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Abstract—In this paper, we present an analysis for the bit error
rate (BER) performance of space-time block codes (STBC) from
generalized complex orthogonal designs for M -PSK modulation.
In STBCs from complex orthogonal designs (COD), the norms of
the column vectors are the same (e.g., Alamouti code). However,
in generalized COD (GCOD), the norms of the column vectors
may not necessarily be the same (e.g., the rate-3/5 and rate-7/11
codes by Su and Xia in [1]). STBCs from GCOD are of interest
because of the high rates that they can achieve (in [2], it has been
shown that the maximum achievable rate for STBCs from GCOD
is bounded by 4/5). While the BER performance of STBCs from
COD (e.g., Alamouti code) can be simply obtained from existing
analytical expressions for receive diversity with the same diver-
sity order by appropriately scaling the SNR, this can not be done
for STBCs from GCOD (because of the unequal norms of the col-
umn vectors). Our contribution in this paper is that we derive an-
alytical expressions for the BER performance of any STBC from
GCOD. Our BER analysis for the GCOD captures the perfor-
mance of STBCs from COD as special cases. We validate our
results with two STBCs from GCOD reported by Su and Xia in
[1], for 5 and 6 transmit antennas (G5 and G6 in [1]) with rates
7/11 and 3/5, respectively.

I. INTRODUCTION

A generalized complex orthogonal design (GCOD) in vari-
ables x1, x2, ..., xk of size n and rate k/p, p ≥ n is a p × n
matrix G such that

• the entries of G are complex linear combinations of
x1, x2, ..., xk and their complex conjugates x∗

1, x
∗
2, ..., x

∗
k.

• G∗G = D where G∗ is the complex conjugate and trans-
pose of G, and D is an n × n diagonal matrix with the
(i, i)th diagonal element of the form

li,1|x1|2 + li,2|x2|2 + ... + li,k|xk|2

where all the coefficients li,1, li,2, ...., li,k are strictly positive
numbers. Complex orthogonal designs (COD) are special cases
of GCOD where

li,1 = li,2 = .... = li,k, ∀i,

Su and Xia, in [1], has given two space-time block codes
(STBC) from GCOD (G5 with 5 transmit antennas and G6

with 6 transmit antennas).

It is known that the bit error rate (BER) performance of or-
thogonal STBCs from COD’s can be simply obtained from
existing analytical results for receive diversity maximal ratio
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combining (MRC) with the same diversity order by appropri-
ately scaling the SNR [3]. However, this can not be done for
STBC’s from GCOD’s. In this paper, our focus is to derive an-
alytical expressions for the BER performance of STBCs from
GCOD’s for M -PSK modulation. We show that our general
BER expressions absorb the results for STBC’s from GCOD’s
as special cases.

The rest of the paper is organized as follows. Section II gives
the system model. Section III presents the performance anal-
ysis. Section IV gives the numerical results and discussions.
Conclusions are given in V.

II. SYSTEM MODEL

Consider a wireless communication system with n transmit
antennas and m receive antennas. Assume that the m × n
channel matrix H is static for the code length which is p time
slots. The entries of H, hij’s are independent complex Gaus-
sian random variables (i.e., the fade amplitudes are Rayleigh
distributed). The m × 1 receive vector, yt, at time slot t can
be expressed as

yt = Hxt + ηt, (1)

where xt is the transmitted n × 1 complex symbol vector at
time t, and ηt is the m× 1 noise vector with independent zero
mean complex Gaussian random variables with variance No/2
per complex dimension.

For a code of length p, the transmitted code block X is given
by X = [xt,xt+1, · · · ,xt+p]T , where [.]T represents the trans-
pose operation. The corresponding received code block Y can
be expressed as

Y = H̃X + η, (2)

where H̃ is the block diagonal channel matrix given by

H̃ =




H 0 · · · 0
0 H · · · 0
...

...
. . .

...
0 0 · · · H


 , (3)

and the noise block η is given by η = [ηt, ηt+1, · · · , ηt+p]T .

If s(l) = V ejφl , l = 1, 2, · · · , κ are the complex symbols
taken from the M -PSK signal set to be transmitted in p time
slots, the transmitted code block X can be expressed in the
form
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X = Av, (4)

where v a 2κ × 1 vector, given by

v = [v1I , v2I , · · · , vkI , v1Q, v2Q, · · · , vkQ] , (5)

where vlI and vlQ, respectively, are the real and imaginary
parts of the lth complex symbol, s(l). A is the np × 2κ com-
plex matrix which performs the space-time coding on v. Now,
A = [A1,A2, · · · ,Ap], where Ai performs the linear opera-
tion at time slot i. Using this, the received code block Y in (2)
becomes

Y = Heqv + η, (6)

where Heq = H̃A is a mp × 2κ equivalent channel matrix.

