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Abstract—In this paper, we consider transmitter optimization
in multiple-input single-output (MISO) broadcast channel with
common and secret messages. The secret message is intended for
K users and it is transmitted with perfect secrecy with respect to
J eavesdroppers which are also assumed to be legitimate users
in the network. The common message is transmitted at a fixed
rate R0 and it is intended for all K users and J eavesdroppers.
The source operates under a total power constraint. It also
injects artificial noise to improve the secrecy rate. We obtain
the optimum covariance matrices associated with the common
message, secret message, and artificial noise, which maximize
the achievable secrecy rate and simultaneously meet the fixed
rate R0 for the common message.
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secrecy rate, artificial noise, multiple eavesdroppers.

I. INTRODUCTION

The concept of achieving perfect secrecy using physical

layer techniques was first introduced in [1] on a degraded

wiretap channel. Later, this work was extended to more general

broadcast channel and Gaussian channel in [2] and [3], re-

spectively. Achieving secrecy using physical layer techniques

as opposed to cryptographic techniques does not rely on

the computational limitation of the eavesdroppers. Wireless

networks can be easily eavesdropped due to the broadcast

nature of the information transmission. With the growing

applications on wireless networks, there is a growing demand

for achieving secrecy on these networks. Secrecy in single and

multi antenna point-to-point wireless links has been studied by

several authors, e.g., [4]–[11]. In all the previous works, the

secret message is intended only for a single multi-antenna user

in the presence of single multi-antenna eavesdropper. In [12],

the achievability of the secrecy rate is shown where the secret

message from a multi-antenna source is indended for multiple

multi-antenna users in the presence of multiple multi-antenna,

non-colluding eavesdroppers.

In [2], simultaneous transmission of a private message to

receiver 1 at rate R1 and a common message to receivers 1

and 2 at rate R0 for two discrete memoryless channels (DMC)

with common input was considered. Recently, the work in [2]

has been extended to multiple-input multiple-output (MIMO)

broadcast channel with confidential and common messages

in [13]–[15]. Motivated by the works in [2,12]–[15], in this

paper, we consider transmitter optimization in multiple-input

single-output (MISO) broadcast channel with common and

secret messages. The secret message is intended for K users
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Fig. 1. System model for MISO broadcast channel with common and secret
messages.

and it is transmitted with perfect secrecy with respect to J
eavesdroppers which are also assumed to be legitimate users

in the network. The common message is transmitted at a fixed

rate R0 and it is intended for all K users and J eavesdroppers.

The source operates under a total power constraint. It also

injects artificial noise to improve the secrecy rate. Under

these settings, we obtain the optimum covariance matrices

associated with the common message, secret message, and

artificial noise, which maximize the achievable secrecy rate

and simultaneously meet the fixed rate R0 for the common

message. We also note that the secrecy rate maximization in

MISO channel without common message and in the presence

of single eavesdropper has been considered in [16,17], and

multiple eavesdroppers has been considered in [18] where the

secret message is intended only for a single user (i.e., K = 1).

Notations : A ∈ C
N1×N2 implies that A is a complex

matrix of dimension N1 × N2. A � 0 and A ≻ 0 imply

that A is a positive semidefinite matrix and positive definite

matrix, respectively. Identity matrix is denoted by I . Complex

conjugate transpose operation is denoted by [.]∗. E[.] denotes

the expectation operator, and ‖.‖ denotes the 2-norm operator.

II. SYSTEM MODEL

Consider a MISO broadcast channel as shown in Fig. 1

which consists of a source S having N transmit antennas, K
users {D1, D2, · · · , DK} each having single antenna, and J
eavesdroppers {E1, E2, · · · , EJ} each having single antenna.

The complex channel gain from S to Dk is denoted by hk ∈

978-1-4799-3512-3/14/$31.00 ©2014 IEEE

Globecom 2014 - Communication Theory Symposium

1625



C
1×N , 1 ≤ k ≤ K. Likewise, the complex channel gain from

S to Ej is denoted by zj ∈ C
1×N , 1 ≤ j ≤ J . We assume

that eavesdroppers are non-colluding.

