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Abstract—In this paper, we consider the problem of es-
timating the delay-Doppler (DD) domain input-output (I/O)
relation in Zak-OTFS modulation, which is needed for signal
detection. Two approaches, namely, model-dependent and model-
free approaches, can be employed for this purpose. The model-
dependent approach requires explicit estimation of the physical
channel parameters (path delays, Dopplers, and gains) to obtain
the I/O relation. Such an explicit estimation is not required in
the model-free approach, where the I/O relation can be estimated
by reading off the samples in the fundamental DD period of the
received pilot frame. Model-free approach has the advantage
of acquiring fractional DD channels with simplicity. However,
the read-off in the model-free approach provides an estimate
of the effective channel only over a limited region in the DD
plane but it does not provide an estimate for the region outside,
and this can affect the estimation performance depending on
the pulse shaping characteristics of the DD pulse shaping filter
used. A poorly localized DD pulse shape leads to an increased
degradation in performance. Motivated by this, in this paper, we
propose a novel, yet simple, I/O relation estimation scheme that
alleviates the above issue in the model-free approach. We achieve
this by obtaining a coarse estimate of the effective channel outside
the model-free estimation region using a novel model-dependent
scheme and using this estimate along with the model-free estimate
to obtain an improved estimate of the overall I/O relation. We
devise the proposed estimation scheme for both exclusive and
embedded pilot frames. Our simulation results using Vehicular-
A, TDL-A and TDL-C channel models with fractional DDs show
that the proposed hybrid estimation approach achieves superior
performance compared to the pure model-free approach. For
example, at a bit error rate (BER) of 1.5 × 10−3, the proposed
scheme achieves an SNR gain of about 3.5 dB compared to
the model-free approach for sinc filter in Veh-A channel, and
this performance gain is achieved with a moderate increase in
complexity (e.g., about 2.95× 108 and 8.1× 108 real operations
for model-free approach and the proposed scheme, respectively).
Also, the proposed scheme performs close to that of the sparse
Bayesian learning (SBL) based estimation but at a significantly
lesser complexity (e.g., about 8.3 × 1012 and 8.1 × 108 real
operations for the SBL based method and the proposed scheme,
respectively).

Index Terms—Zak-OTFS modulation, Zak transform, delay-
Doppler domain, I/O relation estimation, model-free estimation,
model-dependent estimation.

I. INTRODUCTION

Ensuring reliable communication in high-mobility environ-
ments remains a significant challenge due to the resulting high
Doppler spreads. Orthogonal time frequency space (OTFS)
modulation overcomes this challenge through modulation in
the delay-Doppler (DD) domain [1]. Depending on how the
conversion from DD domain to time domain is implemented,
OTFS can be classified as multicarrier OTFS (MC-OTFS) or

Zak-OTFS. Early research on OTFS has been based on the
MC-OTFS approach [1]- [7]. In this approach, the information-
bearing DD domain signal is transformed into the time-
frequency (TF) domain before being transformed into a time
domain signal for transmission. Extensive work has been done
on MC-OTFS [5]. An alternative approach that has recently
gained attention is the Zak-OTFS approach [8], [9]. Zak-
OTFS uses the inverse Zak transform to directly convert the
information-bearing DD domain signal into a time domain
signal. Although the Zak transform has been widely known
in physics and signal processing research for quite some
time [10], [11], [12], it was first applied for modulation
purposes in wireless communications by the authors in [8],
[9]. Zak-OTFS offers distinct advantages over MC-OTFS. It
provides a formal mathematical framework using Zak theory
to describe the Zak-OTFS waveform [8]. Its input-output (I/O)
relation is a pure cascade of twisted convolution operations,
unlike MC-OTFS where the I/O relation is a mix of linear
convolution, multiplication, and twisted convolution operations
(Table 3 in [9]). This makes channel estimation in Zak-OTFS
structurally simpler and predictable even in the presence of
significant delay and Doppler spreads, and, as a consequence,
the channel can be efficiently acquired and equalized [9].
Further, Zak-OTFS has been shown to retain robustness under
high Doppler spreads with estimated channels, compared to
MC-OTFS (Fig. 18 in [9]). Motivated by these advantages,
research on Zak-OTFS is gaining momentum [13]- [28].

Literature survey on Zak-OTFS

Several works in the recent literature have contributed to
the development and understanding of Zak-OTFS systems. In
[13], [14], the authors investigate the theoretically optimal
receiver for Zak-OTFS and study its implementation through
time-frequency windowing. Pulse shaping for DD commu-
nications is studied in [15]. The work in [16] introduces a
framework to extend the region over which the condition
for predictability holds. In [17], low-complexity search-based
algorithms, such as likelihood ascent search and reactive tabu
search when applied on top of linear minimum mean square
error (LMMSE) equalization, are shown to bring the bit
error rate (BER) performance close to the lower bound on
maximum-likelihood detection performance. The work in [18]
designs low-density parity check codes configured to Zak-
OTFS by exploiting the reliability of channel estimates around
the pilot location. Closed-form I/O relation expressions for
sinc and Gaussian filters under different receiver filter choices
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(identical, matched, and channel-matched) are derived in [19].
In [20], a framework is developed to transform the orthogonal
basis of Zak-OTFS pulsone waveforms into an orthonormal
basis of spread carriers with low peak-to-average power ratio
(PAPR). A compressive sensing-based approach for DD pa-
rameter estimation in integrated sensing and communication
using Zak-OTFS modulation is proposed in [21]. The work in
[22] investigates the effect of time-frequency windowing with
different sidelobe behaviors and its impact on communication
reliability. Implementation of Zak-OTFS as a low-complexity
precoder over standard cyclic-prefixed orthogonal frequency
division multiplexing (CP-OFDM) is reported in [23]. A low-
complexity frequency-domain equalization method is proposed
in [24], which reduces the detection complexity to quadratic
order in the OTFS grid size. A differential scheme that
alleviates the need for periodic pilot transmission is proposed
in [25]. In [26], a per-carrier precoding strategy is proposed,
enabling separate equalization of each DD carrier with sub-
stantially lower complexity compared to joint equalization. In
[27], the authors design a superimposed spread pilot sequence
that spans the entire OTFS grid along with the information
symbols, thereby eliminating the need for any guard space
and achieving 100% spectral efficiency. In this paper, we focus
on improving I/O relation estimation in Zak-OTFS which is
crucial for achieving reliable data detection.

Problem and motivation

The basic Zak-OTFS carrier waveform is a pulse in the
DD domain which is a quasi-periodic localized function. Each
DD pulse carries one data or pilot symbol, and there are
multiple DD pulses (data/pilot symbols) in a frame. In order
to limit the frame transmission within finite bandwidth and
time duration, a DD domain pulse shaping filter is used at
the transmitter. Sinc, Gaussian, and root raised cosine filters
are commonly considered for this purpose [9], [16]- [19]. The
DD characteristics of the pulse shaping filter (i.e., the main
and sidelobe characteristics in the DD domain) influence the
amount of DD domain aliasing due to the quasi-periodic repli-
cas and the amount of inter-symbol interference (interference
between data/pilot symbols). Consequently, the choice of this
filter influences the receiver performance.

In Zak-OTFS, the end-to-end DD domain I/O relation
depends on the effective channel, consisting of the twisted
convolution cascade of the transmit (Tx) DD filter, the physical
channel, and the receive (Rx) DD filter. This paper addresses
the problem of estimating this I/O relation, which is required
for signal detection. Traditionally, this problem is solved
using a model-dependent approach, where the parameters that
characterize the physical channel (path delays, Dopplers, and
gains) are explicitly estimated and used to obtain the I/O
relation. This approach can be computationally intensive, par-
ticularly when channel delay and Doppler values are fractional.
However, a unique advantage of Zak-OTFS is that, when
operated in the crystalline regime where the delay period and
Doppler period of the Zak transform are chosen to be larger
than the maximum delay spread and maximum Doppler spread
of the effective channel, respectively, the I/O relation can be

obtained simply by reading off the received samples in the
fundamental DD period. That is, no explicit estimation of
the parameters of the physical channel is needed. Model-free
approach, therefore, has the advantage of acquiring fractional
DD channels with simplicity. However, the read-off in the
model-free approach provides an estimate of the effective
channel only over a limited region in the DD plane but it
does not provide an estimate for the region outside, and
this can affect the estimation performance depending on the
pulse shaping characteristics of the DD filter used. A poorly
localized pulse shape leads to significant performance degra-
dation. For example, while the sinc filter has ideal main lobe
characteristics (with nulls at the information DD grid points),
it has high sidelobe levels which can affect the accuracy
of the model-free I/O relation estimation1. This observation
motivates the investigation of techniques that can alleviate this
problem, which is the main focus of this paper.

