  (44)
where of = (PP alP%),  and
ab = (a;””’,af)”’, ..,a\""P). Upon simplifying the

. k
above expression, discarding all the constantterms and terms
which do not depend on the code symbfats, }, and taking
logarithm on both sides of Eqn. (44), we obtain

L L
E yimiag)'s-i—g WPePalP | s

2E;

log(p(yplxg)) = o~
0

=1 =1

rated/n RSC code, the state transition between any given
pair of statess and¢ uniquely determines the informationCombining the results of Egns. (45) and (40) and substitut-

bit 2. Now, define

c(s,t) = log(vk(s,t)) = log(p(yklxr)p(z}))
= log(p(yk|xk)) + log(p(z}))- (38)
Defining the quantity.;, as
. Prob(z} = +1)
Ly =log <m> ) (39)

and discarding all the terms independentgf we can cal-
culatelog(p(z})) as [7]

T S
_ Ly

log(p(xf)) = = (40)

In the following subsections, we derive the first term in the

ing in Eqn. (38), we obtain

L L
p p

C. SC Diversity

For SC, conditioning ory,, al”, al” - al"), yy ~

N (zg, max(ozg),agf), e agf)) ,0%). Let us definex; =

max(a(l)’s, a&f)’s, ‘e ,ach)’s), and

a? = max(al?,a\?? ... olP)P). With perfect knowl-

edge of the fade amplitudes, we get

P(Yk|xk, of, af) p(yilay, ap)p(yp |y, o). (47)

Eqn. (38) for the three diversity cases of interest, i.e., MRGEJpon simplifying the above expression, discarding all the

EGC, and SC diversity schemes.

A. MRC Diversity

For MRC, conditioning oncy, i, al® -+ al"), 4, ~
N (-Z’k zle[a;”]?, o? Zle[ag)P). With perfect knowl-
edge of the fade amplitudes, we get

p(yelxk,af,ap) = plygleg, af)p(yhlag,af),  (41)

1 2 L
where af = (@ o ol and
of = (@M a®? alPP) Here,a"* andal’”

denote the fade amplitudes experienced by:thedata sym-
bol, and the corresponding parity symbol, respectively,

the [t"

on both sides of Eqn. (41), we obtain

2E;

= “2)

log(p(yx|xi)) = (vizs + vPal) -

constant terms and terms which do not depend on the code
symbols{x,, }, and taking logarithm on both sides of Eqn.
(47), we obtain

2F;

N ppp)

log(p(yk|xk)) = (viziaf +yhapah).  (48)

Combining the results of Eqns. (48) and (40) and substitut-
ing in Eqn. (38), we obtain

f/kxi 2F
2 No

cr(s,t) = (yzxzaz + yimiai) . (49)

The quantitycy (s, t), derived in Egns. (43), (46), (49), can

Arty sy ¥k used in the computation of the forward and backward
antenna path. Upon simplifying the above expres:

sion, discarding all the constant terms and terms which
not depend on the code symbéis,, }, and taking logarithm

ecursion metrics in the simulation of log-MAP algorithm
0 .
or decoding turbo codes [7].

V. RESULTS ANDDISCUSSION

We evaluated the bit error performance ofla7/5,7/5)s
rate-1/3 turbo code on fading channels with MRC, EGC,

Combining the results of Eqns. (42) and (40) and substituind SC, using the pairwise error probability and the bit er-

ing in Eqn. (38), we obtain

Ly 2B
2 No

ck(s,t) = (viz; +y}ab) . (43)

ror probability bounds derived in Sections Il and Ill. We
also evaluated the bit error performance using simulations.
All the analytical and simulation results are obtained for the

1203



special case of 2-antenna diversify £ 2) with Nakagami
parametern = 1 (i.e., Rayleigh fading).

In Fig. 1, the analytical bit error performance of the
(1,7/5,7/5)s rate-1/3 turbo code based on the union bounds
is presented for various scenarios. In particular, performance
is shown fora) AWGN, b) fading without diversity L = 1),

and ) fading with 2-antenna diversity using MRC, EGC,
and SC L = 2). The input data block length is 100 bits
(i.e., 300 code symbols). It is noted that the EGC scheme
with turbo coding performs very close to the MRC scheme.

In Fig. 2, we plot the analytical bit error performance results
versus the simulation results for the, 7/5,7/5)s rate-1/3
turbo code with block length of 100 bits. The modified log-

AWGN
MRC 4
EGC
sC

L=1 4

Input Block Length=100 bits i
Code Rate 1/3
Code: (1,7/5,7/5)
L=2 Antennas

Bit Error Probability
I
5
T

. .
0 5 10 15
E,/N, (dB)

MAP turbo decoder for diversity, presented in Section IVkig. 1. Comparison of union bounds on the bit error probability for MRC,
is used in the simulations. In the simulations, perfect chan- EGC, SC diversity{, = 2) fori.i.d fading ¢n = 1). Block length=100

nel state information is assumed at the decoder. The num-
ber of turbo iterations is set to eight. From Figure 2, we see
that the analytical performance of the turbo code agrees very
well with the simulation results for the SNR values above a
threshold value of th&,/ N, determined by the computa-
tional cutoff rateR [3],[4],[2]. We can also observe that the
performance of the turbo code on fading channels with EGC
diversity is very close to the MRC diversity, both in analysis
as well as in simulation. Moreover, the implementation of
EGC diversity is relatively simple compared to MRC diver-
sity. In [10], we gave a practical method of estimating the
channel SNR for EGC diversity on Nakagami fading chan-
nels and showed that the performance with estimated chan-
nel SNR is inferior to that with perfect knowledge of the
channel SNR by only 0.8 dB. Like the bit error probability
bounds for AWGN and fading with no diversity presented
in [3] and [2], the bit error probability bounds derived for
diversity in this paper are found to be loose in the low SNRY
regions, where tighter bounds need to be developed.

VI. CONCLUSIONS

We derived performance bounds for turbo codes on Na|
agami fading channels with diversity combining. We de-
rived average pairwise error probability expressions for turE1
codes with MRC, EGC, and SC diversity schemes on Nak-
agami fading channels. Using the pairwise error probabil-
ities, we derived the bit error performance using the unid?l
bounding technique. We compared the analytical bounds
with the simulation results for the 2-antenna Rayleigh fad-
ing case. It was found that the simulation and analyticéﬁ]
results are close for high SNR values. The EGC diversity
scheme with turbo coding was found to perform as well as
the MRC diversity scheme. (6]
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