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Abstract

In this paper, we analyze the code acquisition perfor-
mance of a multicarrier direct-sequence spread spectrum
(DS-SS) system in the presence of data modulation (i.e.,
no pilot) on multipath Rayleigh fading channels. The mo-
tivation of this analysis arises from the possibility of ben-
eficially using multicarrier DS-SS in global positioning
system (GPS) pseudolites, where unmodulated pilot is not
available. We consider equal gain combining (EGC) and
selection combining (SC) of subcarrier correlator outputs
for each timing hypothesis. We evaluate probability of in-
correct decision and mean acquisition time performance
of the multicarrier DS-SS code acquisition scheme. We
show that significant reduction in the mean acquisition
time (MAT) can be achieved using the multicarrier DS-
SS approach for GPS pseudolites.

Keywords – Multicarrier systems, DS-SS, code acquisition, GPS

pseudolites.

1 Introduction

Multicarrier code division multiple access (MC-CDMA)
using direct-sequence spread spectrum (DS-SS) has
drawn significant research attention recently due to its
advantages including robustness in multipath fading, re-
sistance to narrowband interference, and non-contiguous
bandwidth operation [1],[2]. Fast code acquisition is an
important performance requirement in DS-SS systems. In
cellular DS-CDMA systems, pilot spreading code signals
are typically sent without any data modulation on them
(i.e., all 1’s data) to enable fast code acquisition. How-
ever, in DS-SS systems like global positioning system
(GPS), the spread signal is always data modulated. The
GPS transmitter spreads a 50 bps data stream using a 1023
chip Gold sequence at a chip rate of 1 Mcps. Hence, the
code acquisition must be performed in the presence of
data modulation. Cheng, in [3], has studied the loss in
acquisition performance due to data modulation in paral-
lel acquisition schemes, assuming an AWGN channel.

Our focus in this paper is the analysis of the code-
acquisition performance of a multicarrier DS-SS system
with data modulation (i.e., no pilot) on multipath Rayleigh
fading channels. The motivation of this analysis arises

from the possibility of beneficially using multicarrier DS-
SS in GPS pseudolites. Pseudolites are small, ground-
based transmitters that emulate the signal structure of the
GPS satellite transmitters, with an intent to augment the
GPS system performance in terms of enhanced location
accuracy [4],[5]. Pseudolite transmissions are envisaged
to provide better than one meter accuracy for various ap-
plications including indoor location, aircraft landing, mo-
bile phones, etc. A main concern with the ground-based
pseudolite transmission is the effect of multipath fading.
We note that the use of multicarrier DS-SS for pseudolite
transmissions can be beneficial in combating the effects of
a multipath fading. Several performance and system com-
plexity questions arise in this context. In this paper, we
address one such performance question; that is, analyze
the code-acquisition performance of multicarrier DS-SS
with data modulation (i.e., no pilot) on multipath Rayleigh
fading channels. We evaluate probability of incorrect de-
cision and mean acquisition time performance of the mul-
ticarrier DS-SS code acquisition scheme. We show that
significant reduction in the mean acquisition time (MAT)
can be achieved using the multicarrier DS-SS approach
for GPS pseudolites.

The rest of the paper is organized as follows. In Sec-
tion 2, the system model including the multicarrier DS-
SS transmitter, channel model and the code acquisition
system are presented. Section 3 presents the mean acqui-
sition time performance analysis. Numerical results and
discussions are presented in Section 4. Conclusions are
presented in Section 5.

2 System Model

Consider a multicarrier system where the available band-
width W is divided into M equal-width, disjoint fre-
quency bands, such that the bandwidth of each sub-band
is given by Wm = W/M , m = 1, 2, ...,M. Each sub-
band carries a narrowband DS-SS waveform of bandwidth
given by Wm = (1 + a)/MTc, m = 1, 2, ...,M , where
0 < a ≤ 1 is the measure of excess bandwidth of the
system, and MTc is the chip duration of the multicarrier
DS-SS system.