Let PT denote the total transmit power budget in the

system, i.e., the source S operates under total power constraint

PT . The communication between the source and the users

and eavesdroppers happens in n channel uses. The source

S transmits two independent messages W0 and W1, which

are equiprobable over {1, 2, · · · , 2nR0} and {1, 2, · · · , 2nR1},

respectively. W0 is the common message to be conveyed to

all Dks and Ejs at information rate R0. W1 is the secret

message which has to be conveyed to all Dks at some rate

R1 with perfect secrecy with respect to all Ejs. For each

W0 drawn equiprobably from the set {1, 2, · · · , 2nR0}, the

source maps W0 to a codeword {X0

i }
n
i=1

of length n, where

each X0

i ∈ C
N×1, i.i.d. ∼ CN (0,Q

0
), E[X0

i ] = 0, and

Q
0
= E[X0

iX
0∗
i ]. Similarly, for each W1 drawn equiprobably

from the set {1, 2, · · · , 2nR1}, the source, using a stochastic

encoder, maps W1 to a codeword {X1

i }
n
i=1

of length n, where

each X1

i ∈ C
N×1, i.i.d. ∼ CN (0,Q

1
), E[X1

i ] = 0, and

Q
1

= E[X1

iX
1∗
i ]. The source also injects artificial noise

sequence {X2

i }
n
i=1

of length n, where each X2

i ∈ C
N×1,

i.i.d. ∼ CN (0,Q
2
), E[X2

i ] = 0, and Q
2
= E[X2

iX
2∗
i ]. In

the ith channel use, 1 ≤ i ≤ n, the source transmits the sum

of the symbols which is X0

i +X1

i +X2

i . Since the source is

power limited, this implies that

trace(Q
0
) + trace(Q

1
) + trace(Q

2
) ≤ PT . (1)

In the following, we will use X0, X1 and X2 to denote

the symbols in the codewords {X0

i }
n
i=1

and {X1

i }
n
i=1

, and

the artificial noise sequence {X2

i }
n
i=1

, respectively. We also

assume that all the channel gains are known and remain static

over the codeword transmit duration. Let yDk
and yEj

denote

the received signals at Dk and Ej , respectively. We have

yDk
= hk(X

0 +X
1 +X

2) + ηDk
, ∀k = 1, 2, · · · ,K, (2)

yEj
= zj(X

0 +X
1 +X

2) + ηEj
, ∀j = 1, 2, · · · , J, (3)

where the ηs are the noise components, assumed to be i.i.d.

∼ CN (0, N0). Denoting the common and secret decoded

messages at destination Dk by ŴDk

0
and ŴDk

1
, respectively,

and at eavesdropper Ej by Ŵ
Ej

0
and Ŵ

Ej

1
, respectively, the

reliability constraints at Dks and Ejs and the perfect secrecy

constraints at Ejs are as follows:

Pr(Ŵ
Dk
0 6= W0) ≤ ǫn, ∀k = 1, 2, · · · ,K,

Pr(Ŵ
Ej

0 6= W0) ≤ ǫn, ∀j = 1, 2, · · · , J,

Pr(Ŵ
Dk
1 6= W1 | Ŵ

Dk
0 = W0) ≤ ǫn, ∀k = 1, 2, · · · ,K,

1

n
I(W1;yEj

| Ŵ
Ej

0 = W0) ≤ ǫn, ∀j = 1, 2, · · · , J,

where yEj
= [yEj1

, yEj2
, · · · , yEjn

] ∈ C
1×n is the received

signal at Ej in n channel uses, and ǫn → 0 as n → ∞.

