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Abstract— In this paper, we propose and analyze the bit er-
ror performance of a generalized selection combining (GSC) re-
ceiver for M -ary noncoherent frequency shift keying (NCFSK)
signals on i.i.d. Rayleigh fading channels with L antennas at the
receiver. For each of the M hypotheses, the receiver combines
the K largest outputs among the L available square-law detec-
tor outputs before proceeding to the bit detection process. We
derive a closed-form expression for the bit error probability of
the proposed (K, L) GSC receiver, and present numerical results
to illustrate the bit error performance of this receiver for differ-
ent values of M , K, and L. We also show that our generalized
(K, L) GSC scheme and analysis encompass the previously re-
ported schemes/analyses by Chyi et al and Hahn as special cases
for K = 1 and K = L, respectively.

Keywords: Generalized selection combining,M -ary noncoherent FSK,

fading channels.

I. INTRODUCTION

The effects of multipath fading in a mobile radio environ-
ment can be alleviated by using diversity reception [1],[2].
Typical diversity combining schemes include maximal ratio
combining (MRC), equal gain combining (EGC), and selec-
tion combining (SC). Recently, there has been growing in-
terest in the study of generalized selection combining (GSC)
schemes where K out of L available diversity paths (K ≤ L)
are combined [5]-[16]. The structure of a GSC receiver de-
pends on the type of modulation format used (M-PSK/M-
FSK/other), type of detection (coherent/noncoherent), and
whether the channel state information (CSI) is known at the
receiver. Hybrid SC/MRC and hybrid SC/EGC schemes are
possible depending on the knowledge of the CSI (fade ampli-
tude and phase) at the receiver. In a hybrid SC/MRC scheme,
the knowledge of fade amplitude and phase on each diversity
branch is available at the receiver. The receiver first weights
each branch with the complex conjugate of the fade and se-
lects the best K out of L branch outputs. Hybrid SC/EGC
schemes, on the other hand, typically employ noncoherent de-
tection where the receiver does not have the knowledge of the
channel phase.

In this paper, we are concerned with generalized selection
combining of M -ary noncoherent FSK (NCFSK) signals on

This work was supported in part by the Office of Naval Research under
grant N00014-02-1-0001, and by the TRW Foundation.

Rayleigh fading channels. The new contributions in this paper
are a) we propose a novel hybrid SC/EGC scheme forM -ary
NCFSK signals, where the receiver does not have knowledge
of the fade amplitudes and phases, and b) derive a closed-form
expression for the bit error probability of the proposed GSC
receiver on i.i.d. Rayleigh fading channels. In the proposed
GSC scheme, for each of the M hypotheses, the K largest
outputs among the L available square-law detector outputs are
combined before proceeding to the bit detection process. We
present numerical results to illustrate the bit error performance
of the proposed GSC receiver for different values of M , K,
and L. Interestingly, we show that our generalized (K, L)
GSC scheme and analysis encompass the previously reported
schemes/analyses by Chyi et al in [3] and Hahn in [4] as spe-
cial cases forK = 1 andK = L, respectively.

The rest of the paper is organized as follows. In Section
II, we present the system model. In Section III, we present
the proposed (K, L) GSC receiver forM -ary NCFSK signals
and the bit error performance analysis. Numerical results and
discussions are presented in Section IV, and conclusions are
given in Section V.

II. SYSTEM MODEL

We assume that the transmitted symbols are modulated by
M -ary orthogonal FSK signals with si = [0, . . . , 1, . . . , 0]T

associated with the message mi, where ’1’ is in the ith po-
sition and i = 1, 2, . . . ,M . The complex orthogonal ba-
sis functions φl(t) = exp(j2πflt), l = 1, 2, . . . ,M are
used to synthesize the transmitted information symbol sm =
[sm,1, . . . , sm,M ]. That is, sm(t) =