We consider the multicarrier DS-SS transmitter shown
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Figure 1: Multicarrier DS-SS transmitter.

in Fig. 1. The transmitted signal is given by

s(t) =
√

2Ec

∞∑
n=−∞

dqcnh(t−nMTc)
M∑

m=1

cos(ωmt+θm), (1)

where {dq}, q = �n/N� represents the transmitted data,
N is the number of chips per data bit, {cn} represents
the spreading sequence, h(t) is the impulse response of
the chip wave shaping filter, M represents the number of
sub-bands each of width W/M Hz, and ωm and θm are
themth subcarrier’s frequency and phase, respectively. In
pilot-aided acquisition schemes, {dq} will be all 1’s data,
whereas in GPS like transmissions, {dq} will correspond
to the information data bits. In this paper, we consider
two cases; {dq} being random data (RD) stream and al-
ternate data (AD) stream (i.e., 10101010... stream, which
represents the worst case data transitions scenario). The
received signal, r(t), is given by

r(t) =
√

2Ec

∞∑
n=−∞

d�(n+D)/N�cn+D (2)

·h(t− nMTc − ε)
M∑

m=1

αmcos(ωmt+ θ′
m) + n(t),

where D is the phase of the code chip sequence, ε is the
unknown time delay given by ε = DMTc + τ and τ is
assumed to be uniformly distributed over [0,MTc), αm

represents the fade amplitude on themth subcarrier which
is a Rayleigh random variable with E[α2

m] = 1, φm is the
channel introduced random phase on the mth subcarrier
which is a uniform random variable over [0, 2π), θ′

m =
θm + φm, and n(t) is the AWGN with a psd of η0/2.

Fig. 2 shows the code-acquisition scheme at the mul-
ticarrier DS-SS receiver. There are M noncoherent cor-
relators, one on each of the M subcarrier branches. If
U1 is the number of hypothesis to be tested in a single-
carrier system (M = 1), then the number of hypothesis
to be tested in a multicarrier system (M > 1) will be
U = U1/M (since one chip duration in a multicarrier sys-
tem is M times that of a single-carrier system). For each
timing hypothesis that is tested, these correlators generate
M output statistics z(j)

m , where z(j)
m is the mth correla-

tor output for the jth hypothesis, m = 1, 2, ...,M and
j = 1, 2, ...U . We consider two ways of combining the
M correlator outputs for each timing hypothesis; equal
gain combining (EGC) and selection combining (SC). In
EGC, the combiner output statistic for the jth hypothe-
sis is given by Z(j) =

∑M
m=1 z

(j)
m . In SC, the maximum
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Figure 2: Block diagrams of a) multicarrier DS-SS code-acquisition
scheme, and b) mth branch noncoherent correlator.

among the M correlator outputs is taken as the combiner
output, i.e., Z(j) = max(z(j)

1 , z
(j)
2 , ..., z

(j)
M ). The hypoth-

esis for whichZ(j), j = 1, 2, ...U is maximum is declared
as the correct timing hypothesis.

3 Performance Analysis

In this section, we present the analysis of the performance
of the code-acquisition scheme described above. Specifi-
cally, we derive the expressions for the probability of in-
correct decision, which is used in the computation of the
mean acquisition time. We define the probability of in-
correct decision, Pe, as the probability that the maximum
Z(j) does not correspond to the correct timing hypoth-
esis. We take the integration time for each hypothesis
in the noncoherent correlator to be one data bit duration.
The one bit integration period is divided into J = MJ1
subintervals, where J1 is the number of subintervals when
M = 1. Since we take the total integration time to be one
data bit duration, only one of the J subintervals will en-
counter data transition and hence signal loss. We model
this signal loss due to data transitions by a uniform r.v
β, and obtain the correlator output statistics (mean and
variance) for each subinterval, conditioned on β and Hk,
k = 0, 1, where H0 and H1 correspond to the incorrect
and correct hypothesis, respectively. The output of the
mth correlator branch, z(j)

m , is obtained by summing up
the output from of all the J subintervals. We then ob-
tain the pdf of the combined signal output, Z(j), by using
the characteristic function of z(j)

m , and applying Cauchy
residue theorem. From the pdf of the combined signal
output, we obtain the probability of incorrect decision, Pe.