For example, for Alamouti code with one receive antenna (i.e.,
n = κ = p = 2 and m = 1), the A, Heq, and v are given by

A =




1 0 j 0
0 1 0 j
0 −1 0 −j
1 0 −j 0


 , (7)

A1 =
[

1 0 j 0
0 1 0 j

]
, (8)

A2 =
[

0 −1 0 −j
1 0 −j 0

]
, (9)

Heq =
[

h1 h2 jh1 jh2

−h2 h1 jh2 −jh1

]
, (10)

v = [x1I , x2I , x1Q, x2Q]T . (11)

At the receiver, linear combining is performed. We assume
that the channel matrix H is perfectly known at the receiver.
We use the form of the optimum decision metric for the or-
thogonal STBCs presented in [4], which is given by

Ỹ = �(H∗
eqY) = Λv + η̃, (12)

where �(z) denotes the real part of z, Λ is a 2κ×2κ diagonal
matrix and η̃ = �(H∗

eqη) where ∗ denotes the Hermitian oper-
ator. η̃ can be shown to be WGN. Hence, the optimal receiver,
is taking the real and imaginary values from Ỹ and performing
symbol by symbol detection. From (12), the decision metric
for the lth complex symbol is given by

Z(l) = Ỹ(l) + jỸ(l + κ), l = 1, 2, · · · , κ. (13)

A. Equivalence to Generalized MRC

The system model and the decision metric presented above is
valid for STBC’s from both GCOD’s as well as from COD’s
In [3], the equivalence of the above decoding to receive di-
versity MRC has been shown for equal-weight STBCs. In the
following, we show that a non-equal weight orthogonal STBC
is equivalent to a MRC scheme in which the channels can be
classified into independent but not identically distributed sets.
From (12), the lth entry of Ỹ is given by

Ỹ(l) = Λl,lv(l) + η̃(l), (14)

where Λl,l is the lth diagonal entry of Λ and is given by [4]

Λl,l =
n−1∑
f=0

rff

p−1∑
i=0

|a(i)
fl |2, (15)

where rff is the (f, f)th component of H∗H, given by∑n
i=1 |hfi|2 and a

(l)
ij is the (i, j)th component of Al, and

η̃(l) = �(H(l)∗
eq η). H(l)

eq is the lth column of Heq. From
the definition of Heq, it can be shown that

η̃(l) = �

 m∑

i=1

n∑
j=1

hijai(l)ηj


 , (16)

where ai(l) = [a(1)
i,l , a

(2)
i,l , · · · , a(p)

i,l ] and ηj is p × 1 vector of
i.i.d noise samples. Define

h̃
(l)
ij = hij

p−1∑
f=0

|a(f)
il |2 ∀j, (17)

ãi(l) =
ai(l)∑p−1

f=0 |a(f)
il |2

∀i, l. (18)

Now (16) can be rewritten as

η̃(l) =
m∑

i=1

n∑
j=1

h̃
∗(l)
ij

(
η∗

j ã
∗
i (l) + e−j2ϕ

(l)
ij ãi(l)ηj

)
2

(19)

where ϕ
(l)
ij is the angle of h̃

(l)
ij . Letting

˜̃ηij =

(
η∗

j ã
∗
i (l) + e−j2ϕij ãi(l)ηj

)
2

, (20)

{ãi(l); i = 1, · · · , n} forms a set of orthonormal vectors for
all l (see Appendix A for proof of the orthogonality) Hence,
˜̃ηij forms a set of independent and identically distributed noise

variables for all i, j. It is also easy to show that E(h(l)
ij

˜̃ηij) =
0, and since both are Gaussian random variables, they are in-
dependent as well.

The same set of arguments hold for the imaginary part Ỹ(l +
κ) as well. Hence the combiner output for the lth symbol,
l = 1, 2, · · · , κ, can be expressed as
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Z(l) =
m∑

i=1

n∑
j=1

|h̃(l)
ij |2s(l) +

m∑
i=1

n∑
j=1

h̃
(l)∗
ij

˜̃ηij . (21)

It is noted that the combined output Z(l) in (21) is the same
as that of MRC scheme of nm receive diversity order with
independent but not identically distributed paths.

III. PERFORMANCE ANALYSIS

In this section, we derive an exact expression for the BER of
the orthogonal STBC schemes with non-equal weights. To
do that, we need to obtain the pdf of the angle of the deci-
sion variable Z(l) in (21). We observe that our formulation
in (21) has dissimilar sets of paths in which the channel gains
are independent and identically distributed within the sets and
non-identically distributed across the sets.