∑M
j=1 sm,jφj(t), m =

1, 2, . . . ,M .
The modulated symbols are sent through the fading channel,

and the signal is received through L antennas at the receiver.
We assume that the fading process is frequency non-selective
and remains constant over one symbol interval. Assuming per-
fect symbol timing at the receiver, the equivalent lowpass rep-
resentation of the received symbols, after the noncoherent de-
modulation, when s1(t) is the transmitted signal, is given by
[1]

r
(l)
c,1 =

√
Esα

(l) cos θ(l) + n(l)
c,1,

r
(l)
s,1 =

√
Esα

(l) sin θ(l) + n(l)
s,1, l = 1, 2, . . . , L, (1)
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and

r
(l)
c,m = n

(l)
c,m,

r
(l)
s,m = n

(l)
s,m, l = 1, 2, . . . , L and m = 2, . . . ,M. (2)

In the above,Es is the symbol energy per branch and is related
to the total bit energy Eb as Es = log2(M)Eb/L, thereby
keeping the total SNR per bit, Eb/N0, constant. Also, α(l)

and θ(l) are the fade amplitude and random phase associated
with the lth antenna path, respectively. We assume that the
α(l)’s are i.i.d. Rayleigh random variables with the density
function fα(x) = 2xe−x2

, x ≥ 0, where we have assumed
that E(α2) = 1. It is also assumed that the random phases
θ(l) are uniformly distributed in [0, 2π]. Note that n(l)

c,m and

n
(l)
s,m represent real Gaussian random variables each with zero

mean and variance σ2. Here σ2 = N0/2, where N0 is the
one-sided power spectral density of the underlying Gaussian
process.

III. ANALYSIS

Let X(l)
m = [r(l)c,m]2 + [r(l)s,m]2 denote the energy at the out-

put of the mth demodulator on the lth diversity path, m =
1, 2, . . . ,M , l = 1, 2, . . . , L. Assuming that m = 1 is the
transmitted symbol, in the absence of knowledge of α(l) and
θ(l), the pdf of X(l)

m , after normalization by N0, is given by
[17]

f
X

(l)
1

(x) =
1

1 + γ
e
− x

1+γ , x ≥ 0,

f
X

(l)
m

(x) = e−x, x ≥ 0, m = 2, . . . ,M, (3)

where γ = E(α2)Es/N0 = Es/N0 is the average SNR per
symbol per branch. For each hypothesism,m = 1, 2, . . . ,M ,
we combine the K largest outputs among the L available
square-law detector outputs (i.e., the X(l)

m ’s) before proceed-
ing to the bit detection process, as shown in Fig. 1. For each
hypothesis m, the statistic Zm at the output of (K,L) GSC
combiner is given by

Zm =
K∑

j=1

Xj
m, m = 1, 2, . . . ,M, (4)

where X1
m,X

2, . . . , XK
m are the K largest among

X
(1)
m ,X

(2)
m , . . . , X

(L)
m .

Since the random variables X
(l)
m for l = 1, 2, . . . , L

and m = 2, . . . ,M are i.i.d., the random variables,
Z2, Z3, . . . , ZM are also i.i.d. With this, the symbol error
probability (SEP), P (K,L)GSC

s , is given by

P
(K,L)GSC
s = Prob (Z1 < max(Z2, . . . , ZM ))

= 1 − Prob (max(Z2, . . . , ZM ) < Z1) ,

= EZ1

[
1 −

M∏
m=2

Prob(Zm < Z1)

]

= 1 −

∞∫
z=0

[
FZ2 (z)

]M−1
fZ1 (z)dz, (5)

Fig. 1. Proposed (K,L)GSC receiver forM -ary NCFSK signals.

where FZ2(z) is the cdf of the random variable Z2 and fZ1(z)
is the pdf of the random variable Z1. The bit error probability
P

(K,L)GSC
b is then given by [1]

P
(K,L)GSC
b

=
M

2(M − 1)
P

(K,L)GSC
s . (6)

In order to obtain FZ2(·) and fZ1(·) we make use of the fol-
lowing result [14].
Let U1, U2, . . . , UL be i.i.d. exponential random variables

with mean µU . LetUj:L, j = 1, 2, . . . , L be the order statistics
of U1, U2, . . . , UL such that U1:L ≥ U2:L ≥ · · · ≥ UL:L.
Then the cdf FV (x) and the pdf fV (x) of the random variable
V =