0-7803-7467-3/02/$17.00 ©2002 IEEE. 147



3.1 Correlator Output Statistics

As is [6], to keep the analysis tractable, αm and φm are
assumed to be constant and independent in each of the
subintervals of the mth branch noncoherent correlator.
So, we have the transfer function of the jth subinterval
for the mth subcarrier to be αm,je

jφm,j , where the αm,j

and the φm,j are independent and identically distributed
(i.i.d) Rayleigh random variables with a unit second mo-
ment, and i.i.d. uniform random variables over [0, 2π),
respectively.

Now, we have the inphase and quadrature components,
obtained by integrating overNJ chips in the jth subinter-
val of the mth noncoherent correlator to be

Y
(I)
m,j =

√
Ec

M
αm,jS(ε)cos(θ′

m,j) +N
(I)
Ym,j

, (3)

Y
(Q)
m,j =

√
Ec

M
αm,jS(ε)cos(θ′

m,j) +N
(Q)
Ym,j

, (4)

where

S(ε) =
NJ−1∑
n′=0

∞∑
n=−∞

d�(n+D)/N�cn+Dcn′ (5)

·x[(n′ − n)MTc − ε],

N
(I)
Ym,j

=
NJ −1∑
n′=0

cn′ [Lpf{n′
m(t)

√
2cos(ωmt)}t=n′MTc ], (6)

N
(Q)
Ym,j

=
NJ −1∑
n′=0

cn′ [Lpf{n′
m(t)

√
2sin(ωmt)}t=n′MTc ]. (7)

In Eqns. (6) and (7), the term n′
m(t) is n(t) after

passing through the mth bandpass filter, and Lpf repre-
sents a low-pass filtering operation after which double
frequency terms can be ignored. Note that N (I)

Ym,j
and

N
(Q)
Ym,j

are Gaussian by assumption [1]. The variances of

N
(I)
Ym,j

and N (Q)
Ym,j

are given by σ2
m,j

�
= var{N (I)

Ym,j
} =

var{N (Q)
Ym,j

} = NJη0/2.

It is assumed that S(ε) has two values: µ1 under the
condition of H1 and µ0 under the condition of H0. Since
X(f) satisfies the Nyquist criterion, we have x[(n′ −
n)MTc] = 0 for n′ �= n, µ1 and µ0 are given by ±βN
and

∑NJ−1
n′=0 d�(n′+D)/N�cn′cn′+D, respectively. In this,

β is a random variable, uniformly distributed between
[0,1], which accounts for the signal loss due to data mod-
ulation.

The output due to the jth subinterval in the non-
coherent correlator of the mth branch is given by
zm,j = {Y (I)

m,j}2 + {Y (Q)
m,j }2. For given αm,j , θ

′
m,j

and µk, we have Y (I)
m,j and Y (Q)

m,j are independent Gaus-
sian random variables with variance σ2

m,j and means√
Ec

M αm,jµkcos(θ′
m,j) and

√
Ec

M αmµksin(θ′
m,j), respec-

tively. Therefore, the conditional probability density
function of zm,j , conditioned on αm,j and Hk(k = 0, 1),

is a non-central χ2 random variable with two degrees of
freedom. After removing the conditioning on θ′

i,j , we get

pzm,j|αm,j ,Hk,β(zm,j|αm,j , Hk, β) (8)

=
1

2σ2
m,j

I0

(√
Ec

M zm

σ2
m,j

µkαm,j

)

·exp

(
− zm + Ec

M µ2
kα

2
m,j

2σ2
m,j

)
,

where I0(x) is the zeroth modified Bessel function of the
first kind. After removing the conditioning on αm,j , we
get

pzm,j|Hk,β(zm,j |Hk, β) =
1

2vm,j,k
exp

(
− zm,j

2vm,j,k

)
,

(9)

where vm,j,k = σ2
m,j +m2

k/2 and mk =
√

Ec

M µ2
k.

