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Abstract—In this paper, we analyze the performance of or-
thogonal time frequency space (OTFS) modulation with antenna
selection at the receiver, where ns out of nr receive antennas
with maximum channel Frobenius norms in the delay-Doppler
(DD) domain are selected. Single-input multiple-output OTFS
(SIMO-OTFS), multiple-input multiple-output OTFS (MIMO-
OTFS), and space-time coded OTFS (STC-OTFS) systems with
receive antenna selection (RAS) are considered. We consider
these systems without and with phase rotation. Our diversity
analysis results show that, with no phase rotation, SIMO-OTFS
and MIMO-OTFS systems with RAS are rank deficient, and
therefore they do not extract the full receive diversity as well as
the diversity present in the DD domain. Also, Alamouti coded
STC-OTFS system with RAS and no phase rotation extracts the
full transmit diversity, but it fails to extract the DD diversity.
On the other hand, SIMO-OTFS and STC-OTFS systems with
RAS become full-ranked when phase rotation is used, because
of which they extract the full spatial as well as the DD diversity
present in the system. Also, when phase rotation is used, MIMO-
OTFS systems with RAS extract the full DD diversity, but they do
not extract the full receive diversity because of rank deficiency.
Simulation results are shown to validate the analytically predicted
diversity performance.

Index Terms—OTFS modulation, receive antenna selection,
diversity, MIMO-OTFS, space-time coded OTFS.

I. INTRODUCTION

Orthogonal time frequency space (OTFS) modulation is a
two-dimensional (2D) modulation scheme proposed in the
recent literature to tackle the doubly-dispersive nature of
mobile radio channels, caused by multipath propagation en-
vironments [1],[2],[3]. Conventional multicarrier modulation
schemes such as orthogonal frequency division multiplexing
(OFDM) embed information symbols in the time-frequency
(TF) domain to mitigate inter-symbol interference (ISI) caused
by time dispersion. However, the Doppler shifts encountered
in high-mobility channels destroy the orthogonality among
subcarriers in OFDM. This results in degraded performance
of OFDM systems in time-varying channels [4]. OTFS, on
the other hand, places the information symbols in delay-
Doppler (DD) domain which result in 2D convolution of the
information symbols with the channel in the DD domain.
OTFS has been found to perform better than OFDM in
high-Doppler communication scenarios, such as high-speed
trains and vehicle-to-vehicle/vehicle-to-infrastructure commu-
nications. Since the signaling in OTFS is done in the DD
domain rather than in the TF domain, the interaction of
information symbol and rapidly time-varying channel appear
as almost time invariant in the DD domain. Also, because

of the constant DD channel gain experienced by a OTFS
frame, design of equalizers and channel estimation in DD
domain is easy. One more advantage of OTFS is that it
can be implemented using existing multicarrier modulation
schemes, such as OFDM, with additional pre-processing and
post-processing modules [15].

Several papers in the recent literature have investigated
many key issues in OTFS such as low-complexity signal de-
tection [5]-[13], channel estimation [14]-[16], peak-to-average
power ratio (PAPR) and pulse shapes [17]-[20], and multiple
access [21]-[24]. In terms of performance analysis, an asymp-
totic diversity analysis for OTFS has been carried out in [25].
It established that the asymptotic diversity order achieved in
single-input single-output OTFS (SISO-OTFS) is one for ideal
biorthogonal waveforms. In other words, OTFS in its basic
form does not extract the diversity present in the DD domain.
It also explored a phase rotation scheme using transcendental
numbers to extract full diversity in the DD domain. It has also
reported diversity orders of nr and nrP for multiple-input
multiple-output OTFS (MIMO-OTFS) without and with phase
rotation, respectively, where nr and P denote the number of
receive antennas and the number of resolvable paths in the
DD domain, respectively. The analysis in [26] on the effective
diversity of OTFS using rectangular waveforms and a two-path
channel has shown that the number of signal pairs that prevent
the achievability of full rank is very small for sufficiently large
frame sizes. The analysis in [27] for space-time coded OTFS
(STC-OTFS) with Alamouti code with two transmit antennas
has reported diversity orders of 2nr and 2nrP for STC-OTFS
without and with phase rotation, respectively. Because of the
good diversity slopes in the finite signal-to-noise ratio (SNR)
regime even with small frame sizes, STC-OTFS was suggested
to be suited for low-latency applications.