III. TRANSMITTER OPTIMIZATION IN MISO BROADCAST

CHANNEL

Since the symbol X0 is transmitted at information rate R0

irrespective of X1, treating X1 as noise in (2), Dks will be

able to decode X0 if ∀k = 1, 2, · · · ,K,

I
(
X

0; yDk

)
= log2

(
1 +

hkQ0h
∗
k

N0 + hk(Q1 +Q2)h
∗
k

)
≥ R0. (4)

Similarly, treating X1 as noise in (3), Ejs will be able to

decode X0 if ∀j = 1, 2, · · · , J,

I
(
X

0; yEj

)
= log2

(
1 +

zjQ0z
∗
j

N0 + zj(Q1 +Q2)z
∗
j

)
≥ R0. (5)

Using (2) and with the knowledge of the symbol X0, the

information rate for X1 at Dk is

I
(
X

1; yDk
| X0

)
= log2

(
1 +

hkQ1h
∗
k

N0 + hkQ2h
∗
k

)
. (6)

Similarly, using (3) and with the knowledge of X0, the

information rate for X1 at Ej is

I
(
X

1; yEj
| X0

)
= log2

(
1 +

zjQ1z
∗
j

N0 + zjQ2z
∗
j

)
. (7)

A. Transmitter optimization - without artificial noise

In this subsection, we consider transmitter optimization in

MISO broadcast channel when no artificial noise is injected

by the source. Subject to the constraints in (1), (4) and (5),

the achievable secrecy rate for X1 is obtained by solving the

following optimization problem:

R1 = max
Q0, Q1

min
k=1,2,··· ,K
j=1,2,··· ,J{

I
(
X

1; yDk
| X0

)
− I

(
X

1; yEj
| X0

)}
(8)

= max
Q0, Q1

min
k=1,2,··· ,K
j=1,2,··· ,J

log2

(
1 +

hkQ1h
∗

k

N0

1 +
zjQ1z

∗

j

N0

)
(9)

= log2 max
Q0, Q1

min
k=1,2,··· ,K
j=1,2,··· ,J

(N0 + hkQ1h
∗
k

N0 + zjQ1z
∗
j

)
(10)

s.t. ∀k = 1, 2, · · · ,K, ∀j = 1, 2, · · · , J,

log2

(
1 +

hkQ0h
∗
k

N0 + hkQ1h
∗
k

)
≥ R0, (11)

log2

(
1 +

zjQ0z
∗
j

N0 + zjQ1z
∗
j

)
≥ R0, (12)

Q0 � 0, Q1 � 0, trace(Q0) + trace(Q1) ≤ PT . (13)

The constraints (11) and (12) are obtained from (4) and (5),

respectively. The objective function in (8) is obtained from (6)

and (7). We note that the achievability of the rate pair (R1, R0)
can be seen by the repeated application of Lemma 1 in [12]

as follows:

(a) Achievability of the common message rate R0: Since

the symbol X1 has been treated as noise in (4) and (5), the

achievability of the common message rate R0 follows from

Lemma 1 in [12].

(b) Achievability of the perfect secrecy rate R1: Having de-

coded the symbol X0 by all (K + J) users, the achievability

of the perfect secrecy rate R1 for X1, which is intended only

for K users, follows again from Lemma 1 in [12].

We now rewrite the optimization problem in (10) in the

following equivalent form:

Globecom 2014 - Communication Theory Symposium

1626



max
Q0, Q1

min
k=1,2,··· ,K
j=1,2,··· ,J

(N0 + hkQ1h
∗
k

N0 + zjQ1z
∗
j

)
(14)

s.t. ∀k = 1, 2, · · · ,K, ∀j = 1, 2, · · · , J,
(
1 +

hkQ0h
∗
k

N0 + hkQ1h
∗
k

)
≥ 2R0 ,

(
1 +

zjQ0z
∗
j

N0 + zjQ1z
∗
j

)
≥ 2R0 ,

Q0 � 0, Q1 � 0, trace(Q0) + trace(Q1) ≤ PT . (15)

Further, we rewrite the innermost minimization in (14), namely,

min
k=1,2,··· ,K
j=1,2,··· ,J

(
N0 + hkQ1h

∗
k

N0 + zjQ1z
∗
j

)
, (16)

in the following equivalent maximization form:

max
t

t (17)

s.t. ∀k = 1, 2, · · · ,K, ∀j = 1, 2, · · · , J,

t
(
N0 + zjQ1z

∗
j

)
−

(
N0 + hkQ1h

∗
k

)
≤ 0. (18)