The pdf of the angle of Z̃(l), θl conditioned on φl and the
instantaneous SNR per bit γ(l) is given by [5]

fθ(θl|φl, γ
(l)

) =
e−aγ(l)

2π

+
e−aγ(l)

2π

√
4πaγ(l)cos(φl − θl)e

aγlcos2(φl−θl)

− e−aγ(l)

4π

√
4πaγ(l)cos(φl − θl)e

aγlcos2(φl−θl)erfc(
√

aγcos(φl − θl))

(22)

where erfc(x) = 2√
π

∫∞
x

e−t2dt, and a = log2M . P (θl ∈
[θL, θU )) is the probability of the phase angle θl lying in the
decision region [θL, θU ), which is given by

P (θl ∈ [θL, θU ))) =

∫ θU

θL

∫ ∞

0

fθ(θl|φl, γ
(l))fγ(γ(l))dγ(l)dθl. (23)

Let m
(l)
k denote the number of values i for which value of∑p−1

f=0 |a(f)
ip |2 is same, and let p

(l)
k denote this value. Let there

be K(l) such sets. Note that
∑K(l)

i=1 m
(l)
k = nm. The pdf of

γ
(l)
l is obtained as (see Appendix B for the derivation)

fγ(γ(l)) =
K(l)∑
k=1

m
(l)
k∑

i=1

C
(l)
i,k

(i − 1)!
γ(l)i−1

γ
(l)(i)
k

e−γ(l)/γ
(l)
k , (24)

where γ
(l)
k is the SNR per bit of the kth set and is given by

γ
(l)
k = p

(l)
k Eb/No. Define

IN (θU , θL, γ
(l)
k ) =

∫ ∞

0

∫ θU

θL

fθ(θl|φl, γ
(l))dθl

· 1
(N − 1)!

γ(l)N−1

γ(l)N
e−γ(l)/γ

(l)
k dγ(l). (25)

Then

P (θl ∈ [θL, θU ))) =
K(l)∑
k=1

m
(l)
k∑

i=1

C
(l)
i,kIi(θU , θL, γ

(l)
k ). (26)

Eqn (25) can be solved in closed-form as in [6] (Eqn. 18).

For equally probable symbols in M -PSK, the symbol error
rate on the lth symbol, P

(l)
s , is obtained as

P (l)
s = 2P (θl ∈ [π, π/M)). (27)

The bit error on the lth symbol, P
(l)
b , is obtained as

P
(l)
b =

∑M
i=1 eiP (θl ∈ Ri)

log2M
, (28)

where Ri = [ (2i−3)π
M , (2i−1)π

M ) and ei is the number of bit
errors made in the region Ri.

The average symbol error rate and bit error rate is obtained as

Ps =
1
κ

κ∑
l=1

P (l)
s , Pb =

1
κ

κ∑
l=1

P
(l)
b . (29)

For example, for 8-PSK

Ps =
2
κ

κ∑
l=1

P (θl ∈ [π, π/8)) (30)

Pb =
1
3κ

κ∑
l=1

[2P (θl ∈ [3π/8, π/8))

+ 4P (θl ∈ [5π/8, 3π/8))
+ 4P (θl ∈ [7π/8, 5π/8))
+ 4P (θl ∈ [π, 7π/8))]. (31)

It is noted that the BER expression in the above absorbs the
equal-weight condition the number of sets K(l) equal to the
total number of paths nm.

IV. RESULTS AND DISCUSSION

In this section, we present some numerical and simulation
results that illustrate the BER performance of STBCs from
GCOD’s G5 and G6, which are given by [1]

