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Abstract— In this paper, we derive bit error performance bounds for
turbo codes on Nakagami fading channels with diversity combining.
We first derive the average pairwise error probability expressions for
turbo codes with maximal ratio combining (MRC), equal gain combin-
ing (EGC), and selection combining (SC) on Nakagami fading chan-
nels. Using the pairwise error probability expressions and the union
bounding technique, we then obtain bounds on the bit error proba-
bility of turbo codes for MRC, EGC, and SC diversity schemes. We
present the modified log-MAP turbo decoder for MRC, EGC, and SC,
and compare the analytical bounds with simulation results for the spe-
cial case of 2-antenna diversity with Nakagami parameterm = 1 (i.e.,
Rayleigh fading). Results indicate that the EGC scheme with turbo
coding performs close to MRC scheme for i.i.d Rayleigh fading.

Keywords – Turbo codes, Union bound, Nakagami fading, Diversity.

I. I NTRODUCTION

Turbo codes have been shown to offer near-capacity per-
formance on AWGN channels and significantly enhanced
performance on fully-interleaved flat Rayleigh fading chan-
nels [1],[2]. Bit error probability bounds for turbo codes
on AWGN channels have been derived in [3] and [4] using
transfer function bounding techniques. The same bounding
technique is extended to flat Rayleigh fading channels with
and without channel correlation, in [2]. It is well known that
diversity reception can combat the performance degradation
due to channel fading [5]. In this paper, we derive the per-
formance bounds for turbo codes on generalized Nakagami
fading channels withL-branch diversity reception. Our con-
tributions in this paper are:a) we derive a closed form ex-
pression for the pairwise error probability of the codewords
with maximum-likelihood decoding on Nakagami-m fading
channels with maximal ratio combining (MRC),b) for equal
gain combining (EGC) and selection combining (SC), we
provide exact analytical expressions (not in closed form) as
well as simple bounds (in closed form) on the pairwise prob-
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ability of error, andc) we derive average bit error probability
bounds based on the pairwise error probability expressions
and union bounding techniques for MRC, EGC, and SC.
We evaluate the analytical bit error probability bounds for
a (1; 7=5; 7=5)8 rate-1/3 turbo code with diversity schemes
and compare them with simulation results. We observe that,
among other things, with turbo coding, EGC performs close
to MRC for i.i.d Rayleigh fading with two branch diversity
combining.

The rest of the paper is organized as follows. In Section
2, we present the system model and derive the pairwise
error probability expressions for MRC, EGC, and SC on
Nakagami-m fading channels. In Section 3, the union bound
on the bit error probability of turbo codes with maximum
likelihood decoding and uniform turbo interleaving is pre-
sented. Section 4 presents the modified log-MAP BCJR al-
gorithm for decoding turbo codes in MRC, EGC, and SC di-
versity schemes. In Section 5, we provide numerical results
of the analytical bounds as well as the simulation results for
the special case of Nakagami parameterm = 1 (Rayleigh
fading). Conclusions are provided in Section 6.

II. SYSTEM MODEL

We assume that the transmitted data symbols are BPSK mod-
ulated which are coherently demodulated at the receiver.
The receiver employsL antennas for diversity combining to
mitigate the multipath fading effect. LetXk be the transmit-
ted symbol sequence. Then the received symbol sequence
on thelth antenna,r(l)k , is given by

r
(l)
k

= �
(l)
k
Xk + n

(l)
k

k = 1; 2; : : : ;N ; l = 1; 2; : : : ; L; (1)

where�(l)
k is the fade random variable, andn(l)

k is the AWGN
component associated with thelth antenna path when the
transmitted data symbol isXk 2 f�1;+1g. The data sym-

bolsXk are assumed to have unit energy and then
(l)
k ran-

dom variables are assumed to be i.i.d with zero mean and
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variance�2 = N0=2Es, whereN0=2Es is the two-sided
power spectral density of the underlying random process
n(t). The data block length isN code symbols. Further,

the fade random variables�(l)
k s are assumed to be i.i.d and

Nakagami-m distributed with the pdf

f�(x) =
2mm

�(m)
e�mx

2
x2m�1; x � 0; (2)

where�(m) is the standard Gamma integral [5]. Here, we
normalized the second moment of fade,E(�2), to unity. We
assume thatm takes positive integer values1. The fade am-
plitudes�(l)

k s are assumed to remain constant over one code
symbol duration. In the following subsections, we derive the
pairwise error probability for MRC, EGC, and SC diversity
schemes.