∑K
k=1 Uk:L are given by

FV (x) =
(L

K

)[
1 − e

− x
µU

K−1∑
l=0

( x
µU

)l

l!
+

L−K∑
l=1

(−1)K+l−1
(L − K

l

)(
K

l

)K−1

·

(
1 − e

−(1+ l
K

) x
µU

1 + l
K

−

K−2∑
m=0

(
−l

K

)m
(

1 − e
− x

µU

m∑
k=0

( x
µU

)k

k!

))]
, (7)

and

fV (x) =
(L

K

)[ xK−1e
− x

µU

µK
U

(K − 1)!
+

1

µU

L−K∑
l=1

(−1)K+l−1
(L − K

l

)(
K

l

)K−1

e
− x

µU ·

(
e

− lx
KµU −

K−2∑
m=0

1

m!

(
−lx

KµU

)m
)]

, (8)

respectively. Now, a) substituting µU = 1 in Eqn. (7) and us-
ing the resulting FV (x) in place of FZ2(z) in Eqn. (5), b) sub-
stituting µU = 1+γ in Eqn. (8) and using the resulting fV (x)
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in place of fZ1(z) in Eqn. (5), and c) performing the integra-
tion, we obtain the following expression1 for P (K,L)GSC

s :

P
(K,L)GSC
s = 1 −

(L

K

)M
M−1∑
i=0

L−Ki∑
li=1i

K−2i∑
mi=0i

mi∑
ki=0i

M−1−i∑
n=0

n∑
s=0

K−1s∑
rs=0s

L−Kn−s∑
qn−s=1n−s

(−1)n
(

M−1
i

)(
M−1−i

n

)(
n
s

)
T M−1−i−n
1

µ
k1+···+ki+r1+···+rs
2[

i∏
p=1

b(lp)(−lp/K)mp

kp!

]
1∏s

j=1
rj !

[
n−s∏
j=1

b(qj)

1 +
qj
K

]
· (R1 + R2 − R3), (9)

where

R1 =
1

µK
1 (K − 1)!

Γ(b+K)(
1

µ1
+ a

)b+K
, (10)

R2 =
1
µ1

L−K∑
l=1

b(l)
Γ(b+ 1)(

a+ 1
µ1

+ l
Kµ1

)b+1 , (11)

and

R3 =
1
µ1

L−K∑
l=1

K−2∑
m=0

b(l)
m!

( −l
Kµ1

)m Γ(m+ b+ 1)(
a+ 1

µ1

)m+b+1 . (12)

The other terms in Eqns. (9),(10),(11),(12) are defined as fol-
lows:

µ1 = 1 + γ
µ2 = 1

a =
i+ n+ q1 + · · · + qn−s

µ2

b = k1 + · · · + ki + r1 + · · · + rs

b(l) = (−1)K+l−1
(L−K

l

)(
K

l

)K−1

T1 = 1 +
L−K∑
l=1

b(l)

1 + l
K

−
L−K∑
l=1

K−2∑
m=0

b(l)
(−l
K

)m

. (13)

The summation
∑εN

ψN=ξN , used in Eqn. (9), is defined as

εN∑
ψN=ξN

=

ε1∑
ψ1=ξ1

ε2∑
ψ2=ξ2

· · ·
εN∑

ψN=ξN

. (14)

Finally, CN is a constant vector of dimension N with each
element being C.
We note that, when K = 1, the proposed GSC scheme

chooses the maximum of Z1, Z2, . . . , ZM where Zm =
max(X(1)

m ,X
(2)
m , . . . , X

(L)
m ), which is same as the scheme

1The derivation of this expression is given in the Appendix.

proposed by Chyi el al in [3]. By substituting K = 1 in Eqn.
(9), we obtain the corresponding SEP as