Solution approach and contributions

Based on the above discussion, we see that an estimate
of the effective channel outside the model-free estimation
region is important. Model-dependent estimation can provide
this, but at high complexity. We address this issue using a
novel hybrid approach that combines the strengths of both
model-free and model-dependent approaches. In the proposed
solution, we retain the model-free read-off for its simplicity in
acquiring fractional DDs and alleviate its performance shortfall
using a low-complexity model-dependent add-on. The model-
dependent add-on must be devised carefully so that it is com-
putationally inexpensive yet gives a reasonable estimate of the
channel parameters. One way to accomplish this is to obtain
integer estimates of the delays and Dopplers using simple
energy-based estimation and use them to obtain an estimate
of the effective channel outside the model-free estimation
region. However, this is found to be inadequate to improve
the overall I/O relation estimation performance. Therefore, we
modify the energy-based model-dependent estimation to suit
the needs of hybrid estimation in the context of fractional
DDs. We first develop the proposed hybrid approach in the
context of using an exclusive pilot frame, which consists of a
pilot symbol at the center of the frame and zeros elsewhere.
Exclusive pilot frames have the advantage of no data-to-pilot
interference, but they incur throughput loss due to poor frame
efficiency. Therefore, we next devise the proposed approach
for the case of embedded pilot frames, where pilot and data
symbols coexist and interfere with each other in the same
frame. We evaluate the normalized mean square error (NMSE)
performance of the proposed hybrid scheme and compare it
with that of the pure model-free scheme. Our contributions in
this paper can be summarized as follows.

• We identify the performance bottleneck of model-free
Zak-OTFS estimation under poorly localized DD filters
such as the sinc filter, and analyze its limitations in
capturing the full effective channel.

1We will illustrate this in later sections through heat maps of the frames,
and mean square error and bit error rate performance plots.
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Fig. 1. Quasi-periodic DD domain pulse. Red box: fundamental DD period,
D0. Quasi-periodic replicas in other boxes (a.k.a. DD domain aliases).

• We propose a hybrid estimation framework that augments
the model-free read-off with a low-complexity model-
dependent add-on, thereby achieving a more accurate I/O
relation estimate.

• We design a simple yet effective model-dependent add-
on based on energy-based path identification, tailored to
fractional DD channels.

• We extend the scheme to embedded pilot structures,
allowing estimation and detection in the presence of pilot-
data interference.

• Our simulation results using Vehicular-A [29], TDL-
A and TDL-C [30] channel models with fractional
DDs show that the proposed hybrid estimation approach
achieves superior performance compared to the pure
model-free approach. For example, at a bit error rate
(BER) of 1.5 × 10−3, the proposed scheme achieves an
SNR gain of about 3.5 dB compared to the model-free
approach for sinc filter in Vehicular-A channel, and this
performance gain is achieved with a moderate increase
in complexity (e.g., about 2.95 × 108 and 8.1 × 108

real operations for model-free approach and the pro-
posed scheme, respectively). Also, the proposed scheme
performs close to that of the sparse Bayesian learning
(SBL) based estimation [31] but at a significantly lesser
complexity (e.g., about 8.3 × 1012 and 8.1 × 108 real
operations for the SBL based method and the proposed
scheme, respectively).

The rest of the paper is structured as follows. Section II
introduces the Zak-OTFS system model. Section III presents
the proposed hybrid estimation schemes for exclusive and
embedded pilot frames. Section IV presents the NMSE and
BER performance results and discussions. Conclusions are
presented in Sec. V.

II. SYSTEM MODEL

The basic information carrier in Zak-OTFS is a DD domain
pulse which is a quasi-periodic function localized in a funda-
mental DD period, defined by a delay period τp and a Doppler
period νp such that τpνp = 1. The fundamental DD period is

defined as D0 = {(τ, ν) | 0 ≤ τ < τp, 0 ≤ ν < νp}, where τ
and ν denote the delay and Doppler variables, respectively. A
two-dimensional signal a(τ, ν) is quasi-periodic if it satisfies

a(τ + nτp, ν +mνp) = e
j2π nν

νp a(τ, ν), m, n ∈ Z, (1)

i.e., periodic in the Doppler domain and periodic up to a phase
in the delay domain. A pictorial depiction of a quasi-periodic
DD domain pulse is shown in Fig. 1, where the red box denotes
the fundamental DD period D0 and the other boxes contain the
quasi-periodic replicas (a.k.a. DD domain aliases). A quasi-
periodic DD domain pulse, when viewed in the time domain,
is a pulsone which is a time domain pulse train modulated by
a frequency tone. The delay period τp is divided into M delay
bins and the Doppler period νp is divided into N Doppler bins,
and MN information symbols are multiplexed on MN DD
pulses located in these MN DD bins. M and N are chosen
such that MN = BT , where B and T are the bandwidth and
time duration, respectively, of a frame. That is, the resolution
along the delay axis is τp

M = 1
B and the resolution along the

Doppler axis is νp

N = 1
T . In order to limit the bandwidth and

time duration to B and T , respectively, a DD domain pulse
shaping filter is used at the transmitter.

Figure 2 shows the block diagram of a Zak-
OTFS transceiver. MN information symbols, denoted
by x[k, l], k = 0, . . . ,M − 1, l = 0, . . . , N − 1,
are drawn from a modulation alphabet A, and
mounted on the information DD grid defined as
Λdd

∆
=

{(
k

τp

M , l
νp

N

) ∣∣ k = 0, . . . ,M − 1, l = 0, . . . , N − 1
}

.
The x[k, l]s are encoded as per the following equation to
obtain a quasi-periodic extension of the signal in the discrete
DD domain:

xdd[k + nM, l +mN ] = x[k, l]ej2πn
l
N , n,m ∈ Z. (2)

The discrete quasi-periodic signal in (2) is converted into
a continuous quasi-periodic DD signal by mounting it on a
continuous quasi-periodic DD impulse train, as

xdd(τ, ν) =
∑
r,s∈Z

xdd[r, s]δ
(
τ − r

τp

M

)
δ
(
ν − s

νp

N

)
(a)
=

∑
m,n∈Z

M−1∑
k=0

N−1∑
l=0

x[k, l]ej2π
nl
N

δ
(
τ − (k+nM)τp

M

)
δ
(
ν − (l+mN)νp

N

)
, (3)

where δ(·) denotes the Dirac delta function, and step (a) is
obtained by substituting the variables r and s by k + nM
and l +mN , respectively. The signal in (3) is then time and
bandwidth limited to T = Nτp and B = Mνp, respectively,
by filtering through the DD domain Tx filter wtx(τ, ν), as [9]

xwtx

dd (τ, ν) = wtx(τ, ν) ∗σ xdd(τ, ν), (4)

where ∗σ denotes the twisted convolution operation. Twisted
convolution between two functions a(τ, ν) and b(τ, ν) is
defined as

a(τ, ν) ∗σ b(τ, ν) =

∫ ∞

−∞

∫ ∞

−∞
a(τ ′, ν′)b(τ − τ ′, ν − ν′)

ej2πν
′(τ−τ ′)dτ ′dν′. (5)
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Fig. 2. Block diagram of the Zak-OTFS transceiver.

Also, twisted convolution operation between the quasi-
periodized DD signal xdd(τ, ν) and the non-quasi-periodic DD
filter/function wtx(τ, ν) in (4) preserves the quasi-periodicity at
the output (Appendix 2.G, [28]), i.e., the DD signal xwtx

dd (τ, ν)
is quasi-periodic. This quasi-periodicity of xwtx

dd (τ, ν) ensures
the existence of the corresponding time domain (TD) signal
through inverse Zak transform operation. Accordingly, the TD
transmit signal is obtained using inverse Zak transform2 as

x(t) = Z−1
t (xwtx

dd (τ, ν)) =
√
τp

∫ νp

0

xwtx

dd (t, ν)dν, (6)

where Z−1
t (.) denotes the inverse Zak transform operation.