Substituting the above maximization form in (14), we get the

following single maximization form:

max
Q0, Q1, t

t (19)

s.t. ∀k = 1, 2, · · · ,K, ∀j = 1, 2, · · · , J,

t
(
N0 + zjQ1z

∗
j

)
−

(
N0 + hkQ1h

∗
k

)
≤ 0,

(
2R0 − 1

)(
N0 + hkQ1h

∗
k

)
−

(
hkQ0h

∗
k

)
≤ 0,

(
2R0 − 1

)(
N0 + zjQ1z

∗
j

)
−

(
zjQ0z

∗
j

)
≤ 0,

Q0 � 0, Q1 � 0, trace(Q0) + trace(Q1) ≤ PT . (20)

For a given t, the above problem is formulated as the following

semidefinite feasibility problem [19]:

find Q0, Q1, (21)

subject to the constraints in (20). The maximum value of t,
denoted by tmax, can be obtained using bisection method as

follows. Let tmax lie in the interval [tll, tul]. The value of tll
can be taken as 1 (corresponding to the minimum secrecy rate

of 0) and tul can be taken as (1 + mink=1,2,··· ,K
PT ‖hk‖

2

N0

),
which corresponds to the minimum information capacity

among Dks when the entire power PT is allotted to the source

S. Check the feasibility of (20) at t = (tll+tul)/2. If feasible,

then tll = t, else tul = t. Repeat this until tul−tll ≤ ζ, where

ζ is a small positive number. Using tmax in (10), the secrecy

rate is given by

R1 = log2 tmax. (22)

Remark: We note that the maximum common message

information rate, Rmax
0

, can be obtained as follows:

R
max
0 = max

Q0

min
k=1,2,··· ,K
j=1,2,··· ,j

{
I
(
X

0; yDk

)
, I

(
X

0; yEj

)}
(23)

s.t. Q0 � 0, trace(Q0) ≤ PT , (24)

where I
(
X0; yDk

)
and I

(
X0; yEj

)
in (23) are obtained

from (4) and (5), respectively, with Q
1
= Q

2
= 0. The above

optimization problem can be easily solved using the method as

proposed above to solve (10). Also, using the KKT conditions,

it can be shown that Rmax
0

attains its maximum value when

trace(Q
0
) = PT , i.e., when all the available power is used.

This implies that for R1 > 0, R0 < Rmax
0

.

B. Rank-1 approximation of Q
1

and Q
0

- without artificial

noise

The optimal solutions Q
0

and Q
1

obtained from (19) may

or may not have rank 1. This can be easily seen from the

KKT conditions of the optimization problem (19). We show

this in the Appendix A. For practical application, a rank-1

approximation of Q
0

and Q
1

can be done as follows. Let

φ0 ∈ C
N×1 and φ1 ∈ C

N×1 be the unit norm eigen directions

of Q
0

and Q
1

corresponding to the largest eigen values,

respectively. We take P0φ
0φ0∗ and P1φ

1φ1∗ as the rank-1

approximation of Q
0

and Q
1
, respectively, where P0 ≥ 0,

P1 ≥ 0 and P0 + P1 ≤ PT . We substitute Q
0
= P0φ

0φ0∗

and Q
1
= P1φ

1φ1∗ in the optimization problem (19), which

results in the following optimization problem:

max
P0, P1, t

t (25)

s.t. ∀k = 1, 2, · · · ,K, ∀j = 1, 2, · · · , J,

t
(
N0 + P1zjφ

1
φ

1∗
z
∗
j

)
−

(
N0 + P1hkφ

1
φ

1∗
h

∗
k

)
≤ 0,

(
2R0 − 1

)(
N0 + P1hkφ

1
φ

1∗
h

∗
k

)
−

(
P0hkφ

0
φ

0∗
h

∗
k

)
≤ 0,

(
2R0 − 1

)(
N0 + P1zjφ

1
φ

1∗
z
∗
j

)
−

(
P0zjφ

0
φ

0∗
z
∗
j

)
≤ 0,

P0 ≥ 0, P1 ≥ 0, P0 + P1 ≤ PT . (26)

For a given t, the above problem is formulated as the following

linear feasibility problem:

find P0, P1, (27)

subject to the constraints in (26). The maximum value of t can

be obtained using the bisection method and the corresponding

secrecy rate can be obtained using (22).