P
(1,L)GSC
s = 1 −

L(M−1)∑
n=0

L−1∑
l=0

(−1)l+n
(L(M − 1)

n

)(L− 1
l

)
× L

1 + l + n+ nγ
. (15)

The above expression can be further simplified and is shown
[19] to reduce to exactly the Eqn.(11) in [3].
On the other hand, when K = L, the proposed GSC

scheme, for each hypothesis m, m = 1, 2, . . . ,M , combines
the energies across all the L antenna paths before the bit detec-
tion process. Since we do not assume knowledge of random
fade amplitudes and phases on each antenna path, this special
case turns out to be the optimum square-law combiner with L-
antenna diversity in [4]. By substituting K = L in Eqn. (9),
we obtain the corresponding SEP as

P
(L,L)GSC
s = 1 −

M−1∑
n=0

L−1n∑
ln=0n

(−1)n
(M − 1
n

)Γ(l1 + · · · + ln + L)
(L− 1)!

∏n

p=1 lp!

× (1 + γ)l1+··+ln

(n+ 1 + nγ)l1+··+ln+L
. (16)

Here again, the above expression can be further simplified and
is shown [19] to reduce to Eqn.(23) in [4]. Thus, our gener-
alized (K,L)GSC scheme and analysis encompass the previ-
ously reported schemes by Chyi et al in [3] and Hahn in [4] as
special cases forK = 1 andK = L, respectively.

IV. RESULTS AND DISCUSSION

In this section, we present numerical results illustrating the
bit error performance of the proposed (K,L) GSC receiver for
different values of modulation alphabet size (M ), number of
receive antennas (L), and number of square-law detector out-
puts combined (K). Fig. 2 shows the bit error performance
of the GSC receiver for 8-ary NCFSK with L = 5. The num-
ber of paths combined, K, is varied from 1 to 5. As expected,
the performance improves as the number of paths combined
is increased. It is noted that the K = 1, L = 5 curve cor-
responds to the performance of Chyi’s maximum output se-
lection combining scheme. It is observed that by increasing
K from 1 to 2 (i.e., combining one more path compared to
Chyi’s SC scheme) the performance improves by about 1 dB
at a BER of 10−5. The K = L = 5 curve corresponds
to the optimum square-law combining scheme performance,
which represents the best possible performance for M = 8
and L = 5. It is observed that close to optimum square-law
combiner (K = L = 5) performance can be achieved just by
combining K = 3 out of L = 5 available paths (due to di-
minishing returns at increased values of K). This can result
in reduced receiver complexity without incurring much loss
compared to the optimum performance.
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Fig. 2. Bit error performance of the GSC receiver for 8-ary NCFSK (M = 8)
for different values ofK (= 1, 2, 3, 4, 5) with L = 5.

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 dB

 B
it 

E
rr

or
 R

at
e

L=3, K=1,M=2
L=3, K=2,M=2
L=3, K=3,M=2
L=3, K=1,M=4
L=3, K=2,M=4
L=3, K=3,M=4
L=3, K=1,M=8
L=3, K=2,M=8
L=3, K=3,M=8

Fig. 3. Bit error performance of the GSC receiver for M -ary NCFSK for
different values ofM (= 2, 4, 8) with L = 3 andK = 1, 2, 3.

Fig. 3 gives the comparative performance of binary, 4-ary
and 8-ary NCFSK schemes with L = 3 path diversity and
(K, 3) GSC reception, K = 1, 2 and 3. From Figure 3, it is
observed that, for given K and L, bit error performance can
be improved by increasing the modulation alphabet size, M .
Fig. 4 also shows the performance ofM -ary NCFSK schemes
for various values of M (= 2, 4, 8, 16, 32, 64) using a (3, 7)
GSC receiver. From Fig. 4, it is observed that, by combin-
ing less than half the total number of available paths, signifi-
cantly good error performance can be obtained by increasing
the modulation alphabet size.