Antenna selection techniques allow the use of fewer radio
frequency (RF) chains than the number of antenna elements.
This reduces the RF hardware complexity and cost. In this
regard, it is of interest to analyze the performance of OTFS
with antenna selection, and such an analysis has not been
reported so far. Our new and novel contributions in this paper
can be highlighted as follows. First, we analyze and establish
the diversity orders achieved by different multi-antenna OTFS
systems with antenna selection at the receiver, where ns out
of nr receive antennas are selected. Second, in rapidly time-
varying channels, devising suitable antenna selection metric
is a crucial issue. We address this issue by proposing the
Frobenius norm of the channel matrix in the DD domain as
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Fig. 1: OTFS modulation scheme.

the antenna selection criterion. This is novel and attractive
because it takes advantage of the simplicity of DD channel
estimation in OTFS due to the sparsity and slow variation of
rapidly time-varying channels when viewed in the DD domain.

In our analysis, we consider the diversity performance
of single-input multiple-output OTFS (SIMO-OTFS), MIMO-
OTFS, and STC-OTFS systems with receive antenna selection
(RAS). Our diversity analysis results show that, with no phase
rotation, SIMO-OTFS and MIMO-OTFS systems with RAS
are rank deficient, and therefore they do not extract the full
receive diversity as well as the diversity present in the DD
domain. Also, Alamouti coded STC-OTFS system with RAS
and no phase rotation extracts the full transmit diversity, but
it fails to extract the DD diversity. On the other hand, SIMO-
OTFS and STC-OTFS systems with RAS become full-ranked
when phase rotation is used, because of which they extract the
full spatial as well as the DD diversity present in the system.
Also, when phase rotation is used, MIMO-OTFS systems with
RAS extract the full DD diversity, but they do not extract the
full receive diversity because of rank deficiency. A summary of
the diversity orders achieved in different multi-antenna OTFS
systems with RAS are presented in Table I in Sec. III. In the
later sections, we will present analytical derivations for the
diversity orders in Table I and supporting simulation results
that verify the analytically predicted diversity orders.

The rest of the paper is organized as follows. The considered
multi-antenna OTFS systems with receive antenna selection
are presented in Sec. II. The diversity analyses of these systems
for full rank and rank deficient are presented in Sec. III.
Numerical results and discussions are presented in Sec. IV.
Conclusions are presented in Sec. V.

Notations: Capital boldface letters denote matrices, lower
case boldface letters denote vectors, diagfx1; � � � ; xng de-
notes a diagonal matrix with fx1; � � � ; xng as its diagonal
entries, and kXk denotes the Frobenius norm of matrix X.
Transpose and Hermitian operators are denoted by (�)T and
(�)H , respectively. jcj and jSj denote the magnitude of the
complex scalar c and size of the set S, respectively. E[�] and
Tr[�] denote the expectation and trace operations, respectively.
CN (a; b) denotes complex Gaussian distribution with mean a
and variance b.

II. MULTI-ANTENNA OTFS SYSTEMS WITH RAS

In this section, we present the basic OTFS modulation
scheme and the system models corresponding to different
multi-antenna OTFS systems. The analyses that follow in Sec.
III are for integer Dopplers/delays, and the case of fractional
Doppler/delays will be analyzed in the Appendix.

A. Basic OTFS modulation
The OTFS modulation scheme consists of cascaded struc-

tures of two 2D transforms at the transmitter and the receiver.
The block diagram of the basic OTFS modulation scheme
is shown in Fig. 1. At the transmitter, information symbols
in the DD domain are mapped to TF domain using inverse
symplectic finite Fourier transform (ISFFT) followed by win-
dowing. The TF symbols are then converted to time domain
using Heisenberg transform for transmission over the channel.
At the receiver, Wigner transform (inverse of Heisenberg
transform) is performed to get TF symbols. Using windowing
and symplectic finite Fourier transform (SFFT), TF symbols
are mapped back to DD domain for demodulation.