A. Maximal Ratio Combining

In MRC, the receiver weights the incoming signals onL
antennas by the respective conjugates of the complex fad-
ing random variables. For the BPSK case, the output of the
combinerrk is given by

rk =

LX
l=1

�
(l)
k
r
(l)
k

= Xk

LX
l=1

(�
(l)
k

)2 +

LX
l=1

�
(l)
k
n
(l)
k
: (3)

LetX0 = (x1; x2; � � � ; xN ) be the transmitted code symbol
sequence and let the receiver decode this sequence incor-
rectly asXj = (xj1; x

j
2; � � � ; x

j
N ). Then the pairwise error

probability of decodingX0 incorrectly asXj ,PMRC
2 (dj�),

is given by [7]

PMRC
2 (dj�) = P(d)

E
(X0 ! Xj j�)

= Q

0
@
qPd

n=1

PL

l=1
[�
(l)
n ]2

�

1
A ; (4)

where� = (�
(1)
1 ; �

(2)
1 ; : : : ; �

(L�1)
d

; �
(L)
d

), d is the number of
positions in whichX0 differs fromXj , and

Q(x) = 1p
2�

1R
u=x

e�
u2

2 du. To evaluate the average pairwise

error probability,PMRC
2(d), we have to average Eqn. (4)

over�. To do this, we use the alternative form ofQ(�) when
the argument takes nonnegative values [6], given by

Q(x) =
1

�

�
2Z

�=0

e
�
�

x2

2 sin2 �

�
d�; x � 0: (5)

Then,PMRC
2(d) is given by [7]

PMRC
2(d) =

Z
�
(1)
1

Z
�
(2)
1

� � �

Z
�
(L�1)

d

Z
�
(L)

d

Q

0
@
qP

d

n=1

P
L

l=1
[�

(l)
n ]2

�

1
A

f
�
(1)
1

(�
(1)
1

) � � � f
�
(L)

d

(�
(L)

d
)d�

(1)
1

: : : d�
(L)

d

=
1

�

�
2Z

�=0

[

1Z
x=0

2mm

�(m)
e
�mx2

x
2m�1

e

�
�

x2


sin2 �

�
dx]

Ld
d�; (6)

1In [7], we have generalized the analysis for any real value ofm � 0:5

where
 = 1
2�2 = Es

No
. By substitutingx2(m + 


sin2 � ) =

t and noting that�(m) =
1R
t=0

e�ttm�1dt, we can further

simplify Eqn. (6) as

PMRC
2(d) =

1

�

�
2Z

�=0

�
sin2 �

sin2 � + 

m

�Ldm
d�: (7)

To evaluate (7) in closed-form, we recall the result [8]

In(c)
�
=

�
2Z

�=0

�
sin2 �

sin2 � + c

�n
d�

= �[P (c)]n
n�1X
k=0

�n� 1 + k

k

�
[1� P (c)]k; (8)

whereP (x) = 1
2

�
1�

q
x

x+1

�
, x � 0. Using Eqn. (8) in

(7),PMRC
2(d) can be evaluated in closed-form as

PMRC
2(d) =

�
P

� 

m

��Lmd Lmd�1X
k=0

�Lmd� 1 + k

k

��
1 � P

� 

m

��k
: (9)