The transmitted signal x(t) passes through a doubly-selective
channel, whose DD domain impulse response is given by

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (7)

where hi, τi, and νi are the channel gain, delay, and Doppler
of the ith path, respectively, and P is the number of paths.
The received TD signal at the receiver is given by

y(t) =

∫ ∫
h(τ, ν)x(t− τ)ej2πν(t−τ)dτdν + n(t)

=

P∑
i=1

hix(t− τi)e
j2πνi(t−τi) + n(t), (8)

where n(t) is the additive white Gaussian noise with one-sided
power spectral density N0 W/Hz. The received TD signal is
converted to a DD domain signal using Zak transform3 as

ydd(τ, ν) = Z(y(t)) =
√
τp

∑
k∈Z

y(τ + kτp)e
−j2πkντp . (9)

The DD signal ydd(τ, ν) in (9) can be written as

ydd(τ, ν) = h(τ, ν) ∗σ xwtx

dd (τ, ν) + ndd(τ, ν)

= h(τ, ν) ∗σ (wtx(τ, ν) ∗σ xdd(τ, ν)) + ndd(τ, ν)
(a)
= (h(τ, ν) ∗σ wtx(τ, ν)) ∗σ xdd(τ, ν) + ndd(τ, ν), (10)

where step (a) is due to the associative property of twisted
convolution [28], and ndd(τ, ν) is the Zak transform of n(t).

2The inverse Zak transform of a DD domain signal a(τ, ν) is defined as
Z−1

t (a(τ, ν))
∆
=

√
τp

∫ νp
0 a(t, ν)dν.

3The Zak transform of a time domain signal a(t) is given by Zt (a(t))
∆
=√

τp
∑

k∈Z a(τ + kτp)e−j2πνkτp .

The DD signal ydd(τ, ν) is filtered using a receive DD domain
filter wrx(τ, ν) matched to the transmit DD filter, i.e.,

wrx(τ, ν) = w∗
tx(−τ,−ν)ej2πτν . (11)

The output of the receive DD filter is given by

ywrx

dd (τ, ν) = wrx(τ, ν)∗σydd(τ, ν)
= wrx(τ, ν)∗σ (h(τ, ν)∗σwtx(τ, ν))∗σxdd(τ, ν)

+wrx(τ, ν)∗σndd(τ, ν)

= (wrx(τ, ν) ∗σ h(τ, ν)∗σwtx(τ, ν))︸ ︷︷ ︸
∆
= heff (τ,ν)

∗σxdd(τ, ν)

+wrx(τ, ν) ∗σ ndd(τ, ν)︸ ︷︷ ︸
∆
= nwrx

dd (τ,ν)

, (12)

where heff(τ, ν) is the effective channel given by the twisted
convolution cascade of the Tx DD filter, physical DD channel,
and Rx DD filter, given by

heff(τ, ν) = wrx(τ, ν) ∗σ h(τ, ν) ∗σ wtx(τ, ν), (13)

and nwrx

dd (τ, ν) is the filtered noise in the DD domain. The
filtered DD signal ywrx

dd (τ, ν) is sampled at τ =
k′τp

M , ν =
l′νp

N ,
k′ = 0, 1, . . . ,M − 1, l′ = 0, 1, . . . , N − 1, i.e.,

y[k′, l′] = ywrx

dd (τ, ν)
∣∣∣
τ=

k′τp
M ,ν=

l′νp
N

. (14)

Note that it suffices to sample ywrx

dd (τ, ν) in the fundamental
period D0 as the signal ywrx

dd (τ, ν) is quasi-periodic in nature.
Substituting (3) in (12) and solving further, (14) can be written
as (see Appendix A for proof)

y[k′, l′] =
∑

m,n∈Z

M−1∑
k=0

N−1∑
l=0

heff [k
′ − k − nM, l′ − l −mN ]

x[k, l]ej2π
nl
N ej2π

(l′−l−mN)(k+nM)
MN + n[k′, l′], (15)

where n[k′, l′] = nwrx

dd (k′
τp

M , l′
νp

N ) and the discrete samples of
the effective channel are obtained as heff [r, s] = heff(τ =
r
τp

M , ν = s
νp

N ). Writing the y[k′, l′] samples as a vector,
the end-to-end DD domain I/O relation can be expressed in
matrix-vector form as

y = Hx+ n, (16)

where x,y,n ∈ CMN×1, such that x[lM + k] = x[k, l],
y[lM+k] = y[k, l], n[lM+k] = n[k, l], and H ∈ CMN×MN

is the DD channel matrix such that

H[l′M + k′, lM + k] =
∑

m,n∈Z
heff [k

′−k−nM, l′−l−mN ]

ej2π
nl
N ej2π

(l′−l−mN)(k+nM)
MN , (17)

where k′, k = 0, 1, . . . ,M − 1 and l′, l = 0, 1, . . . , N − 1.
Remark: In computing the entries of H as per (17), we limit

the summation to |m| ≤ mmax, |n| ≤ nmax, and mmax =
nmax = 2 is found to give adequate accuracy.

A Zak-OTFS system is said to be operating in the crystalline
region if the crystallization condition is met. The crystalliza-
tion condition is said to be met if the delay spread of the
effective channel is less than the delay period τp and the
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Gaussian

Fig. 3. Sinc and Gaussian pulse shapes.

Doppler spread of the effective channel is less than the Doppler
period νp. By operating the system in the crystalline region,
the leakage of the quasi-periodic replicas into the fundamental
region is limited. Because of this, the I/O relation, which
is required for equalization/detection, is predictable and non-
fading [8], [9]. This allows the estimation of the I/O relation
through a simple read-off in the fundamental region.

We consider sinc and Gaussian pulse shaping filters. For
sinc filter, wtx(τ, ν) is given by

wtx(τ, ν) =
√
BT sinc(Bτ)sinc(Tν). (18)

The expressions for heff [k, l] and noise covariance for the sinc
filter are given in (20) and (21), respectively [19], where 1{.}
denotes the indicator function, ⌈.⌉ and ⌊.⌋ denote the ceil and
floor operators, respectively. For Gaussian filter, wtx(τ, ν) is
given by

wtx(τ, ν) =

(
2ατB

2

π

) 1
4

e−ατB
2τ2

(
2ανT

2

π

) 1
4

e−ανT
2ν2

.

(19)
The parameters ατ and αν are chosen to be 1.584 which
ensures that 99% of the frame energy is contained in B in
frequency domain and T in time domain. The expressions for
heff [k, l] and noise covariance for the Gaussian filter are given
in (22) and (23), respectively [19]. In computing (23), taking
q1 and q2 values from −20 to 20 is found to be sufficient for
accurate computation of (23).

Apart from being widely considered filters in the Zak-
OTFS literature, the choice of sinc and Gaussian filters is
motivated by their contrasting DD domain characteristics and
corresponding effect on I/O relation estimation and detection
performance. Figure 3 shows the sinc and Gaussian pulse
shapes. The sinc filter has nulls at integer multiples of(
1
B , 1

T

)
=

( τp
M ,

νp

N

)
, i.e., at the DD grid locations where in-

formation symbols are placed. This property offers the benefit
of no inter-symbol interference at the information grid points
at which receiver sampling is done. This is attractive from an
equalization/detection viewpoint. However, a drawback with
sinc filter is its high sidelobes. About 18.5% of the energy
in sinc filter lies in the sidelobes (energy outside the region

[
− τp

M ,
τp
M

)
×
[
− νp

N ,
νp

N

)
). This high sidelobe levels leave the

sinc pulse less localized in the DD domain, which is detri-
mental from an I/O relation estimation viewpoint. In contrast,
the Gaussian pulse is much better localized in the DD domain
with only about 2.35% of the energy lying outside the region[
− τp

M ,
τp
M

)
×

[
− νp

N ,
νp

N

)
, and this compactness renders the

Gaussian filter attractive for I/O relation estimation. However,
Gaussian pulse does not have nulls at the information grid
points, which is detrimental for equalization/detection. That
is, sinc filter offers good detection but poor estimation, while
Gaussian filter offers good estimation but poor detection. This
trade-off is quantitatively demonstrated in Fig. 7 in the next
section.

III. PROPOSED HYBRID I/O RELATION ESTIMATION

In order to detect the data symbols (i.e., x vector), the
receiver needs to know the I/O relation matrix H. To obtain
an estimate of the H matrix, we consider two types of frames,
namely, exclusive pilot frame and embedded pilot frame.
Exclusive pilot frame, which has only one pilot symbol and
zeros elsewhere in the frame (Fig. 4(a)), has the advantage
of simplicity at the cost of frame efficiency. Embedded pilot
frame, which consists of a pilot symbol and data symbols
with guard region in between (Fig. 4(b)), is more throughput
efficient but has to deal with pilot-data interference. In the
following subsections, we present the proposed I/O relation
estimation scheme for exclusive and embedded pilot frames.

A. Estimation for exclusive pilot frame

In an exclusive pilot frame, a pilot symbol α ∈ C is placed
at the center of the frame and zeros elsewhere (see Fig. 4(a)),
i.e., for k = 0, 1, · · · ,M − 1, l = 0, 1, · · · , N − 1,

xexc[k, l] =

{
α if (k, l) = (M2 , N

2 )

0 otherwise.
(24)

Two approaches for I/O relation estimation, namely, model-
dependent approach and model-free approach, are possible,
which are introduced below. The estimated I/O relation using
the exclusive pilot frame is used for the detection of data
frames sent during the same spatial coherence interval.