G5 =




x1 x2 x3 0 x4

−x∗
2 x∗

1 0 x3 x5

x∗
3 0 −x∗

1 x2 x6

0 x∗
3 −x∗

2 −x1 x7

x∗
4 0 0 −x∗

7 −x∗
1

0 x∗
4 0 x∗

6 −x∗
2

0 0 x∗
4 x∗

5 −x∗
3

0 −x∗
5 −x∗

6 0 x1

x∗
5 0 x∗

7 0 x2

−x∗
6 −x∗

7 0 0 x3

x7 −x6 −x5 x4 0




(32)
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G6 =




x1 x2 x3 0 x4 x8

−x∗
2 x∗

1 0 x3 x5 x9

x∗
3 0 −x∗

1 x2 x6 x10

0 x∗
3 −x∗

2 −x1 x7 x11

x∗
4 0 0 −x∗

7 −x∗
1 x12

0 x∗
4 0 −x∗

6 −x∗
2 x13

0 0 x∗
4 x∗

5 −x∗
3 x14

0 x∗
5 −x∗

6 0 −x1 x15

x∗
5 0 x∗

7 0 x2 x16

x∗
6 x∗

7 0 0 −x3 x17

x7 −x6 −x5 x4 0 x18

x∗
8 0 0 −x∗

11 −x∗
15 −x∗

1
0 x∗

8 0 x∗
10 x∗

16 −x∗
2

0 0 x∗
8 x∗

9 −x∗
17 −x∗

3
0 0 0 x∗

18 x∗
8 −x∗

4
0 0 −x∗

18 0 x∗
9 −x∗

5
0 −x∗

18 0 0 x∗
10 −x∗

6−x∗
18 0 0 0 x∗

11 −x∗
7

0 −x∗
9 x∗

10 0 x∗
12 x1

x∗
9 0 x∗

11 0 x∗
13 x2

−x∗
10 −x∗

11 0 0 x∗
14 x3

−x∗
12 −x∗

13 −x∗
14 0 0 x4

−x∗
16 −x∗

15 0 −x∗
14 0 x5

−x∗
17 0 x∗

15 −x∗
13 0 x6

0 −x∗
17 −x∗

16 x∗
12 0 x7

0 x14 −x13 −x15 x11 0
x14 0 −x12 −x16 x10 0
−x13 x12 0 x17 x9 0
x15 −x16 x17 0 x8 0
−x11 x10 x9 −x8 x18 0




(33)

The following Table gives the various parameters for the above
codes.

# symbols Symbol # sets set values p
(l)
k

cardinality m
(l)
k

κ index K(l) k = 1..K(l) k = 1..K(l)

G5 7 l = 1..4 1 1 nm
l = 4..7 2 {1, 2} {(n − 1)m, m}

G6 18 l = 1..7 1 1 nm
l = 8..15 2 {1, 2} {(n − 1)m, m}
l = 16..18 2 {1, 2} {(n − 2)m, 2m}

Using the parameters of the codes G5 and G6 given in Ta-
ble I, we computed the analytical BER performance from the
expressions obtained in the previous section, for the case of 8-
PSK and one receive antenna (i.e., m = 1). We also evaluated
the same performance through simulations. Fig. 1 shows both
the analytical as well as the simulation results of the BER for
G5 and G6 codes. It can be seen that, because of the larger
diversity order (6th order), G6 code performs better than G5

code (5th order diversity) as expected, and that there is a close
match between the analytical and the simulation results.

V. CONCLUSION

We presented an analysis for the bit error performance STBCs
from GCOD’s (G5 and G6 codes given by Su and Xia), for
M -PSK modulation. We showed that our general BER ex-
pressions absorb the results for equal weight STBCs as special
cases.

APPENDIX A

Claim: {ai(l); i = 1..n} forms a set of orthogonal vectors ∀ l.
Proof: Let Bl = [a1(l),a2(l), ...,an(l)]. Then the GCOD,
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Fig. 1. BER performance of G5 and G6 orthogonal STBCs with 8-PSK.
One Rx. antenna. Analysis and simulations.

G, can be written as

G =
κ∑

i=1

(viIBi + viQBi+κ). (34)

Now the orthogonality condition, G∗G = D, implies that

B∗
i Bi = Di, i = 1, .., 2κ, (35)

B∗
j Bi + B∗

i Bj = 0, 1 ≤ i �= j ≤ 2κ. (36)

Eqn. (35) implies that < ai(l),aj(l) >= 0,∀ i �= j. Hence
the result.

APPENDIX B

In this appendix, we derive the pdf of γ(l). The moment gen-
erating function γ(l) is given by

M(ν) =
K(l)∏
k=1

(
1

1 + jγ
(l)
k ν

)m
(l)
k

. (37)

Expanding in partial fractions,

M(ν) =
K(l)∑
k=1

m
(l)
k∑

i=1

C
(l)
i,k

(1 + jγ
(l)
k ν)i

, (38)

where C
(l)
i,k equals

C
(l)
i,k =

{
d
(m

(l)
k

−i

dν
(m

(l)
k

−i
(1 + jγ

(l)
k )m

(l)
k M(ν)

} ∣∣∣∣∣
ν=−(jγ

(l)
k

)−1

(m(l)
k − i)!γ

m
(l)
k

−i

k

. (39)

The pdf of γ(l) in (24) is obtained by taking the Fourier trans-
form of the above.
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