C. Transmitter optimization - with artificial noise

In this subsection, we consider transmitter optimization in

MISO broadcast channel when artificial noise is injected by

the source. Subject to the constraints in (1), (4) and (5), the

achievable secrecy rate for X1 is obtained by solving the

following optimization problem:

R1 = max
Q0, Q1, Q2

min
k=1,2,··· ,K
j=1,2,··· ,J{

I
(
X

1; yDk
| X0

)
− I

(
X

1; yEj
| X0

)}
(28)

= max
Q0, Q1, Q2

min
k=1,2,··· ,K
j=1,2,··· ,J

log2




1 +
hkQ1h

∗

k

N0+hkQ2h
∗

k

1 +
zjQ1z

∗

j

N0+zjQ2z
∗

j


 (29)

= log2 max
Q0, Q1, Q2

min
k=1,2,··· ,K
j=1,2,··· ,J

(N0 + hk(Q2 +Q1)h
∗
k

N0 + hkQ2h
∗
k

)( N0 + zjQ2z
∗
j

N0 + zj(Q2 +Q1)z
∗
j

)
(30)

s.t. ∀k = 1, 2, · · · ,K, ∀j = 1, 2, · · · , J,

log2

(
1 +

hkQ0h
∗
k

N0 + hk(Q2 +Q1)h
∗
k

)
≥ R0, (31)

log2

(
1 +

zjQ0z
∗
j

N0 + zj(Q2 +Q1)z
∗
j

)
≥ R0, (32)

Globecom 2014 - Communication Theory Symposium

1627



Q0 � 0, Q1 � 0, Q2 � 0,

trace(Q0) + trace(Q1) + trace(Q2) ≤ PT , (33)

where the constraints (31) and (32) are obtained from (4) and

(5), respectively, and the objective function in (28) is obtained

from (6) and (7). We rewrite the optimization problem in (30)

in the following equivalent form:

max
Q0, Q1, Q2

min
k=1,2,··· ,K
j=1,2,··· ,J

(
N0 + hk(Q2 +Q1)h

∗
k

N0 + hkQ2h
∗
k

)

( N0 + zjQ2z
∗
j

N0 + zj(Q2 +Q1)z
∗
j

)
(34)

s.t. ∀k = 1, 2, · · · ,K, ∀j = 1, 2, · · · , J,
(
1 +

hkQ0h
∗
k

N0 + hk(Q2 +Q1)h
∗
k

)
≥ 2R0 ,

(
1 +

zjQ0z
∗
j

N0 + zj(Q2 +Q1)z
∗
j

)
≥ 2R0 ,

Q0 � 0, Q1 � 0, Q2 � 0,

trace(Q0) + trace(Q1) + trace(Q2) ≤ PT . (35)

Further, we rewrite the innermost minimization in (34), namely,

min
k=1,2,··· ,K
j=1,2,··· ,J

(N0 + hk(Q2 +Q1)h
∗
k

N0 + hkQ2h
∗
k

)

( N0 + zjQ2z
∗
j

N0 + zj(Q2 +Q1)z
∗
j

)
, (36)

in the following equivalent maximization form:

max
u, v

uv (37)

s.t. ∀k = 1, 2, · · · ,K, ∀j = 1, 2, · · · , J,

u ≥ 0, v ≥ 0,

u
(
N0 + hkQ2h

∗
k

)
−

(
N0 + hk(Q2 +Q1)h

∗
k

)
≤ 0,

v
(
N0 + zj(Q2 +Q1)z

∗
j

)
−

(
N0 + zjQ2z

∗
j

)
≤ 0. (38)