B. Equal Gain Combining

In EGC, the combiner cophases and equally weights the sig-
nals on each branch and combines them. So the output of
the combiner,rk , is given by

rk =

LX
l=1

r
(l)
k

= Xk

LX
l=1

�
(l)
k

+

LX
l=1

n
(l)
k
: (10)

The conditional pairwise error probability of decodingX 0

incorrectly asXj , PEGC
2 (dj�), is given by

PEGC2 (dj�) = P(d)
E

(X0 ! Xj j�)

= Q

0
@
qPd

n=1
[
PL

l=1
�
(l)
n ]2

p
L�

1
A : (11)

The average pairwise error probability,P EGC
2(d), aver-

aged over� is given by

PEGC2(d) =

Z
�
(1)
1

Z
�
(2)
1

� � �

Z
�
(L�1)

d

Z
�
(L)

d

Q

0
@
qP

d

n=1
[

P
L

l=1
�
(l)
n ]2

p
L�

1
A

f
�
(1)
1

(�
(1)
1

) � � � f
�
(L)

d

(�
(L)

d
)d�

(1)
1

: : : d�
(L)

d
: (12)

Definingvn =
PL

l=1 �
(l)
n , the above integral can be written

as

PEGC2(d) =

Z
v1

� � �
Z
vd

Q

0
@
qPd

n=1
v2n

p
L�

1
A

fv1 (v1) � � � fvd(vd)dv1 : : : dvd: (13)
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Using Eqn. (5) and observing thatv1; v2; � � � ; vd are all i.i.d,
we can reduce the above expression to

PEGC2(d) =
1

�

�
2Z

�=0

[I(�)]d d�; (14)

where

I(�)
�
=

1Z
v=0

e
�
�


v2

L sin2 �

�
fv(v)dv: (15)

Applying Parseval’s theorem [5],[9] to the integralI(�), we
get

I(�) =
1

2�

+1Z
!=�1

FT

�
e
�( 
v2

L sin2 �
)

�
��v(!)d!; (16)

where FT(�) is the Fourier transform operator and�v(!) is
the characteristic function (CHF). The Fourier transform2 of

e
�

�

v2

L sin2 �

�
is given by

FT

0
@e

�
�


v2

L sin2 �

�1
A =

1Z
v=0

e
�
�


v2

L sin2 �

�
ej!vdv

=

r
�L



sin �e

�L!2 sin2 �
4
 : (17)

The CHF of the random variablev,E[ej!v ], can be obtained
as

�v(!) = E[ej!v] = E

�
e
j!
P

L

l=1
�l

�

=

LY
l=1

E[ej!�l ] =
�
E[ej!�]

�L
= [��(!)]

L: (18)

The CHF of the Nakagami distributed random variable�
can be computed as follows [7]

��(!) =

1Z
a=0

ej!a
2mm

�(m)
e�ma

2
a2m�1da

= e�
!2

4m
mm

�(m)
p
m

2m�1X
k=0

�
2m�1
k

�
(
p
m)k

�
j!

2m

�2m�1�k

�

�
�!2
4m

;
k + 1

2

�
; (19)

where

�(a; n) =

1Z
u=a

e�uun�1du (20)

2We define the FT of a functionf(t) as F (!) = E[ej!t] =
1R
�1

f(t)ej!tdt to be consistent with the definition of characteristic func-

tion and its inverse FT used in [5]. This differs from the usual definition of
FT by a negative sign in the exponential.

with �(0; n) = �(n). SinceI(�) and FT

 
e
�

�

v2

L sin2 �

�!

are real, we can writeI(�) in Eqn. (16) as

I(�) =
1

�

1Z
!=0

FT

0
@e

�
�


v2

L sin2 �

�1
A<f��v(!)gd!; (21)

where<f�g denotes the real part of the complex number.
Upon substitutingI(�) of Eqn. (21) into Eqn. (14) we
get the exact analytical expression forP EGC

2(d). The re-
sulting expression can be computed numerically (which in-
volves computation of multi-dimensional integrals). For the
special case ofL = 2, however, we have derived an alter-
nate expression forP EGC

2(d), which requires only a single
numerical integration [7].