1) Model-dependent estimation: In the model-dependent
approach, the parameters of the physical channel h(τ, ν),
i.e., {τi, νi, hi}, i = 1, . . . , P , are explicitly estimated and
heff [k, l] is computed using (13), and subsequently the matrix
H is obtained using (17). This approach is computationally
complex, particularly for channels with fractional DDs, which
are more practical.

2) Model-free estimation: In the model-free approach, an
estimate of the H matrix can be obtained without explicit
estimation of the parameters of the physical channel model as
follows. Using (24) in (15), the received exclusive pilot frame
signal can be written as

yexc[k
′, l′] =

∑
m,n∈Z

αheff [k
′ − M

2
− nM, l′ − N

2
−mN ]

ej2π
nl
N ej2π

(l′−N
2

−mN)(k′+mN)

MN + n[k′, l′]. (25)
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For sinc filter:

heff [k, l]=

P∑
i=1

hie
jπ

(
kl

MN
−τiνi

) (
1−

∣∣∣ kτp
MT

∣∣∣) (
1−

∣∣ νi
B

∣∣) sinc(( lνp
N

−νi)(T −| kτp
M

|))1{|νi|<B}sinc((
kτp
M

− τi)(B−|νi|))1{|k τp
M

|<T}. (20)

E
[
nwrx
dd [k1, l1]n

wrx
dd

H [k2, l2]
]
= N0

τp
T

⌊
N
2
− k1

M

⌋∑
q1=

⌈
−N

2
− k1

M

⌉
⌊
N
2
− k2

M

⌋∑
q2=

⌈
−N

2
− k2

M

⌉sinc
(Bτp

M
(k1 − k2) + (q1 − q2)τp)

)
e−j2π(q1

l1
N

−q2
l2
N

). (21)

For Gaussian filter:

heff [k, l] =

P∑
i=1

hie
− 1

2

(
ατB2(τi−

kτp
M

)2+ανT2(νi−
lνp
N

)2
)
e
−π2

2

(
ν2
i

ατB2 +
k2τ2

p
M2ανT2

)
e−jπ(τiνi− kl

MN ). (22)

E
[
nwrx
dd [k1, l1]n

wrx
dd

H [k2, l2]
]
= N0

τp
T

√
2π
αν

∑
q1,q2∈Z

e
−j2π

(
q1l1−q2l2

N

)
e
−π2

τ2
p

ανT2

(
(q1+

k1
M

)2+(q2+
k2
M

)2
)
e−

ατB2

2 ((k1−k2)
τp
M

+(q1−q2)τp)
2

. (23)

(a) Exclusive pilot frame. (b) Embedded frame.

Fig. 4. Pilot frames used for estimating the channel in Zak-OTFS.

In (25), the summation over m,n ∈ Z\{0} denotes the leakage
of pilot signal from the non-fundamental periods into the fun-
damental period. Since yexc[k

′, l′] is quasi-periodic, only the
samples falling within the fundamental period constitute the
unique observable samples corresponding to the transmitted
pilot frame (other samples in the non-fundamental periods are
replicas). In the crystalline regime of operation, where the
delay and Doppler spreads of the effective channel are less
than the delay and Doppler periods, respectively, the leakage
from the neighboring grids can be small. Consequently, by
restricting m and n to 0, i.e., the fundamental period, (25) in
the noiseless case can be written as

yexc[k
′, l′] = αheff

[
k′ − M

2
, l′ − N

2

]
ejπ

l′−N
2

N . (26)

By substituting k′−M
2 = a and l′−N

2 = b, the above equation
becomes

heff [a, b] = yexc

[
a+

M

2
, b+

N

2

]e−jπ b
N

α
, (27)

which is taken as the model-free estimate ĥfree
eff [a, b] of the

effective channel tap heff [a, b]. Since the range of observations
of yexc[k

′, l′] is from 0 ≤ k′ < M, 0 ≤ l′ < N , the range of
heff [a, b] obtained from (27) is from −M

2 ≤ a < M
2 ,−N

2 ≤
b < N

2 . For all values other than this, the estimate is set to be
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(a) Gaussian filter.
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(b) Sinc filter.

Fig. 5. Heatmap of |heff | for Gaussian and sinc filters with exclusive pilot
frame. The highlighted box in red corresponds to the model-free estimation
region Fexc. |heff | is well contained within this region with Gaussian filter
while it is not with sinc filter.

zero, i.e., the model-free estimates ĥfree
eff [a, b] are obtained as

ĥfree
eff [a, b]=


yexc[a+ M

2 , b+ N
2 ]

e−jπ b
N

α , if − M
2 ≤ a < M

2 ,

−N
2 ≤ b < N

2 ,

0, otherwise.
(28)

Note that the yexc[k
′, l′] read-off region, denoted by Rexc,

is the entire pilot frame, i.e., Rexc = {0, 1, · · · ,M −
1} × {0, 1, · · · , N − 1}. The corresponding model-free es-
timation region for ĥfree

eff [a, b], denoted by Fexc, is Fexc =
{−M

2 , · · · , M
2 −1}×{−N

2 , · · · ,
N
2 −1}. Using the estimated

channel taps ĥfree
eff [a, b] from (28) in (17), we obtain the model-

free estimate of the H matrix for signal detection.
3) Rationale for the proposed hybrid estimation: Before

we present the proposed hybrid estimation scheme, in this
subsection, we provide the rationale behind the proposed
hybrid approach. Note that the spread of effective channel heff

depends on the pulse shaping characteristics of the DD filter
used. For example, when Gaussian filter is used, the resultant
heff is well localized as shown in Fig. 5(a). However, when
a sinc filter is used, the resultant heff is not well localized
(due to high sidelobes) as shown in Fig. 5(b). When model-
free estimation is used with Gaussian filter, the information
of heff is well captured in the model-free estimation region
Fexc. However, with a sinc filter, using model-free estimation
gives only a partial estimate. To illustrate this, we consider
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(a) Quasi-periodic received exclusive
pilot signal in (26). Highlighted red
box shows the fundamental period.
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(b) Heatmap of model-free estimates
|ĥfree

eff | as per (28).
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(c) Heatmap of true |heff | as per (13).
Highlighted red box shows the model-
free estimation region Fexc.
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(d) Heatmap of |heff | in Fc
exc, i.e.,

the region which is not estimated by
model-free estimation.

Fig. 6. Illustration of the limitation of model-free estimation when sinc filter
is used. No noise condition.

TABLE I
COMPARISON OF SIDELOBE ENERGY AND EFFECTIVE CHANNEL LEAKAGE

BEYOND Fexc FOR SINC AND GAUSSIAN FILTERS.

Filter Energy in the sidelobes Energy of heff in Fc
exc

Sinc 18.5% 1.34%
Gaussian 2.35% ≪ 10−15%

the noiseless case. The received signal corresponding to the
exclusive pilot as per (25) is shown in Fig. 6(a), which shows
the quasi-periodic nature of yexc[k

′, l′]. Applying the model-
free estimation procedure as per (28), we obtain the estimate
ĥfree
eff [k, l] shown in Fig. 6(b). The true heff for this example

as per (13) is shown in 6(c). Comparing Figs. 6(b) and 6(c),
it can be observed that the model-free estimated channel (Fig.
6(b)) captures only a subset of the true effective channel (Fig.
6(c)). That is, the effective channel outside the Fexc region
(denoted by Fc

exc), shown in Fig. 6(d), is not estimated by
the model-free estimation. This illustrates that the model-
free estimate is only a partial estimate of the true effective
channel, particularly when the DD filter characteristics are not
well localized. Table I quantifies the localization difference
between sinc and Gaussian filters in terms of their energy in
the sidelobes and the energy outside the model-free estimation
region Fexc. The energy in the sidelobes (energy outside the
region

[
− τp

M ,
τp
M

)
×

[
− νp

N ,
νp

N

)
) is 18.5% and 2.35% for

the sinc filter and the Gaussian filter, respectively (see Fig.
3 and Table I). Also, for the case of M = N = 16 under
Vehicular-A channel model, the proportion of the effective
channel energy lying outside the model-free estimation region
Fexc (i.e., energy of heff in Fc

exc) for the sinc filter is 1.34%,
whereas for the Gaussian filter it is almost zero (≪ 10−15%).