Substituting the above maximization form in (34), we get the

following single maximization form:

max
Q0, Q1, Q2, u, v

uv (39)

s.t. ∀k = 1, 2, · · · ,K, ∀j = 1, 2, · · · , J,

u ≥ 0, v ≥ 0,
(
2R0 − 1

)(
N0 + hk(Q2 +Q1)h

∗
k

)
−

(
hkQ0h

∗
k

)
≤ 0,

(
2R0 − 1

)(
N0 + zj(Q2 +Q1)z

∗
j

)
−

(
zjQ0z

∗
j

)
≤ 0,

u
(
N0 + hkQ2h

∗
k

)
−

(
N0 + hk(Q2 +Q1)h

∗
k

)
≤ 0,

v
(
N0 + zj(Q2 +Q1)z

∗
j

)
−

(
N0 + zjQ2z

∗
j

)
≤ 0,

Q0 � 0, Q1 � 0, Q2 � 0,

trace(Q0) + trace(Q1) + trace(Q2) ≤ PT . (40)

From the constraints in (40), it is obvious that the upper

bound for u can be taken as
(
1 + mink=1,2,··· ,K

PT ‖hk‖
2

N0

)
and

we denote it by umax. Similarly, the upper bound for v can

be taken as 1 and we denote it by vmax. We denote the

optimum value of the optimization problem (39) by uoptvopt.
For positive secrecy rate, umax ≥ uopt > 1, vmax ≥ vopt > 0
and uoptvopt > 1. We obtain uoptvopt sequentially by in-

creasing u from 1 towards umax in discrete steps of size

△u = (umax − 1)/M , where M is a large positive integer,

and finding the maximum v such that the constraints in (40)

are feasible and the product uv is maximum. The algorithm

to obtain uoptvopt is as follows.

1. for (i = 1 : 1 : M )

2. begin

3. ui = 1 + (i ∗ △u)
4. vi = max

Q0, Q1, Q2, v,

u=ui

v s.t. all constraints in (40).

5. if (i = 1) then uopt = ui, vopt = vi
6. elseif (uoptvopt ≤ uivi) then uopt = ui, vopt = vi
7. else uopt = uopt, vopt = vopt
8. endif

9. end for loop

The constrained maximization problem in the for loop

can be solved using the bisection method by checking the

feasibility of the constraints in (40) at u = ui and v in the

interval [0, vmax]. Having obtained uoptvopt, the secrecy rate

is given by

R1 = log2 uoptvopt. (41)

We can take the rank-1 approximation of Q
1

and Q
0

as dis-

cussed in subsection III-B, i.e., by substituting Q
0
= P0φ

0φ0∗

and Q
1
= P1φ

1φ1∗ in the optimization problem (39) and

solving for P0, P1, Q
2
, u and v. An analysis of the rank for

this system can be carried out along the same line as that in

Appendix A.

IV. RESULTS AND DISCUSSIONS

We present the numerical results and discussions in this

section. We obtained the secrecy rate results through simula-

tions for N = 2, K = 2 and J = 1, 2, 3 eavesdroppers. The

following complex channel gains are taken in the simulations:

h1 = [0.7647 − 0.8345i, 0.9672 − 0.3692i], h2 = [2.1455 +
0.4291i, 1.4245−1.1555i], z1 = [−0.3473+0.2551i, 0.6134−
0.0568i], z2 = [0.5298 + 0.8579i,−1.2671− 0.0428i], z3 =
[−0.2776 + 0.4551i, 0.4310 + 0.7209i].

Figure 2 shows the secrecy rate plots for MISO broadcast

channel as a function of total transmit power (PT ) when no

artificial noise is injected. The secrecy rates are plotted for

the cases of with and without W0. For the case with W0,

the information rate of W0 is fixed at R0 = 1. From Fig.