C. Selection Combining

In SC the output of the selection combiner is expressed as

rk = akXk + nk; (22)

whereak = max
�
�
(1)
k ; �

(2)
k ; : : : ; �

(L)
k

�
, andnk is Gaus-

sian distributed with zero mean and variance� 2. With this
statistic at the output of the demodulator, the conditional
pairwise error probability,P SC

2 (dja), conditioned on the
fading random variablesa1; a2; : : : ; aN , is given by

PSC2 (dja) = P(d)
E

(X0 ! Xj ja) = Q

0
@
qPd

n=1
a2n

�

1
A : (23)

Let �n = a2n = max(�
2(1)
n ; �

2(2)
n ; : : : ; �

2(L)
n ) and � =

(�1; �2; : : : ; �d). With this, we can simplify the above ex-
pression as

PSC2(d) =
1

�

�
2Z

�=0

e

�

�P
d

n=1
a2n

2�2 sin2 �

�
fa1(a1)fa2(a2) : : : fad(ad)

da1da2 : : : dadd�

=
1

�

�
2Z

�=0

2
4 1Z
x=0

f�(x)e
�
�


x

sin2 �

�35
d

d�: (24)

The pdf of�, f�(x), can be obtained by first deriving the
c.d.f F�(x) and then differentiating it with respect tox as
follows.

F�(x) = Prob
�
max(a21; a

2
2; : : : ; a

2
L) � x

�
=

2
4 1

�(m)

mxZ
u=0

e�uum�1du

3
5
L

: (25)

Differentiating the above with respect tox, we get the p.d.f,
f�(x) as

f�(x) = L

h
�(m) � �(mx;m)

�(m)

iL�1 mm

�(m)
e�mxxm�1;(26)
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where�(�; �) is defined by Eqn. (20). Upon substituting
Eqn. (26) in Eqn. (24), we obtain the expression forP SC

2(d)
as

PSC2(d) =
Ld

��(m)Ld

�
2Z

�=0

�
sin2 �

sin2 � +


m

�d
�

2
4 1Z
u=0

e
�u

u
m�1

�
�(m) � �

�
u sin2 �

sin2 � +


m

;m

��L�1

du

3
5
d

d�: (27)

The above equation can be computed numerically. How-
ever, for the special case of Nakagami parameterm = 1
(i.e., Rayleigh fading), an alternate expression forP SC

2(d),
which is much simpler to compute than Eqn. (27), can be
derived as follows:

The p.d.ff�(x) for the case of Rayleigh fading can be ob-
tained by substitutingm = 1 in Eqn. (26), i.e.,

f�(x) = L(1� e�x)L�1e�x: (28)

Now,

P
SC
2 (dj�) = Q

0
@
qP

d

n=1
�n

�

1
A

PSC2(d) = E�

�
P
SC
2 (dj�)

�
=

Ld

�

�
2Z

�=0

"
L�1X
l=0

�L� 1

l

�
(�1)

l sin2 �

(1 + l) sin2 � + 


#d
d�:(29)

The above expression can be evaluated by numerical inte-
gration for given
, L andd. Note that computation of Eqn.
(27) requires evaluation of two integrals, whereas Eqn. (29)
requires only a single integral.

III. U NION BOUND ON BER

To determine the bit error performance of turbo codes in
high SNR regions where the “error floor” occurs, we require
long BER simulation runs or an analytical performance bou-
nding technique. The upper bound on the average bit error
probability for turbo codes on AWGN channels was devel-
oped in [3] and [4], and was later extended to Rayleigh fad-
ing channels in [2]. Following the same notation in [2], we
obtain upper bounds on the average bit error probability for
turbo codes on generalized Nakagami fading diversity chan-
nels with MRC, EGC, and SC.