We now illustrate the estimation and detection performance

limitations arising from using only the partial estimate pro-
vided by model-free estimation in constructing the estimate
of the H matrix, denoted by Ĥ. For this, in Fig. 7, we show
how the performance can improve when the effective channel
outside the Fexc region (in addition to the model-free estimates
inside Fexc) is used in constructing Ĥ. In this illustration, we
define a set Sκ parameterized by a positive integer κ as

Sκ =
{
− κ

M

2
, · · · , κM

2
− 1

}
×
{
− κ

N

2
, · · · , κN

2
− 1

}
.

In constructing the Ĥ matrix, for a given κ ∈ Z+ and (a, b) ∈
Z× Z, the values of heff in (17) are taken to be

• model-free estimates if (a, b) ∈ Fexc

• true effective channel if (a, b) ∈ Sκ\Fexc

• zero, otherwise.
Note that for κ = 1, Sκ = Fexc, which corresponds to model-
free estimation. By varying κ beyond 1, we control the extent
of the DD support of the channel beyond Fexc included in
the construction of Ĥ. A higher value of κ corresponds to a
broader support, which incorporates more information of heff .
Figure 7(a) shows the performance in terms of NMSE, defined
as the average of ||H−Ĥ||2F

||H||2F
, as a function of κ for Gaussian

and sinc filters. Since Gaussian filter is very well localized
(see Fig. 5(a)), it achieves very good NMSE performance for
κ = 1 itself, and increasing κ beyond 1 does not further
improve the NMSE. Consequently, its BER performance also
remains almost invariant to κ, as can be seen in Fig. 7(b).
On the other hand, sinc filter’s localization is not as good
(see Fig. 5(b)), and hence increasing κ significantly improves
the NMSE performance. A corresponding improvement in
BER is observed in Fig. 7(c). This observation underscores
the inadequacy of relying solely on model-free estimation,
particularly in scenarios where the effective channel is not
well localized. Also, comparing the perfect channel state
information (CSI) based BER performance of Gaussian and
sinc filters in Figs. 7(b) and 7(c), respectively, we see that the
sinc filter achieves a much better BER (8×10−6) compared to
that of the Gaussian filter (8× 10−5). This is because, while
the sinc filter has nulls at the information grid points (i.e.,
no inter-symbol interference (ISI) at the DD sampling points),
the Gaussian filter has non-zero values in the main lobe at the
sampling points (causing ISI). This indicates the potential for
achieving better BER performance using a sinc filter compared
to using a Gaussian filter, and this, however, requires the
estimation performance to be improved beyond that of the
naive model-free estimation. Towards accomplishing this, we
devise a novel estimation approach in the following subsection.

4) Proposed hybrid estimation for exclusive pilot: In the
proposed approach, we retain the model-free estimate of the
channel in Fexc (for simplicity in acquiring fractional DD)
and obtain a low-complexity model-dependent estimate of the
channel in Fc

exc (for performance enhancement). In model-
dependent estimation, an estimate of the physical channel
parameters {τi, νi, hi}, i = 1, . . . , P , is obtained. A primitive
model-dependent estimation approach based on energy detec-
tion is used in [9]. In this method, the DD grid points where
the received signal has high-energy peaks are interpreted as
potential channel paths, and the corresponding path gains are
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(a) NMSE for Gaussian and sinc filters. (b) BER for Gaussian filter. (c) BER for sinc filter.

Fig. 7. NMSE and BER performance as a function of the support control parameter κ for Gaussian and sinc filters.

-70

-60

-50

-40

-30

-20

-10

0

(a) Heatmap of |ĥfree
eff | obtained through model-

free estimate.
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(b) Heatmap of |ĥdep
eff | obtained through model-

dependent estimate in the Fc
exc region, using

the proposed Algorithm 1.
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(c) Heatmap of |ĥhyb
eff | obtained by combining

mode-free and model-dependent estimates.

Fig. 8. Illustration of obtaining ĥhyb
eff from ĥfree

eff and ĥdep
eff with exclusive pilot frame.

estimated using a least squares (LS) approach. This method
is effective when the channel exhibits integer DD shifts
(see Fig. 11 in [9] which considers integer DD channel).
However, in practice, the channel spread often consists of
fractional DD components, where this method suffers due to
the approximation of fractional shifts to the nearest integer
grid points, leading to performance degradation (see Fig. 10
in [9] which considers Veh-A channel). To overcome this
limitation, we modify the energy-based approach to better
suit fractional DD scenarios and integrate it into our hybrid
estimation framework. The hybrid estimate ĥhyb

eff is constructed
by combining the model-free estimate ĥfree

eff with the model-
dependent estimate ĥdep

eff , where ĥdep
eff is the effective channel

obtained from substituting the model-dependent channel pa-
rameter estimates in (13). The values of ĥfree

eff provided by
the model-free estimate are retained as is in Fexc, while the
remaining entries are filled using ĥdep

eff .
5) Proposed low-complexity model-dependent algorithm:

We define a binary mask matrix mask ∈ {0, 1}M×N , where
the entries surrounding the exclusive pilot location are set to
one and the rest to zero, as

mask[k, l] =

{
1, if (k, l) ∈ K × L,
0, otherwise,

(29)

where K =
{

M
2 , . . . , M

2 + kmax

}
, L ={

N
2 − lmax, . . . ,

N
2 + lmax

}
, kmax =

⌈
τmax

τp/M

⌉
,

lmax =
⌈

νmax

νp/N

⌉
. The received pilot frame is masked

using this window as

ymask
exc [k, l] = yexc[k, l] ·mask[k, l],

∀k ∈ {0, . . . ,M − 1}, l ∈ {0, . . . , N − 1}.
Estimation of path delays and Dopplers: To estimate

the DD paths, we adopt an energy-based detection approach
due to its low complexity. However, practical channels often
exhibit fractional DDs, which cannot be captured accurately
by pure energy-based estimators restricted to the integer DD
grid. To address this, we include a simple refinement step to
approximate fractional paths using adjacent bins.

The estimation proceeds iteratively. In each iteration, the
DD bin with the maximum energy in the masked received
signal ymask

exc is identified as an integer DD path. We then
examine the adjacent bins4 of this location. The adjacent bin
with the highest energy is selected, and the average of its
location with that of the previously identified bin is used to
obtain a second (fractional) DD path. This method allows us
to account for fractional DD paths in an approximate sense,
without invoking high-complexity techniques5. These steps are
formalized in Algorithm 1.

4For a bin (a, b) ∈ Z × Z, we define the adjacent bins as the bins in
locations {a− 1, a, a+ 1} × {b− 1, b, b+ 1} \ {(a, b)}.

5More accurate estimators exist for resolving fractional paths, but they are
computationally intensive and would defeat the simplicity of the model-free
baseline. Our goal is not to recover the exact fractional values, but to introduce
a low-complex refinement that meaningfully enhances the estimate.
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In iteration t, the DD bin with the highest energy is denoted
by (p1, q1) (step 4 of Algorithm 1). A bin (p2, q2) is selected
from the adjacent bins as the one with the maximum energy
(step 6 in Algorithm 1). If all adjacent bins have zero energy,
we randomly pick one of the adjacent bins6. The estimated
DD pairs for iteration t are given by((

p1−M
2

) τp
M ,

(
q1−N

2

)νp

N

)
,
((

p1+p2

2 −M
2

) τp
M ,

(
q1+q2

2 −N
2

)νp

N

)
corresponding to the integer and fractional paths, respectively.
After each iteration, the entries at (p1, q1) and (p2, q2) in ymask

exc
are zeroed out so that they are not picked again. The process
continues until all entries in ymask

exc are exhausted. Since at least
one bin is made zero in every iteration, the maximum number
of iterations in this algorithm is of the order O(kmaxlmax).

Estimation of path gains: Having obtained the estimated
path DD parameters τ̂ and ν̂, the corresponding path gains
are computed as follows. Towards this, an equivalent system
model of (16) can be written as

y = [ϕ1 ϕ2 · · · ϕP ]︸ ︷︷ ︸
≜Φ(τ ,ν)

h+ n, (30)

where ϕi = H(τi, νi, 1)x, and h = [h1 h2 · · · hP ]
T . ϕi

can be interpreted as the received signal when the channel has
only the ith path with its corresponding path gain as 1. Using
this alternate system model, the LS estimate of the path gains
is given by

ĥ =
[
ΦH(τ̂ , ν̂)Φ(τ̂ , ν̂)

]−1

ΦH(τ̂ , ν̂)yexc, (31)

where Φ(τ̂ , ν̂) = [H(τ̂1, ν̂1, 1)xexc H(τ̂2, ν̂2, 1)xexc · · · ] is
constructed using (τ̂ , ν̂) from Algorithm 1 and the exclusive
pilot vector xexc.