3.2 Probability of Incorrect Decision

As in [6], to keep the analysis tractable, we assume that
µ0 = 0. This means that the shifts of the spreading se-
quences are orthogonal irrespective of the data modula-
tion, and, therefore, the noise out of the parallel branches
are uncorrelated. The probability of incorrect decision
(i.e., the probability that the maximum Z(j) does not cor-
respond to the correct timing hypothesis) is given by

Pe = 1 −
∫ ∞

0
pz|H1,β(z|H1, β) (10)

·
[ ∫ z

0
pz|H0,β(y|H0, β)dy

]U−1

dz,

where U is the number of hypotheses to be tested and
pz|H1,β(z|H1, β) is the conditional pdf of the symbol
combiner output z conditioned on Hk and β. We con-
sider two symbol combining methods namely, equal gain
combining (EGC) and selection combining (SC).

A. Equal Gain Combining
The output of the equal gain combiner is given by

z =
M∑

m=1

zm, (11)

where zm, the output of the mth branch noncoherent cor-
relator, is given by

zm =
J∑

j=1

zm,j . (12)

In our analysis, we have taken the total integration time
to be one data bit. In that case, only one of the subinter-
val in any of the mth branch noncoherent correlator will
encounter data transition and we will assume that to be
the first subinterval itself. Then, the first subinterval that
encounters data transition will have µ1 = ±βNJ and the
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rest of the J−1 subintervals in themth branch noncoher-
ent correlator will have µ1 = ±NJ .

In every zm, all the zm,j’s are independent random
variables. So, we have

pzm|Hk,β(zm|Hk, β) =
1

2πj

∮
exp(−szm)

J∏
j=1

Φzm,j|Hk,β(s)ds,

(13)
where Φzm,j|Hk,β is the characteristic function of of zm,j ,
conditioned on Hk and β, and is given as

Φzm,j|Hk,β(s) =

∫ ∞

0

exp(szm,j)pzm,j |Hk,β(zm,j |Hk, β)dzm,j

=
1

1 − 2vm,j,ks
. (14)

To obtain Φzm,j|Hk,β(s) for the first subinterval in the
mth branch that encounters data transition, we will have
to replace vm,1,1 in the Eqn. (14), by σ2

m,j + (βNJ )2/2
and σ2

m,j +((β+1)NJ)2/8 for AD and RD cases respec-
tively, and vm,1,0 = σ2

1,1 for both AD and RD.
Since the zm’s are independent random variables, the

pdf of z given Hk and β is

pz|Hk,β(z|Hk, β) =
1

2πj

∮
exp(−sz)

M∏
m=1

Φzm|Hk,β(s)ds.

(15)

When H1 is true, we will have

pz|H1,β(z|H1, β) =
1

2πj

∮
exp(−sz)

(1 − 2vm,2,1s)MJ−M (1 − 2vm,1,1s)M
ds.

(16)

From the Cauchy residue theorem [8], Eqn. (16) equals

pz|H1,β(z|H1, β) =
f1( 1

2vm,2,1
, z)

(2vm,2,1)MJ−M(MJ − M − 1)!
(17)

+
f2( 1

2vm,1,1
, z)

(M − 1)!(2vm,1,1)M
,

where

f1(s, z) =
∂MJ−M−1

∂sMJ−M−1

(
(−1)MJ−M−1exp(−sz)

(1 − 2vm,1,1s)M

)
, (18)

f2(s, z) =
∂M−1

∂sM−1

(
(−1)M exp(−sz)

(1 − 2vm,2,1s)MJ−M

)
. (19)

WhenH0 is true, we will have vm,j,0 = σ2
1,1. So, we will

obtain

pz|H0,β(z|H0, β) = pz|H0(z|H0), (20)

=
1

2πj

∮
exp(−sz)

(1 − 2σ2
1,1s)MJ

ds.

Again, from Cauchy residue theorem [8], we get

pz|H0,β(z|H0, β) =
zMJ−1exp(− z

2σ2
1,1

)

(2σ2
1,1)MJ (MJ − 1)!

. (21)

The integration of Eqn. (21) gives [9]∫ z

0

pz|H0,β(y|H0, β) = 1 −
MJ−1∑

k=0

(
z

2σ2
1,1

)k exp(− z
2σ2

1,1
)

k!
.