The traditional union upper bound for the maximum likeli-
hood (ML) decoding of an(N;K) block code can be de-
rived as follows. Without loss of generality, we assume that
the all-zero codeword was sent, so the upper bound on the
probability of word error is given by

Pw �
NX
d=1

A(d)P2(d); (30)

whereA(d) is the number of codewords with Hamming
weightd andP2(d) is the probability of incorrectly decod-
ing to a codeword with weightd. For a turbo code with a
fixed interleaver, the construction ofA(d) requires exhaus-
tive search. To avoid this, [3] and [4] propose an average
upper bound averaged over all possible interleavers. With
this framework, the average weight distribution is given by

A(d) =

KX
i=1

�K
i

�
p(dji); (31)

where
�
K
i

�
is the number of input words with Hamming

weight i and p(dji) is the probability that an input word
with Hamming weighti produces a codeword with Ham-
ming weightd. Substituting Eqn. (31) in Eqn. (30), the av-
erage upper bound for word and bit error probabilities can
be written as

Pw �

NX
d=dmin

A(d)P2(d) =

NX
d=dmin

KX
i=1

�
K

i

�
p(dji)P2(d)

=

KX
i=1

�K
i

�
Edji[P2(d)]; (32)

and

Pb �

KX
i=1

i

K

�K
i

�
Edji[P2(d)]; (33)

respectively, whereEdji[�] is an expectation with respect to
the distributionp(dji). The distributionp(dji) can be com-
puted from the state transition matrix of the constituent RSC
encoders [3],[4]. With the above formulation, the bit error
performance of turbo codes on Nakagami fading channels
with diversity combining can be evaluated by substituting
PMRC

2(d), PEGC
2(d), PSC

2(d) for P2(d) in Eqn. (33),
for MRC, EGC and SC diversity schemes, respectively.

IV. L OG-MAP TURBO DECODER WITHDIVERSITY

In this section, we modify the log-MAP decoder for the case
of L-branch diversity combining. To do so, we need to cal-
culate the transition metric defined by

k(s; t) = Prob(yk; Sk = tjSk�1 = s), whereyk =
(ysk; y

p
k) for a rate-1/3 turbo code. Here,y sk is the received

symbol corresponding to the transmitted information sym-
bol xsk, andypk represents the received symbol correspond-
ing to the transmitted parity symbol,xpk . Herep 2 fp1; p2g,
wherep1 signifies the first parity andp2 signifies the sec-
ond parity. It is to be noted that, for the first decoder the
received symbols due to transmitted symbol and parity sym-
bol (i.e.,first parity) have the same time alignment, whereas
for the second decoder the received symbols are due to the
interleaved version of the transmitted symbols and again
have the same time alignment with the second parity sym-
bol. Also,Sk, Sk�1 are the encoder states at time instantsk,
k � 1, respectively [7]. When the symbolxk is transmitted,
it is received throughL independent paths, and the output
of the combiner will be

MRC : yk = xk

LX
l=1

[�
(l)
k

]2 +

LX
l=1

n
(l)
k
�
(l)
k

(34)
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EGC : yk = xk

LX
l=1

�
(l)
k

+

LX
l=1

n
(l)
k

(35)

SC : yk = xkmax

�
�
(1)
k

; �
(2)
k

; : : : ; �
(L)
k

�
+ nk: (36)

Here,nk has the same distribution asn(l)k , i.e., it is dis-
tributed Gaussian with zero mean and variance� 2. Apply-
ing Bayes’ theorem, we can write
k(s; t) as


k(s; t) = Prob(yk; Sk = tjSk�1 = s)

= Prob(yk jSk�1 = s; Sk = t)Prob(Sk = tjSk�1 = s)

= p(yk jxk)Prob(Sk = tjSk�1 = s) = p(yk jxk)p(x
s
k
): (37)