Hybrid construction of the effective channel: The model-
free estimate ĥfree

eff [a, b] is available over the region Fexc,
and the model-dependent estimate ĥdep

eff [a, b], obtained using
Algorithm 1, provides estimates over the entire DD space.
These two estimates are combined to form a hybrid estimate
as follows:

ĥhyb
eff [a, b] =

{
ĥfree

eff [a, b], if (a, b) ∈ Fexc,

ĥdep
eff [a, b], otherwise.

(32)

Figure 8 illustrates this hybrid construction. Figure 8(a) shows
the model-free estimate, limited to the region Fexc. Figure 8(b)
presents the model-dependent estimate, obtained based on the
estimated channel path parameters using Algorithm 1. The
hybrid estimate, shown in Fig. 8(c), uses model-free values
within Fexc and model-dependent values outside it. This
hybrid estimate ĥhyb

eff is then used to construct the estimated
effective channel matrix Ĥ using (17) for data detection.

6To assess the effect of this random bin selection, we ran simulations for
three cases, namely, 1) random adjacent bin selection, 2) selecting the adjacent
bin nearest to the pilot, and 3) selecting the adjacent bin farthest from the
pilot. Simulation results showed that the performance of all the three cases
are roughly the same. This is because the situation where all adjacent bins of
a detected high-energy bin become zero arises only after several paths have
already been estimated, and the additional path chosen in such a case does not
have sufficient strength to significantly affect the overall performance, leading
to roughly the same performance for all the three cases.

Algorithm 1 Proposed low-complexity algorithm for estima-
tion of path delays and Dopplers

1: Input: Masked pilot frame ymask
exc [k, l] = yexc[k, l] ·

mask[k, l], E [k, l] =
∣∣ymask

exc [k, l]
∣∣2 ∀ k ∈ {0, · · · ,M −

1}, l ∈ {0, · · · , N − 1}
2: Initialization: τ̂ = [ ], ν̂ = [ ], t = 1
3: repeat
4: [p1, q1] = arg max

r∈{0,1,··· ,M−1}
s∈{0,1,··· ,N−1}

E [r, s]

5: τ̂ = [τ̂ , (p1 − M
2 )

τp

M ], ν̂ = [ν̂, (q1 − N
2 )

νp

N ]
6: [p2, q2] = arg max

(r,s)∈{p1−1,p1,p1+1}×
{q1−1,q1,q1+1}\{(p1,q1)}

E [r, s]

7: τ̂ = [τ̂ ,
(
p1+p2

2 − M
2

) τp

M ], ν̂ = [ν̂,
(
q1+q2

2 − N
2

) νp

N ]
8: E [p1, q1] = 0, E [p2, q2] = 0
9: t = t+ 1

10: until E [k, l] = 0 ∀ k ∈ {0, · · · ,M − 1}, l ∈ {0, · · · , N −
1}

11: Output: Estimated parameters τ̂ , ν̂.

B. Estimation for embedded pilot frame

The exclusive pilot frame design, while providing the ad-
vantage of interference-free channel estimation due to com-
plete separation between pilot and data, suffers from reduced
throughput. To alleviate this throughput penalty, we consider
an embedded pilot frame structure in which both pilot and data
symbols coexist in the same frame. In the embedded frame
structure, in addition to the centrally placed pilot symbol α,
data symbols occupy the rest of the frame except for a defined
guard region around the pilot to reduce interference between
data and pilot (see Fig. 4(b)). The embedded pilot frame is
constructed as

xemb[k, l] =


α, if k = M

2 , l = N
2 ,

0, (k, l) ∈ G,
data, otherwise,

(33)

where the data symbols are drawn from the modulation
alphabet A, and G denotes the guard region defined to mitigate
pilot-data interference. The guard region G is specified as

G = G′ \
(
M
2 , N

2

)
, (34)

where

G′=
{

M
2 −4kmax, · · · , M

2 + 4kmax

}
×{0, · · · , N − 1} . (35)

1) Model-free estimation for embedded frame: For model-
free estimation in the embedded frame, we read-off a subset
of the guard region to avoid contamination from data symbols.
This read-off region, denoted by Remb, is defined as

Remb=
{

M
2 − 2kmax, . . . ,

M
2 + 2kmax

}
× {0, 1, . . . , N − 1} .

(36)
The corresponding model-free estimation region Femb is

Femb = {−2kmax, · · · , 2kmax} × {−N
2 , · · · ,

N
2 − 1}. (37)
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TABLE II
ADDITIONAL COMPUTATIONAL COMPLEXITY FOR HYBRID ESTIMATION

Operation No. of real multiplications No. of real additions Total complexity
ΦHΦ 4P̂ 2

maxMN 2P̂ 2
max(2MN − 1) 8P̂ 2

maxMN − 2P̂ 2
max

(ΦHΦ)−1 – – O(P̂ 3
max)

ΦHy 4P̂maxMN 2P̂max(2MN − 1) 8P̂maxMN − 2P̂max

(ΦHΦ)−1ΦHy 4P̂ 2
max 4P̂ 2

max − 2P̂max 8P̂ 2
max − 2P̂max

h
dep
eff (τ, ν) 20P̂maxβ 2(5P̂max − 1)β (30P̂max − 2)β

The model-free estimate of the effective channel for embedded
pilot frame, denoted by ĥf̃ree

eff , is computed as

ĥf̃ree
eff [a, b]=

yemb[a+
M
2 , b+N

2 ]
e−jπa/N

α
, if (a, b)∈Femb,

0, otherwise,
(38)

where yemb is the received DD signal of the embedded pilot
frame. Note that the size of embedded model-free estimation
region Femb is smaller than the exclusive model-free estimation
region Fexc, leading to an even more partial estimate in this
case.

2) Hybrid estimation for embedded frame: To overcome
the limitation of partial estimation, we extend the hybrid
estimation strategy to embedded pilot frames. Specifically,
we apply the proposed model-dependent estimation using the
masking approach. When applied to the embedded frame, the
mask in (29) has non-zero entries only over Remb, and this
isolates the region required for estimation. The masked signal
is

ymask
emb [k, l] = yemb[k, l] ·mask[k, l]. (39)

Assuming that the interference from data to pilot is negligible,
the above masked signal can now be directly used in Algo-
rithm 1 to estimate the DD parameters and corresponding path
gains without requiring any algorithmic changes. The hybrid
estimate of the effective channel is then constructed as

ĥh̃yb
eff [a, b] =

{
ĥf̃ree

eff [a, b], if (a, b) ∈ Femb,

ĥd̃ep
eff [a, b], otherwise,

(40)

where ĥd̃ep
eff is the effective channel obtained from the model-

dependent DD estimates of the embedded frame using (13).
Using ĥh̃yb

eff , the Ĥ matrix is constructed using (17), and
detection of data symbols proceeds using Ĥ.

Complexity: The additional computational complexity intro-
duced by the hybrid estimation arises from estimating the paths
and constructing hdep

eff over regions not covered by model-free
estimation. The maximum number of paths that can be esti-
mated, denoted by P̂max, is P̂max = 2(kmax + 1)(2lmax + 1).
The total computational burden is summarized in Table II,
where the per-operation costs are listed. In Table II, β =
(6M − 1)(6N − 1)−MN denotes the total number of points
where hdep

eff (τ, ν) must be evaluated. The hybrid estimation
method, when applied to the embedded pilot frame, strikes a
favorable balance between estimation accuracy and throughput
efficiency, leveraging structured pilot-data coexistence without
incurring significant additional complexity.