(22)

The integration of Eqn. (10) is done numerically.
B. Selection Combining

The output of the selection combiner is given by

z = max(z1, z2..., zM), (23)

where zm,m = 1, 2, ...,M , is given by Eqn. (12). The
conditional pdf of z conditioned on Hk and β is given by

pz|Hk
(z|Hk) =

∂ pr{z1 ≤ z, z2 ≤ z, ..., zM ≤ z|Hk, β}
∂z

(24)

The conditional pdf of zm,m = 1, 2, ...,M , given Hk

and β is obtained from Eqn. (17) and Eqn. (21) by re-
placing M by M = 1. The evaluation of Eqn. (24) and
Eqn. (10) is done numerically.

3.3 Mean Acquisition Time

From the probability of incorrect decision, the mean ac-
quisition time for the acquisition procedure is given by
[10]

Ta = UTi + (UTi + TP )
Pe

(1 − Pe)
, (25)

where U is the number of hypotheses to be tested, Ti is
the noncoherent correlator integration time for each hy-
pothesis (which is taken to be 1 bit duration) and TP is
the penalty time incurred in case of a incorrect decision.

4 Numerical Results

In Figs. 3, 4 and 5, we plot the probability of incorrect
decision, Pe, for both single-carrier (M = 1) as well as
multicarrier (M = 2, 4) DS-SS, for no data (ND) mod-
ulation (Fig. 3), alternate data (AD) modulation (Fig.
4), and random data (RD) modulation (Fig. 5). Results
for both equal gain combining (EGC) and selection com-
bining (SC) are given for the multicarrier scheme. The
number of subintervals, J1, for the single-carrier system
is taken to be 4 (so that the number of subintervals in
the multicarrier system, J = MJ1) and the value of β
is taken to be 0.5. As in GPS, the chip rate is 1 Mcps, the
data rate is 50 bps (i.e., 1 bit time = 20 msec), the number
of chips per bit N1 = 20460, and the number of hypothe-
ses to be tested U1 = 1023. It is observed that the mul-
ticarrier system (both EGC and SC) provides much lower
probability of incorrect decision compared to the single-
carrier system. Also, as the number of subcarriers M is
increased, Pe decreases. For a given M , EGC performs
better than SC.

In Figs. 6 and 7, we plot the mean acquisition time
(MAT) as a function of the number of subintervals, J1,
for both single-carrier (M = 1) as well as multicarrier
(M = 2, 4) DS-SS, for alternate data (AD) modulation
(Fig. 6) and random data (RD) modulation (Fig. 7) at an
Eb/η0 = MNEc/η0 of 22 dB. We have taken Ti = 20
msec (which is equal to one bit duration in GPS) and
TP = 1000Ti (i.e., 20 secs). Since U and Pe for mul-
ticarrier DS-SS are much smaller than those of a single-
carrier system, significant reduction in MAT is achieved
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Figure 3: Probability of incorrect decision, Pe, versus Ec/η0 perfor-
mance of single-carrier (M = 1) and multicarrier (M = 2, 4) DS-SS
with EGC and SC. No data modulation (ND).

using the multicarrier approach. For the considered case
of large SNR (Eb/η0 = 22 dB), it is observed that, as
the number of subintervals is increased the MAT for both
the AD and RD cases decreases due to more number of
independent observations being combined.

5 Conclusion

Motivated by the possibility of using multicarrier DS-SS
in GPS pseudolites, we analyzed the probability of incor-
rect decision and mean acquisition time performance of a
multicarrier DS-SS system in the presence of data modu-
lation (i.e., no pilot) on multipath Rayleigh fading chan-
nels. We considered equal gain combining and selection
combining of subcarrier correlator outputs for each tim-
ing hypothesis. We showed that significant reduction in
the mean acquisition time can be achieved using the mul-
ticarrier DS-SS approach for GPS pseudolites.
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Figure 7: Mean acquisition time for the multicarrier DS-SS acquisi-
tion system for random data (RD) case.
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