In the above, Prob(yk jSk�1 = s; Sk = t) = p(ykjxk)
because the knowledge of states at timesk � 1 andk is
equivalent to knowing the transmitted code symbol vector
xk. Also, Prob(Sk = tjSk�1 = s) = p(xsk) because, for a
rate-1=n RSC code, the state transition between any given
pair of statess andt uniquely determines the information
bit xsk . Now, define

ck(s; t) = log (
k(s; t)) = log(p(ykjxk)p(xsk))
= log(p(ykjxk)) + log(p(xsk)): (38)

Defining the quantitŷLk as

L̂k = log

�
Prob(xs

k
= +1)

Prob(xs
k
= �1)

�
; (39)

and discarding all the terms independent ofxsk , we can cal-
culatelog(p(xsk)) as [7]

log(p(xsk)) =
L̂kx

s
k

2
: (40)

In the following subsections, we derive the first term in the
Eqn. (38) for the three diversity cases of interest, i.e., MRC,
EGC, and SC diversity schemes.

A. MRC Diversity

For MRC, conditioning onxk; �
(1)
k ; �

(2)
k ; � � � ; �(L)k , yk �

N
�
xk
PL

l=1[�
(l)
k ]2; �2

PL

l=1[�
(l)
k ]2

�
. With perfect knowl-

edge of the fade amplitudes, we get

p(ykjxk; �sk; �pk) = p(yskjxsk; �sk)p(ypkjx
p
k
; �

p
k
); (41)

where �sk = (�
(1);s
k ; �

(2);s
k ; : : : ; �

(L);s
k ), and

�pk = (�
(1);p
k ; �

(2);p
k ; : : : ; �

(L);p
k ). Here,�(l);s

k and�(l);p
k

denote the fade amplitudes experienced by thek th data sym-
bol, and the corresponding parity symbol, respectively, on
the lth antenna path. Upon simplifying the above expres-
sion, discarding all the constant terms and terms which do
not depend on the code symbolsfxkg, and taking logarithm
on both sides of Eqn. (41), we obtain

log(p(ykjxk)) =
2Es

N0

�
yskx

s
k + y

p
k
x
p
k

�
: (42)

Combining the results of Eqns. (42) and (40) and substitut-
ing in Eqn. (38), we obtain

ck(s; t) =
L̂kx

s
k

2
+

2Es

N0

�
yskx

s
k + y

p
k
x
p
k

�
: (43)

B. EGC Diversity

For EGC, conditioning onxk ; �
(1)
k ; �

(2)
k ; : : : ; �

(L)
k , yk �

N
�
xk
PL

l=1 �
(l)
k ; L�2

�
. With perfect knowledge of the

fade amplitudes, we get

p(ykjxk; �sk; �pk) = p(yskjxsk; �sk)p(ypkjx
p
k
; �

p
k
); (44)

where �sk = (�
(1);s
k ; �

(2);s
k ; : : : ; �

(L);s
k ), and

�pk = (�
(1);p
k ; �

(2);p
k ; : : : ; �

(L);p
k ). Upon simplifying the

above expression, discarding all the constant terms and terms
which do not depend on the code symbolsfxkg, and taking
logarithm on both sides of Eqn. (44), we obtain

log(p(yk jxk)) =
2Es

LN0

 
LX
l=1

y
s
k
x
s
k
�
(l);s
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+
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�
(l);p

k

!
: (45)

Combining the results of Eqns. (45) and (40) and substitut-
ing in Eqn. (38), we obtain

ck(s; t) =
L̂kx

s
k

2
+

2Es

LN0
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s
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x
s
k
�
(l);s

k
+

LX
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x
p

k
�
(l);p

k

!
: (46)

C. SC Diversity

For SC, conditioning onxk; �
(1)
k ; �

(2)
k ; � � � ; �(L)k , yk �

N (xk max(�
(1)
k ; �

(2)
k ; � � � ; �(L)k ) ; �2). Let us define�sk =

max(�
(1);s
k ; �

(2);s
k ; � � � ; �(L);sk ), and

�pk = max(�
(1);p
k ; �

(2);p
k ; � � � ; �(L);pk ). With perfect knowl-

edge of the fade amplitudes, we get

p(ykjxk; �sk; �pk) = p(yskjxsk; �sk)p(ypkjx
p
k
; �

p
k
): (47)