Fig. 5 illustrates the bit error performance as a function of
the number of paths combined (K), for a given number of
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Fig. 4. Bit error performance of the GSC receiver forM -ary NCFSK with
K = 3, L = 7, andM = 2, 4, 8, 16, 32, 64, 128.

available paths (L = 10) at a given operating SNR per bit
(Eb/N0 = 10 dB), for various values of modulation alphabet
size (M = 2, 4, 8, 16, 32, 64, 128). Fig. 5 illustrates the num-
ber of paths combined (K) beyond which the performance sat-
urates (i.e., the value of K beyond which diminishing returns
sets in). For example, when the modulation alphabet size M
is small, the saturation occurs at lower values ofK, and larger
K becomes beneficial whenM is made larger.

V. CONCLUSIONS

We proposed and analyzed the bit error performance of a
GSC receiver for M -ary NCFSK signals on i.i.d. Rayleigh
fading channels with L antennas at the receiver. For each of
the M hypotheses, the receiver combines the K largest out-
puts among the L available square-law detector outputs before
proceeding to the bit detection process. We derived a closed-
form expression for the bit error probability of the proposed
(K,L) GSC receiver, and presented numerical results illus-
trating the bit error performance of this receiver for different
values ofM , K, and L. Interestingly, we could show that our
generalized (K,L) GSC scheme and analysis encompass the
previously reported schemes/analyses by Chyi et al and Hahn
as special cases forK = 1 andK = L, respectively.

APPENDIX

VI. DERIVATION OF EQN. (9)

In this Appendix, we present the derivation of Eqn. (9).
We first arrive at a simplified expression for [FZ2(z)]

M−1 as
follows. Define

C2(m, z) = e
− z

µ2

m∑
l=0

(
z

µ2

)l

l!
, (17)
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Fig. 5. Bit error performance of the GSC receiver forM -ary NCFSK as a
function of K for L = 10, Eb/N0 = 10 dB, and for various values of M
(= 2, 4, 8, 16, 32, 64, 128).

V2(z) = e
− z

µ2

K−1∑
l=0

(
z

µ2

)l

l!
, (18)

and

W2(z) =
L−K∑
l=1

b(l)

1 + l
K

e
−(1+ l

K
) z
µ2 , (19)

where b(l) is defined as in Eqn. (13). With the above defini-
tions, FZ2(z) can be written as

FZ2
(z) =

(L

K

)[
H2(z) +

L−K∑
l=1

K−2∑
m=0

b(l)(−
l

K
)mC2(m, z)

]
, (20)

where

H2(z) = T1 − V2(z) − W2(z). (21)

Upon expanding [FZ2(z)]
M−1, we obtain

[
FZ2

(z)
]M−1

=
(L

K

)M−1
M−1∑
i=0

(M − 1

i

)
[H2(z)]M−1−i

L−Ki∑
li=1i

K−2i∑
mi=0i{

i∏
p=1

b(lp)

(
−

lp

K

)mp

C2(mp, z)

}
. (22)

In the above, lp and mp are integers which are implicitly de-
fined as follows. For a given i, l andm are both vectors each of
dimension i, i.e., l = (l1, l2, ..., li) andm = (m1,m2, ...,mi).
After the two summations in Eqn. (22), the product index p
runs from 1 to i, as the number of product terms is the same as
the dimension of l (or m). Upon expanding

∏i
p=1 C2(mp, z),

Eqn. (22) can be simplified as

[FZ2
(z)]M−1 =

(L

K

)M−1
M−1∑
i=0

(M − 1

i

)L−Ki∑
li=1i

K−2i∑
mi=0i

mi∑
ki=0i

1∏i

p=1
kp!µ

kp
2{

i∏
p=1

b(lp)

(
−

lp

K

)mp

}
e

− iz
µ2 z

k1+···+ki [H2(z)]M−1−i
.(23)

Expanding [H2(z)]
M−1−i using Eqns. (13), (18) and (19), we

obtain

[H2(z)]M−1−i =

M−1−i∑
n=0

(−1)n
(M − 1 − i

n

)
T M−1−i−n
1

[V2(z) + W2(z)]n

=

M−1−i∑
n=0

n∑
s=0

(−1)n
(M − 1 − i

n

)(n

s

)
T M−1−i−n
1

[V2(z)]s[W2(z)]n−s
. (24)