The information symbols x[k; l]s are multiplexed on an N�
M DD grid, given by

� = f( k
NT ;

l
M�f ); k = 0; � � � ; N�1; l = 0; � � � ;M�1g; (1)

where 1=NT and 1=M�f denote the bin sizes in the Doppler
domain and delay domain, respectively, and N and M denote
the number of Doppler and delay bins, respectively. The DD
domain symbols x[k; l]s are mapped to symbols in the TF
domain X[n;m]s using ISFFT. Assuming rectangular window-
ing, the TF signal can be written as

X[n;m] =
1p
MN

N�1X
k=0

M�1X
l=0

x[k; l]ej2�(
nk
N
�ml

M ): (2)

This TF signal is converted into a time domain signal x(t),
using Heisenberg transform and transmit pulse gtx(t), as

x(t) =

N�1X
n=0

M�1X
m=0

X[n;m]gtx(t� nT )ej2�m�f(t�nT ): (3)

The transmitted signal x(t) passes through the channel, whose
complex baseband channel response in the DD domain, de-
noted by h(�; �), is given by [6]

h(�; �) =

PX
i=1

hi�(� � �i)�(� � �i); (4)

where P is the number of paths in the DD domain, and hi,
�i, and �i denote the channel gain, delay, and Doppler shift,
respectively, associated with the ith path. The received time
domain signal y(t) at the receiver is then given by

y(t) =

Z
�

Z
�

h(�; �)x(t� �)ej2��(t��)d�d� + v(t); (5)

where v(t) denotes the additive white Gaussian noise.
At the receiver, the received signal y(t) is matched filtered

with a receive pulse grx(t), yielding the cross-ambiguity
function Agrx;y(t; f) given by

Agrx;y(t; f) =

Z
g�rx(t

0 � t)y(t0)e�j2�f(t
0�t)dt0: (6)



The pulses gtx(t) and grx(t) are chosen such that the biorthog-
onality condition is satisfied, i.e., Agrx;gtx(t; f)jnT;m�f =
�(m)�(n). Sampling Agrx;y(t; f) at t = nT , f = m�f gives

Y [n;m] = Agrx;y(t; f)jt=nT;f=m�f : (7)

This received TF domain signal Y [n;m] is mapped to the
corresponding DD domain signal y[k; l] using SFFT as

y[k; l] =
1p
MN

N�1X
k=0

M�1X
l=0

Y [n;m]e�j2�(
nk
N
�ml

M ): (8)

From (3)-(8), the input-output relation in the DD domain can
be written as [6]

y[k; l] =

PX
i=1

h0ix[(k � �i)N ; (l � �i)M ] + v[k; l]; (9)

where h0i = hie
�j2��i�i , �i and �i are assumed to be integers

corresponding to the indices of the delay tap and Doppler
frequency associated with �i and �i, respectively, i.e., �i ,
�i

M�f and �i , �i
NT , (:)N denotes the modulo N operation, and

v[k; l] denotes the additive white Gaussian noise. Vectorizing
the input-output relation in (9), we can write [6]

y = Hx+ v; (10)

where H 2 CMN�MN , x;y;v 2 CMN�1, the (k + Nl)th
entry of x, xk+Nl = x[k; l], k = 0; � � � ; N�1, l = 0; � � � ;M�
1 and x[k; l] 2 A, where A is the modulation alphabet (e.g.,
quadrature amplitude modulation (QAM) or phase shift keying
(PSK)). Likewise, yk+Nl = y[k; l] and vk+Nl = v[k; l], k =
0; � � � ; N � 1; l = 0; � � � ;M � 1. It is assumed that the his
are i.i.d and are distributed as CN (0; 1=P ), assuming uniform
scattering profile.