Upon simplifying the above expression, discarding all the
constant terms and terms which do not depend on the code
symbolsfxkg, and taking logarithm on both sides of Eqn.
(47), we obtain

log(p(ykjxk)) =
2Es

N0

�
yskx

s
k�

s
k + y

p
k
x
p
k
�
p
k

�
: (48)

Combining the results of Eqns. (48) and (40) and substitut-
ing in Eqn. (38), we obtain

ck(s; t) =
L̂kx

s
k

2
+

2Es

N0

�
yskx

s
k�

s
k + y

p
k
x
p
k
�
p
k

�
: (49)

The quantityck(s; t), derived in Eqns. (43), (46), (49), can
be used in the computation of the forward and backward
recursion metrics in the simulation of log-MAP algorithm
for decoding turbo codes [7].

V. RESULTS AND DISCUSSION

We evaluated the bit error performance of a(1; 7=5; 7=5)8
rate-1/3 turbo code on fading channels with MRC, EGC,
and SC, using the pairwise error probability and the bit er-
ror probability bounds derived in Sections II and III. We
also evaluated the bit error performance using simulations.
All the analytical and simulation results are obtained for the
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special case of 2-antenna diversity (L = 2) with Nakagami
parameterm = 1 (i.e., Rayleigh fading).

In Fig. 1, the analytical bit error performance of the
(1; 7=5; 7=5)8 rate-1/3 turbo code based on the union bounds
is presented for various scenarios. In particular, performance
is shown fora) AWGN, b) fading without diversity (L = 1),
and c) fading with 2-antenna diversity using MRC, EGC,
and SC (L = 2). The input data block length is 100 bits
(i.e., 300 code symbols). It is noted that the EGC scheme
with turbo coding performs very close to the MRC scheme.

In Fig. 2, we plot the analytical bit error performance results
versus the simulation results for the(1; 7=5; 7=5)8 rate-1/3
turbo code with block length of 100 bits. The modified log-
MAP turbo decoder for diversity, presented in Section IV,
is used in the simulations. In the simulations, perfect chan-
nel state information is assumed at the decoder. The num-
ber of turbo iterations is set to eight. From Figure 2, we see
that the analytical performance of the turbo code agrees very
well with the simulation results for the SNR values above a
threshold value of theEb=No determined by the computa-
tional cutoff rateR0 [3],[4],[2]. We can also observe that the
performance of the turbo code on fading channels with EGC
diversity is very close to the MRC diversity, both in analysis
as well as in simulation. Moreover, the implementation of
EGC diversity is relatively simple compared to MRC diver-
sity. In [10], we gave a practical method of estimating the
channel SNR for EGC diversity on Nakagami fading chan-
nels and showed that the performance with estimated chan-
nel SNR is inferior to that with perfect knowledge of the
channel SNR by only 0.8 dB. Like the bit error probability
bounds for AWGN and fading with no diversity presented
in [3] and [2], the bit error probability bounds derived for
diversity in this paper are found to be loose in the low SNR
regions, where tighter bounds need to be developed.

VI. CONCLUSIONS

We derived performance bounds for turbo codes on Nak-
agami fading channels with diversity combining. We de-
rived average pairwise error probability expressions for turbo
codes with MRC, EGC, and SC diversity schemes on Nak-
agami fading channels. Using the pairwise error probabil-
ities, we derived the bit error performance using the union
bounding technique. We compared the analytical bounds
with the simulation results for the 2-antenna Rayleigh fad-
ing case. It was found that the simulation and analytical
results are close for high SNR values. The EGC diversity
scheme with turbo coding was found to perform as well as
the MRC diversity scheme.
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