2, we observe that, for a given number of eavesdroppers, the

secrecy rate degrades when W0 is present. Also, the secrecy

rate degrades for increasing number of eavesdroppers. Figure

3 shows the R1 vs R0 tradeoff, where R1 is plotted as a

function of R0 for K = 2, J = 1, 2, 3 at a fixed total power

of PT = 12 dB and no artificial noise. It can be seen that as

R0 is increased, secrecy rate decreases. This is because the

available transmit power for W1 decreases as R0 is increased.

The point 3.16 on the R0 axis where the secrecy rate drops

to zero corresponds to Rmax
0

. Figure 4 shows the secrecy

rate plots for MISO broadcast channel as a function of total
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Fig. 2. Secrecy rate vs total power (PT ) in MISO broadcast channel
with/without W0 for N = 2, K = 2, J = 1, 2, 3, no artificial noise, and
R0 = 1.
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Fig. 3. R1 vs R0 in MISO broadcast channel for N = 2, K = 2, J =

1, 2, 3, PT = 12 dB, and no artificial noise.

transmit power (PT ) when artificial noise is injected. Similarly,

Fig. 5 shows the R1 vs R0 tradeoff with artificial noise, where

R1 is plotted as a function of R0 for K = 2, J = 1, 2, 3 at

a fixed total power of PT = 12 dB. We observe a significant

improvement in secrecy rate as compared to Fig. 2 and Fig.

3 when J = 2 or 3 eavesdroppers are present. When only

one eavesdropper is present, artificial noise does not help in

improving the secrecy rate. This is due to the null signal

beamforming by the source at the eavesdropper which is only

possible when J < N . Also, for the above channel conditions,

we observe that the solutions Q
0

and Q
1

obtained by solving

the optimization problems (19) and (39) have rank 1.

V. CONCLUSIONS

We investigated transmitter optimization problem in MISO

broadcast channel with common and secret messages. The

source operates under a total power constraint. It also injects

artificial noise to improve the secrecy rate. We obtained the

optimum covariance matrices associated with the common
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Fig. 4. Secrecy rate vs total power (PT ) in MISO broadcast channel
with/without W0 for N = 2, K = 2, J = 1, 2, 3, with artificial noise,
and R0 = 1.
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Fig. 5. R1 vs R0 in MISO broadcast channel for N = 2, K = 2, J =

1, 2, 3, PT = 12 dB, and with artificial noise.

message, secret message, and artificial noise, which maxi-

mized the achievable secrecy rate and simultaneously met the

fixed rate R0 for the common message.

APPENDIX A

In this appendix, we analyze the rank of the solutions

Q
0

and Q
1

which are obtained by solving the optimization

problem (19). We take the Lagrangian of the objective function

−t subject to the constraints in (20) as follows [19]:

ℓ(t, Q0, Q1, λ, Λ0, Λ1, µkj , νk, ξj) = −t

+λ
(
trace(Q0) + trace(Q1)− PT

)

−trace(Λ0Q0)− trace(Λ1Q1)

+

K∑

k=1

J∑

j=1

µkj

(
t
(
N0 + zjQ1z

∗
j

)
−

(
N0 + hkQ1h

∗
k

))

+

K∑

k=1

νk

((
2R0 − 1

)(
N0 + hkQ1h

∗
k

)
−

(
hkQ0h

∗
k

))
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+

J∑

j=1

ξj

((
2R0 − 1

)(
N0 + zjQ1z

∗
j

)
−

(
zjQ0z

∗
j

))
, (42)

where λ ≥ 0, Λ0 � 0, Λ1 � 0, µkj ≥ 0, νk ≥ 0, ξj ≥ 0
are the Lagrangian multipliers. The KKT conditions of (42)

are as follows:

(a.) all the constraints in (20),

(b.) λ
(
trace(Q

0
) + trace(Q

1
)− PT

)
= 0,

(c.) trace(Λ0Q0
) = 0. Since Λ0 � 0 and Q0 � 0 =⇒

Λ0Q0
= 0,

(d.) trace(Λ1Q1
) = 0. Since Λ1 � 0 and Q1 � 0 =⇒

Λ1Q1
= 0,

(e.) ∀k = 1, 2, · · · ,K, and ∀j = 1, 2, · · · , J , µkj

(
t
(
N0 +

zjQ1
z∗
j

)
−
(
N0 + hkQ1

h∗
k

))
= 0,

(f.) ∀k = 1, 2, · · · ,K, νk

((
2R0 − 1

)(
N0 + hkQ1

h∗
k

)
−

(
hkQ0

h∗
k

))
= 0,

(g.) ∀j = 1, 2, · · · , J , ξj

((
2R0 − 1

)(
N0 + zjQ1

z∗
j

)
−

(
zjQ0

z∗
j

))
= 0,

(h.) ∂ℓ
∂t

= 0 =⇒
∑K

k=1

∑J
j=1

µkj

(
N0 + zjQ1

z∗
j

)
= 1. This

implies that not all µkjs can be zero simultaneously.

(i.) ∂ℓ
∂Q

0

= 0 =⇒ Λ0 = λI −
∑K

k=1
νk
(
h∗
khk

)

−
∑J

j=1
ξj
(
z∗
jzj

)
,

(j.) ∂ℓ
∂Q

1

= 0 =⇒ Λ1 = λI +
∑K

k=1

∑J
j=1

µkj

(
t
(
z∗
jzj

)
−

(
h∗
khk

))
+
(
2R0 − 1

) ∑K
k=1

νk
(
h∗
khk

)
+
(
2R0 − 1

)
∑J

j=1
ξj
(
z∗
jzj

)
.

The KKT condtitions (c) and (d) imply that trace(Λ0Q0
) +

trace(Λ1Q1
) = 0. The KKT condtitions (i), (j), (b), (e), (f)

and (g) further imply that

λPT +

K∑

k=1

J∑

j=1

µkj(1− t)N0 −

K∑

k=1

νk
(
2R0 − 1

)
N0

−

J∑

j=1

ξj
(
2R0 − 1

)
N0 = 0.

For R1 > 0, t > 1. This implies that the above expression will

be satisfied when λ > 0. With λ > 0, the KKT condition (b)
implies that trace(Q

0
) + trace(Q

1
) = PT , i.e., entire power

is used for the transmission.

Assuming λ > 0, we rewrite the KKT condition (j) in the

following form:

Λ1 +

K∑

k=1

J∑

j=1

µkj

(
h

∗
khk

)
= λI +

K∑

k=1

J∑

j=1

µkjt
(
z
∗
jzj

)

+
(
2R0 − 1

) K∑

k=1

νk
(
h

∗
khk

)
+

(
2R0 − 1

) J∑

j=1

ξj
(
z
∗
jzj

)
≻ 0.

The above expression implies that rank(Λ1) ≥ N −

rank
(∑K

k=1

∑J
j=1

µkj

(
h∗
khk

))
. The KKT condition (d) im-

plies that rank(Q
1
) ≤ rank

(∑K
k=1

∑J
j=1

µkj

(
h∗
khk

))
. If

rank
(∑K

k=1

∑J
j=1

µkj

(
h∗
khk

))
= 1 then rank(Q

1
) = 1

(assuming Q
1
6= 0). For the special case when K = 1, rank

of Q
1

will be 1 (assuming Q
1
6= 0). For K > 1, the rank of

Q
1

may or may not be 1.

In order to determine the rank of Q
0
, we rewrite the KKT

condition (i) in the following form:

Λ0 +

K∑

k=1

νk
(
h

∗
khk

)
+

J∑

j=1

ξj
(
z
∗
jzj

)
= λI ≻ 0.

The above expression implies that rank(Λ0) ≥

N − rank
(∑K

k=1
νk
(
h∗
khk

)
+

∑J
j=1

ξj
(
z∗
jzj

))
.

Further, the KKT condition (c) implies that

rank(Q
0
) ≤ rank

(∑K
k=1

νk
(
h∗
khk

)
+

∑J
j=1

ξj
(
z∗
jzj

))
.

This implies that the rank of Q
0

may or may not be 1.
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