TABLE III
VEHICULAR-A CHANNEL PDP

Path index i 1 2 3 4 5 6
Delay τi (in µs) 0 0.31 0.71 1.09 1.73 2.51

Path power (in dB) 0 -1 -9 -10 -15 -20

IV. RESULTS AND DISCUSSIONS

In this section, we present the evaluated performance of
the proposed hybrid estimation scheme for both exclusive
and embedded pilot frame configurations. The frame size
parameters (M and N values) are related to the bandwidth
and time duration of transmission and the fundamental DD
periods as B = Mνp and T = Nτp. The parameters for the
simulation experiments are chosen as follows. The Doppler
period is set to νp = 15 kHz and the delay period is, therefore,
τp = 1/νp = 66.67 µs. The channel is assumed to have
P = 6 paths with path delays and powers specified according
to the power delay profile (PDP) of the Vehicular-A channel
model (see Table III) [29], where the maximum delay spread
is 2.51 µs. In terms of Doppler, the Doppler shift of the ith
path is modeled as νmax cos(θi), where θi, i = 1, 2, · · · , P, is
drawn independently and uniformly from [0, 2π), and νmax is
taken to be 815 Hz7 [9]. This νmax of 815 Hz corresponds
to a maximum Doppler spread of 2νmax = 1.63 kHz. For all
the performance figures other than Fig. 12, the Vehicular-A
channel model as described above is used. For Fig. 12, we have
used the 3GPP-specified TDL-A and TDL-C channel models
[30] with a larger number of paths (P = 23, 24) and a larger
Doppler (νmax = 3 kHz). The frame size parameters (number
of delay bins in τp and number of Doppler bins in νp) are taken
to be M = 64 and N = 24, respectively8, which correspond
to a bandwidth of B = Mνp = 64×15 kHz = 960 kHz and a
frame duration of T = Nτp = 24×66.67 µs = 1.6 ms. For the
considered parameters, kmax = 3 and lmax = 2. The path pow-
ers are normalized such that

∑P
i=1 E[|hi|2] = 1. For embedded

pilot frames, the pilot-to-data power ratio (PDR) is defined
as Ep/Ed, where Ep and Ed denote pilot and data energies,
respectively. The data SNR (DSNR) is given by Ed/(N0MN)
and the pilot SNR (PSNR) is given by Ep/(N0MN). For the
chosen Vehicular-A channel parameters, the guard region in
the embedded frame occupies 37.5% of the bins, yielding an
overall frame efficiency of 62.5%. Detection is carried out
using an LMMSE equalizer, followed by minimum-distance
decoding. All the simulations are run on a 12th Gen Intel(R)
Core(TM) i7-12700F processor operating at 2.10 GHz using
MATLAB R2024b.

7This choice of νmax = 815 Hz corresponds to a carrier frequency (fc)
of 4 GHz and a maximum velocity of 220 km/h, since νmax = fcv

c
=

4×109×(220×103/3600)

3×108
≈ 815 Hz.

8The choice of M = 64, N = 24 corresponds to a medium/large Zak-
OTFS frame size and follows the setting adopted in [9]. We have also carried
out simulations for a system with a smaller frame size of M = N = 16 and
observed similar performance gains for the proposed scheme observed for
M = 64, N = 24. To avoid repetition, we present results only for M = 64,
N = 24.
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Fig. 9. NMSE performance of the proposed hybrid estimation scheme as a
function of PSNR for exclusive pilot frame.

A. Performance with exclusive pilot frame

1) Estimation accuracy: Figure 9 shows the NMSE per-
formance of the proposed hybrid estimation scheme as a
function of PSNR for sinc filter with exclusive pilot frame. The
individual performance of model-free estimation and the pro-
posed low-complexity model-dependent estimation are shown
for comparison. Model-free estimation performance with the
Gaussian filter is also shown. The following observations can
be made from Fig. 9. At low PSNR values, the model-free es-
timate exhibits higher NMSE compared to that of the proposed
model-dependent estimate, primarily due to the dominant
influence of noise in the low PSNR regime. However, as the
PSNR increases, the NMSE of the model-dependent estimate
floors at a value much higher than that of the model-free
estimate. Also, the proposed hybrid estimate, like the model-
free estimate, underperforms relative to the model-dependent
estimate at low PSNRs as a consequence of the inaccurate
model-free estimate at low PSNRs, i.e., the poor quality of
the model-free estimate limits the overall effectiveness of the
hybrid scheme in the low PSNR regime. However, beyond a
certain PSNR (around 15 dB), the quality of the model-free
estimate improves significantly, and, as a result, the hybrid
estimate begins to outperform both the model-free and model-
dependent estimates, with the performance gap widening at
higher PSNR values. Further, it can be seen that the model-free
estimation using the Gaussian filter achieves superior NMSE
performance compared to all those of the estimators with the
sinc filter. This can be attributed to the excellent localization
properties of the Gaussian filter in the DD domain.

2) Detection performance: Figure 10 shows the BER per-
formance of the proposed hybrid estimation scheme as a
function of PSNR for sinc and Gaussian filters at a fixed
DSNR of 15 dB, and Fig. 11 shows the BER performance as a
function of DSNR at a fixed PSNR of 30 dB. For the sinc filter,
at low PSNRs, the model-dependent approach achieves better
BER performance, which is in agreement with the NMSE
behavior observed earlier. As the PSNR increases, the BER
of the model-free scheme improves, eventually surpassing that
of the model-dependent scheme. The hybrid scheme follows

Fig. 10. BER performance of the proposed hybrid estimation scheme as a
function of PSNR for exclusive pilot frame at 15 dB DSNR.

Fig. 11. BER performance of the proposed hybrid estimation scheme as a
function of DSNR for exclusive pilot frame at 30 dB PSNR.

a similar trend. Beyond a PSNR of about 15 dB, the hybrid
scheme outperforms both the model-free and model-dependent
schemes, demonstrating its advantage in the medium-to-high
SNR range of interest. Also, for the Gaussian filter, the BER
performance achieved with model-free estimate at 30 dB
PSNR is close to that with perfect CSI, attributable to its
excellent localization. On the other hand, although the sinc
filter with perfect CSI provides much superior performance
compared to that of the Gaussian filter with perfect CSI, sinc
filter’s performance with model-free estimate is far from its
perfect CSI performance, attributable to its poor localization.
Under these circumstances, the proposed hybrid estimation
scheme brings the sinc filter’s performance close to its perfect
CSI performance. Also, it is seen that the use of the proposed
model-dependent estimate alone is not competitive (due to its
simplified nature), and hence the proposed hybrid scheme is
crucial to approach the perfect CSI performance of the sinc
filter.

Figure 12 presents the BER performance of the proposed
hybrid scheme with sinc filter under TDL-A and TDL-C
channel models defined in 3GPP [30], which have P = 23
and 24 paths, respectively. The urban macro delay profile with
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TABLE IV
COMPLEXITY OF VARIOUS ESTIMATION ALGORITHMS

Estimation scheme No. of real additions No. of real multiplications
Model-free 98M2N2 + 4MN 100M2N2 + 8MN

Model-dependent (Prop.) 98M2N2 + (6M + 1)(6N + 1)3P̂max + 2(P̂max − 1)

+4P̂ 2
maxMN + 8P̂ 3

max + 4P̂maxMN − 6P̂maxMN

100M2N2 + (6M + 1)(6N + 1)9P̂max + 4P̂ 2
maxMN

+8P̂ 3
max − 8P̂ 2

max + 4P̂max(MN − 2) + (kmax + 1)(2lmax + 1)

Hybrid scheme (Prop.) 98M2N2 + ((6M + 1)(6N + 1)−MN) 3P̂max + 2(P̂max − 1)

4P̂ 2
maxMN + 8P̂ 3

max + 4P̂maxMN − 6P̂maxMN + 4MN + (kmax + 1)(2lmax + 1)

100M2N2 + ((6M + 1)(6N + 1)−MN) 9P̂max

+4P̂ 2
maxMN − 8P̂ 3

max + 4P̂max(MN − 2) + 8MN

SBL in [31]
TmaxM3N3 + 98M2N2 + Tmax2MτNνMN(3 + 4MτNν + 4MN)

+(6M + 1)(6N + 1)3P̂ + 2(P̂ − 1) +MτNν

TmaxM3N3 + 100M2N2 + TmaxMτNνMN(1 +MτNν +MN)

+(6M + 1)(6N + 1)9P̂ + 2MτNν

Fig. 12. BER performance of the proposed hybrid estimation scheme with
sinc filter under 3GPP TDL-A and TDL-C channel models.

(a) BER vs DSNR. (b) Complexity.

Fig. 13. BER performance and complexity (in number of real operations) of
various estimation algorithms.

delay scaling factor 302 ns and carrier frequency fc = 15
GHz (Table 7.7.3-2 in [30]) is considered. For this fc and a
maximum velocity of 220 km/h, the maximum Doppler shift is
about 3 kHz. All other parameters remain the same as before.
From Fig.12, it can be seen that, for both TDL-A and TDL-
C channels, while the model-free scheme significantly falls
short of the ideal (perfect CSI) performance, the proposed
hybrid scheme is found to achieve substantially improved per-
formance compared to the model-free scheme. For example,
the proposed scheme achieves an SNR gain of about 4 dB at
a BER of 2× 10−3 compared to the model-free scheme.