From Eqn. (18), [V2(z)]
s can be written as

[V2(z)]s = e
− sz

µ2

K−1s∑
rs=0s

s∏
j=1

zrj

µ
rj

2 rj !
. (25)

From Eqn. (19), [W2(z)]
n−s can be written as

[W2(z)]n−s=

L−Kn−s∑
qn−s=1n−s

{
n−s∏
j=1

b(qj)

(1 +
qj
K

)

}
e

−
z(n−s+q1+···+qn−s)

µ2 .(26)

Substituting Eqns. (25), (26) in Eqn. (24), we obtain
[H2(z)]

M−1−i, and the final expression for [H2(z)]
M−1−i is

given by

[H2(z)]M−1−i =

M−1−i∑
n=0

n∑
s=0

K−1s∑
rs=0s

L−Kn−s∑
qn−s=1n−s

(−1)n
(

M−1−i
n

)(
n
s

)
T M−1−i−n
1

µ
r1+···+rs
2

∏s

j=1
rj !

n−s∏
j=1

b(qj)

(1 +
qj
K

)
· e

−
z(n+q1+···+qn−s)

µ2 z
r1+···+rs (27)

Substituting Eqn. (24) in Eqn. (23), we obtain [FZ2(z)]
M−1.

The final expression for [FZ2(z)]
M−1 is then given by

[FZ2
(z)]M−1 =

(L

K

)M−1
M−1∑
i=0

(M − 1

i

)L−Ki∑
li=1i

K−2i∑
mi=0i

mi∑
ki=0i

1∏i

p=1
kp!µ

kp
2

M−1−i∑
n=0

n∑
s=0

K−1s∑
rs=0s

L−Kn−s∑
qn−s=1n−s

(−1)n
(M − 1 − i

n

)(n

s

)

T M−1−i−n
1

µ
r1+···+rs
2

∏s

j=1
rj !

{
n−s∏
j=1

b(qj)

(1 +
qj
K

)

}{
i∏

p=1

b(lp)

(
−

lp

K

)mp

}

e
−

z(i+n+q1+···+qn−s)
µ2 z

k1+···+ki+r1+···+rs . (28)

2777



In Eqn. (28) the term that is important to us in complet-

ing the error probability analysis is e− z(i+n+q1+···+qn−s)
µ2 ×

zk1+···+ki+r1+···+rs ∆= e−azzb. When this term is integrated
with fZ1(z), we obtain [19]

N(a, b, µ1) =

∫ ∞

z=0

e−azzbfZ1 (z)dz

=
(L
K

)
[R1 + R2 − R3] , (29)

where R1, R2 and R3 are defined in Eqns. (10), (11) and
(12), respectively. The second step in Eqn. (29) is obtained
by substituting Eqn. (8) (with µU = µ1) in the first step and
carrying out the integration, where we have used the following
result [18] to simplify the integral:

∞∫
x=0

e−axxbdx =
Γ(b+ 1)
ab+1

. (30)

Combining Eqn. (29) with Eqn. (28), we obtain

∞∫
z=0

[FZ2
(z)]M−1

fZ1
(z)dz =

(L

K

)M
M−1∑
i=0

(M − 1

i

)L−Ki∑
li=1i

K−2i∑
mi=0i

mi∑
ki=0i

1∏i

p=1
kp!µ

kp
2

M−1−i∑
n=0

n∑
s=0

K−1s∑
rs=0s

L−Kn−s∑
qn−s=1n−s

(−1)n
(

M−1−i
n

)(
n
s

)
T M−1−i−n
1

µ
r1+···+rs
2

∏s

j=1
rj !

n−s∏
j=1

b(qj)

(1 +
qj
K

)

{
i∏

p=1

b(lp)

(
−

lp

K

)mp

}
[R1 + R2 − R3] . (31)

Finally, substituting Eqn. (31) in Eqn. (5), we obtain Eqn. (9).
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