An alternate form of input-output relation (10): The vector-
ized form of input-output relation in (10) can be written in an
alternate form which is essential for our diversity analysis.
This alternate representation is also useful in writing the
system model for STC-OTFS systems. Towards this, it is
observed that there are only P non-zero entries in each row
and column of the equivalent channel matrix H because of the
modulo operations in (9), i.e., there are only MNP non-zero
entries in H. Also, among the non-zero entries there are only
P unique values, since each transmitted symbol experiences
the same channel gain as can be seen in (9). With this, the
relation in (10) can be written in an alternate form as [25]

yT = h0X+ vT ; (11)

where yT is 1 � MN received vector, h0 is 1 � P vector
whose ith entry is given by h0i = hie

�j2��i�i , vT is 1�MN
noise vector, and X is P � MN matrix whose ith column
X[i], i = k + Nl; k = 0; � � � ; N � 1; l = 0; � � � ;M � 1, is
given by

X[i] =

2
6664
x(k��1)N+N(l��1)M
x(k��2)N+N(l��2)M

...
x(k��P )N+N(l��P )M

3
7775 : (12)

This representation allows us to view the matrix X in the form
of P �MN symbol matrix.

B. MIMO-OTFS with receive antenna selection

The input-output relation of MIMO-OTFS system with nr
receive antennas and nt transmit antennas can be written as2
64 y1...
ynr

3
75

| {z }
, �y

=

2
64H11 � � � H1nt

...
. . .

...
Hnr1 � � � Hnrnt

3
75

| {z }
, �H

2
64 x1...
xnt

3
75

| {z }
, �x

+

2
64 v1...
vnr

3
75

| {z }
, �v

; (13)

or equivalently
�y = �H�x+ �v; (14)

where �y 2 CnrMN�1 is the received signal vector, �H 2
CnrMN�ntMN is the overall equivalent channel matrix with
Hij being the MN � MN equivalent channel matrix be-
tween the jth transmit antenna and ith receive antenna, �x 2
CntP�MN is the OTFS transmit vector, and �v 2 CnrMN�1

is the noise vector. Perfect DD channel knowledge is assumed
at the receiver. The receiver selects ns out of the nr antennas
with the largest Frobenius norms of the channel in the DD
domain, i.e., selects the ns antennas whose Frobenius norms
among those of all the nr antennas, given by

ntX
j=1

kHijk2; i = 1; 2; � � � ; nr; (15)

are the largest. Observing that each Hij contains only PMN
non-zero elements with P unique elements and using the
definition of Frobenius norm, the selection metric in (15) can
be written as

PX
k=1

ntX
j=1

jh(k)ij j2; i = 1; 2; � � � ; nr; (16)

where h(k)ij are the unique non-zero entries of Hij . Therefore,
with antenna selection, the input-output relation of the MIMO-
OTFS system can be written as2
64 y

0
1
...
y0ns

3
75

| {z }
, �y0

=

2
64H

0
11 � � � H0

1nt
...

. . .
...

H0
ns1 � � � H0

nsnt

3
75

| {z }
, �H0

2
64 x1...
xnt

3
75

| {z }
, �x0

+

2
64 v

0
1
...
v0ns

3
75

| {z }
, �v0

; (17)

or equivalently
�y0 = �H0�x+ �v0; (18)

where �y0 2 CnsMN�1, �H0 2 CnsMN�ntMN is the equivalent
channel matrix with antenna selection, �x 2 CntMN�1 is
the OTFS transmit vector, and �v0 2 CnsMN�1 is the noise
vector. Figure 2 shows the block diagram of MIMO-OTFS
with receive antenna selection.

An alternate form of MIMO-OTFS with antenna selection:
The input-output relation in (18) can be written in an alternate
form similar to that in (11), by observing that each H0

ij in
(17) contains only P unique non-zero elements and hence �H0

in (18) contains only Pnsnt unique non-zero elements with
each row having only Pnt unique non-zero elements and each
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Fig. 2: MIMO-OTFS with receive antenna selection.

column having only nsP unique non-zero elements. Therefore,
(17) can be written as2
64y

0
1
T

...
y0ns

T

3
75

| {z }
, ~Y

=

2
64 h

0
11 � � � h01nt
...