3) Comparison with SBL-based model-dependent estima-
tion: In Fig. 13, we present a BER and complexity compar-
ison between the proposed hybrid estimation scheme and the
SBL based model-dependent estimation in [31]. Figure 13(a)
presents the BER comparison and Fig. 13(b) presents the
complexity comparison. Figure 13(a) shows the BER perfor-
mance of the estimation schemes, namely, the proposed hybrid

estimation scheme, the on-grid SBL algorithm in [31], the pro-
posed low-complexity estimation scheme, and the model-free
estimation scheme. The performance with perfect CSI is also
included as a benchmark. Other than the system parameters
used for the proposed scheme, additional parameters specific
to the on-grid SBL algorithm used are [31]: virtual grid
parameters Mτ = 11, Nν = 14, number of bins considered
for estimation MT = M , NT = N (i.e., exclusive pilot
frame), and maximum iteration count Tmax = 1000. For
reconstruction of the I/O relation matrix, the top P̂ = 15
dominant estimated paths (in terms of energy) are selected.
All other parameters in the SBL algorithm are chosen to be
the same as those in [31]. From Fig. 13(a), it is observed
that, among the considered estimation schemes, the SBL
algorithm achieves the best BER performance (close to perfect
CSI performance), closely followed by the proposed hybrid
scheme. The difference in performance between the hybrid
and SBL schemes is quite small.

Complexity analysis: The model-free scheme is the least
expensive with a complexity order of O(M2N2), which arises
from the generation of the M2N2 entries of the MN ×MN
matrix Ĥ (see (17)) using the direct read-off ĥfree

eff values. The
proposed hybrid scheme incurs this model-free complexity
plus the additional computational complexity for estimating
path gains and generating ĥdep

eff in the region Fc
exc. As summa-

rized in Table II, this additional complexity scales linearly with
MN and cubically with the maximum number of estimated
paths P̂max. In contrast, the SBL algorithm incurs a signif-
icantly higher complexity of order O(TmaxM

3N3), which
arises from repeated matrix inversions of size MN × MN
in each iteration, along with the computations required to
generate ĥdep

eff across the entire DD space. The overall com-
plexity trends are evident from Table IV and Fig. 13(b). It
is interesting to note that the proposed hybrid scheme is
able to achieve performance comparable to SBL scheme at
a significantly lower complexity.

B. Performance with embedded pilot frame

1) Estimation accuracy: Figure 14 presents the NMSE
performance of the model-free, proposed model-dependent,
and proposed hybrid estimation schemes as a function of
DSNR at a PDR of 0 dB for sinc filter with embedded pilot
frame. Model-free estimation performance with the Gaussian
filter is also shown. The results demonstrate that while the
performance of the low-complexity model-dependent approach
floors as the DSNR increases, its integration within the pro-
posed hybrid framework contributes to overall performance
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Fig. 14. NMSE performance of the proposed hybrid estimation scheme as a
function of DSNR for embedded pilot frame at 0 dB PDR.

Fig. 15. BER performance of the proposed hybrid estimation scheme as a
function of DSNR for embedded pilot frame at 0 dB PDR.

enhancement. Specifically, the hybrid scheme consistently out-
performs both the model-free and proposed model-dependent
approaches, highlighting the synergistic benefits of combining
both approaches. The Gaussian filter is found to achieve very
good estimation performance in the embedded pilot frame as
well, because its better localization is able to effectively limit
pilot-data interference.

2) Detection performance: Figure 15 shows the BER per-
formance as a function of DSNR for sinc and Gaussian filters
with embedded pilot frame at a fixed PDR of 0 dB. Perfor-
mance with perfect CSI is included as a reference benchmark.
The model-free estimation yields good BER performance for
Gaussian filter, performing close to its perfect CSI counterpart.
However, with sinc filter, the model-free performance is poor,
and, in some cases, even inferior to that of the Gaussian filter’s
model-free estimation performance, despite the fact that the
perfect CSI performance of the sinc filter is superior compared
to that of the Gaussian filter. This is attributed to the limited
read-off region in the embedded frame, which is inadequate for
the sinc filter. With the proposed hybrid estimation, however,
the performance not only surpasses that of the model-free
estimation but also exceeds the perfect CSI performance of the

Fig. 16. BER performance of the proposed hybrid estimation scheme as a
function of PDR for embedded pilot frame at 20 dB DSNR.

Gaussian filter. This highlights the effectiveness of the hybrid
scheme in harnessing the Nyquist advantage of the sinc filter
(nulls at DD sampling points), making it a good choice for
low-complexity high-performance channel estimation.

Figure 16 shows the BER performance of the model-free,
proposed model-dependent, and proposed hybrid estimation
schemes as a function of PDR for sinc filter with embedded
pilot frame at a DSNR of 20 dB. A classical U-shaped
curve is observed for the three schemes, i.e., both low and
high PDRs give poor BER performance (because of poor
estimation performance at low PDRs due to weak pilot power
and poor detection performance at high PDRs due to increased
pilot interference to data), and the performance is best at a
certain optimum PDR in between. Among the three estimation
schemes considered, the proposed hybrid scheme achieves the
best performance.

V. CONCLUSIONS

In this work, we considered the problem of I/O relation
estimation in Zak-OTFS systems. While the model-free ap-
proach offers simplicity and the ability to handle fractional
delays and Dopplers, its performance is highly dependent on
the localization characteristics of the pulse shaping filter. We
observed that sinc pulses, though optimal under perfect CSI,
perform poorly with model-free estimation due to their poor
localization with high side lobes. Whereas Gaussian pulses,
despite being sub-optimal in their main lobe characteristics,
yield better model-free estimation performance due to their
better localization with very low side lobes. To address this is-
sue, we proposed a hybrid estimation framework that combines
the simplicity of model-free read-off with a low-complexity
model-dependent add-on. The hybrid approach was designed
to extend the estimation beyond the limited region captured
by model-free estimation, thereby compensating for its short-
comings. We developed this framework for both exclusive
and embedded pilot configurations and analyzed the NMSE
and BER performance. Our simulation results showed that the
proposed hybrid scheme achieves lower NMSE and improved
BER compared to model-free estimation alone, especially with
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sinc pulses. The proposed scheme was shown to achieve
performance comparable to that of the SBL algorithm at a
significantly lower complexity. These results show that the
hybrid estimation framework can bring the BER performance
towards the perfect CSI performance of the sinc filter, enabling
Zak-OTFS to fully exploit the benefits of optimal DD pulse
shaping in high-mobility channels. In this work, we have
considered exclusive and embedded pilot frames which incur
throughput loss due to pilot overhead in a frame. Zak-OTFS
with superimposed pilot frames (where a point pilot spread in
the DD domain is superimposed on data in order to avoid
throughput loss due to pilot overhead) can be considered
as one possible direction for future work. Investigation of
learning-based techniques for achieving robust I/O relation
estimation can be another promising line of future research.

APPENDIX A
PROOF OF EQN. (15)

Ignoring the noise and by substituting (3) in (12),

ywrx

dd (τ, ν) = heff(τ, ν) ∗σ xdd(τ, ν) =∫∫
heff(τ

′, ν′)xdd(τ − τ ′, ν − ν′)ej2πν
′(τ−τ ′)dτ ′dν′

=

∫∫ ∑
m,n∈Z

M−1∑
k=0

N−1∑
l=0

x[k, l]ej2π
nl
N ej2πν

′(τ−τ ′)

δ
(
ν − ν′ − (l+mN)νp

N

)
δ
(
τ − τ ′ − (k+nM)τp

M

)
dτ ′dν′

=
∑

m,n∈Z

M−1∑
k=0

N−1∑
l=0

x[k, l]ej2π
nl
N

∫∫
heff(τ

′, ν′)ej2πν
′(τ−τ ′)

δ
(
τ − τ ′ − (k+nM)τp

M

)
δ
(
ν − ν′ − (l+mN)νp

N

)
dτ ′dν′

=
∑

m,n∈Z

M−1∑
k=0

N−1∑
l=0

x[k, l]ej2π
nl
N e

j2π
(

(k+nM)τp
M

)(
ν− (l+mN)νp

N

)

heff

(
τ − (k+nM)τp

M , ν − (l+mN)νp

N

)
.

Upon sampling the signal at
(

k′τp

M ,
l′νp

N

)
, the received DD

signal becomes

ywrx

dd [k′, l′] =∑
m,n∈Z

M−1∑
k=0

N−1∑
l=0

x[k, l]ej2π
nl
Ne

j2π

((
(k+nM)τp

M

)(
l′τp
M

(l+mN)νp
N

))

heff

(
k′τp

M − (k+nM)τp

M ,
l′νp

N − (l+mN)νp

N

)
=

∑
m,n∈Z

M−1∑
k=0

N−1∑
l=0

x[k, l]ej2π
nl
N ej2π

(l′−l−mN)(k+nM)
MN

heff [k
′ − k − nM, l′ − l −mN ].
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