. . .
...

h0ns1 � � � h0nsnt

3
75

| {z }
, ~H

2
64X1

...
Xnt

3
75

| {z }
, ~X

+

2
64v

0
1
T

...
v0ns

T

3
75

| {z }
, ~V

; (19)

or equivalently
~Y = ~H~X+ ~V; (20)

where ~Y 2 Cns�MN with its ith row corresponding to the re-
ceived signal in the ith selected receive antenna, ~H 2 Cns�ntP

is the channel matrix with h0ij 2 C1�P containing P unique
non-zero entries of H0

ij , ~X is ntP �MN symbol matrix, and
~V 2 Cns�MN is the noise matrix.

C. STC-OTFS with antenna selection

Figure 3 shows the block diagram of STC-OTFS with
receive antenna selection. In this subsection, we develop the
system model for Alamouti code [28] based STC-OTFS with
receive antenna selection.

1) Alamouti STC-OTFS: Alamouti code based STC-OTFS
uses the structure of the well known Alamouti code, gener-
alized to matrices. An STC-OTFS codeword matrix ~X is an
ntMN � T 0MN block matrix. Each block in this matrix is
an MN �MN OTFS transmit matrix; e.g., the block ~Xkt in
~X denotes the OTFS transmit matrix in the tth frame from
kth transmit antenna. If ~X contains Z independent OTFS
symbol matrices which are transmitted over T 0 frame uses,
then the code rate is Z=T 0 symbols per channel use. A delay-
Doppler channel which is quasi-static over T 0 frame duration
is assumed. A 2MN �2MN Alamouti STC-OTFS codeword
matrix with nt = T 0 = 2 is given by [27]

~X =

2
4X1 �XH

2

X2 XH
1

3
5 ; (21)

where X1 and X2 are the symbol matrices. That is, the
OTFS transmit vectors corresponding to X1 and X2 are
transmitted from the 1st and 2nd antennas, respectively, in the
first frame. In the second frame, the vectors corresponding to
�XH

2 and XH
1 are transmitted from the 1st and 2nd antennas,

respectively. Following the development of the system model
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Fig. 3: STC-OTFS system receive antenna selection.

without receive antenna selection in [27], the input-output
relation for Alamouti STC-OTFS with selection of ns out of
nr antennas at the receiver can be written in the form2
666666664

y011
...

y0ns1
(ŷ012)

�
...

(ŷ0ns2)
�

3
777777775

| {z }
, �y0

=
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H0
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12 �H0H
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...
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H0H

ns2 �H0H
ns1

3
777777775

| {z }
, �H0

�
x1
x2

�
| {z }
, �x

+

2
666666664

v011
...

v0ns1
(v̂012)

�
...

(v̂0ns2)
�

3
777777775

| {z }
, �v0

;
(22)

where y0ij 2 CMN�1 is the received signal vector at the ith
antenna in the jth time slot with ŷ0ij = Py0ij , where P is
MN �MN permutation matrix given by

P = P0M 
P0N ; (23)

where 
 denotes the Kronecker product, and P0M and P0N are
left circulant matrices, which are given by

P0M =

2
666664
1 0 � � � 0 0
0 0 � � � 0 1
0 0 � � � 1 0
...
0 1 � � � 0 0

3
777775
M�M

P0N =

2
666664
1 0 � � � 0 0
0 0 � � � 0 1
0 0 � � � 1 0
...
0 1 � � � 0 0

3
777775
N�N

;

(24)
H0

ij 2 CMN�MN is the equivalent channel matrix between
ith selected receive antenna and jth transmit antenna, and xi 2
CMN�1 is the transmitted OTFS vector. The compact form of
(22) is given by

�y0 = �H0�x+ �v0; (25)

where �y0; �v0 2 C2nsMN�1, �H0 2 C2nsMN�2MN , and �x 2
C2MN�1.

An alternate form of Alamouti STC-OTFS with antenna
selection: The input-output relation in (25) can be written in



an alternate form, based on (11) and (19), as2
64 y

0T
11 y0T12
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...
y0Tns1 y0Tns2

3
75
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, ~Y
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2
64 h

0
11 h012
...

...
h0ns1 h0ns2

3
75
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, ~H
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�

X2 (X̂1)
�

�
| {z }

, ~X

+

2
64
v0T11 v0T12

...
...

v0Tns1 v0Tns2

3
75

| {z }
, ~V

;

(26)

which can be written in the following compact form1:

~Y = ~H~X+ ~V; (27)

where ~Y; ~V 2 Cns�2MN , ~H 2 Cns�2P , and ~X 2 C2P�2MN .
Here it is observed that Xi 6= X̂i, since transmitted OTFS
vectors in the 2nd frame are conjugated and permuted vectors
of those transmitted in the 1st frame. In (21), ~X is defined to
be 2MN � 2MN symbol matrix, but for diversity analysis
~X 2 C2P�2MN in (26) is convenient.

D. OTFS with phase rotation

In this subsection, we present OTFS modulation with phase
rotation. In OTFS with phase rotation, the OTFS vector x is
pre-multiplied by a phase rotation matrix �, which is of the
form

� = diagf�0; �1; � � � ; �MN�1g: (28)

That is, x0 = �x is the phase rotated OTFS transmit vector. It
has been shown in [25] that SISO-OTFS with the above phase
rotation achieves the full diversity available in the DD domain
when �i = ejai , i = 0; 1; � � � ;MN � 1, are transcendental
numbers with ai being real, distinct and algebraic. We consider
this phase rotation scheme for multi-antenna OTFS systems,
where the OTFS vector in each transmit antenna is pre-
multiplied by the phase rotation matrix �.

E. Rank of multi-antenna OTFS systems

In the next section, we carry out the diversity analysis for
multi-antenna systems for full rank and rank deficient cases. In
this subsection, we identify the rank of the considered multi-
antenna OTFS systems without and with phase rotation.

1) MIMO-OTFS, SIMO-OTFS: Consider MIMO-OTFS
(nt � 2) without phase rotation. Let ~Xi and ~Xj be two
distinct symbol matrices defined in (20). The minimum rank
of (~Xi � ~Xj) is 1 < min(ntP;MN) [25]. Therefore,
MIMO-OTFS without phase rotation is rank deficient. Next,
consider MIMO-OTFS with phase rotation. Let �x0i = ��xi and
�x0j = ��xj be two distinct phase rotated OTFS transmit vectors
in (18). Let ~X0

i and ~X0
j be the corresponding phase rotated

symbol matrices in (20). The minimum rank of (~X0
i � ~X0

j)

1In order to adopt a unified input-output system model in the analysis,
we keep the same notation in (20) and (27), where in MIMO-OTFS without
space-time coding in (20), we have ~Y, ~V 2 Cns�MN , ~H 2 Cns�ntP and
~X 2 CntP�MN , and in space-time coded OTFS in (27), we have ~Y, ~V
2 Cns�2MN , ~H 2 Cns�2P and ~X 2 C2P�2MN .

is P < min(ntP;MN) [25]. Therefore, MIMO-OTFS system
with phase rotation is also rank deficient.

SIMO-OTFS can be viewed as a special case of MIMO-
OTFS with nt = 1. Therefore, for SIMO-OTFS without phase
rotation, the minimum rank of (~Xi� ~Xj) is 1 < min(P;MN).
Therefore, SIMO-OTFS system without phase rotation is rank
deficient for P > 1. For P = 1, the dimension of (~Xi � ~Xj)
is 1 � MN and the minimum rank is 1, and so it is full
rank. For SIMO-OTFS with phase rotation, the minimum rank
of (~X0

i � ~X0
j) is P = min(P;MN). Since P � MN and

minimum rank is P , and so it is full rank.
2) STC-OTFS: Consider Alamouti STC-OTFS without

phase rotation. Let ~Xi and ~Xj be the two distinct symbol
matrices defined in (27), The minimum rank of (~Xi � ~Xj)
is 2 < min(2P; 2MN) [27]. Therefore, for P > 1 Alamouti
STC-OTFS is rank deficient, and for P = 1 it is full rank
with rank 2. For Alamouti STC-OTFS with phase rotation,
the minimum rank of (~X0

i � ~X0
j) is 2P � min(2P; 2MN)

[27]. Therefore, Alamouti STC-OTFS with phase rotation is
full rank with rank 2P .

III. ANALYSIS OF MULTI-ANTENNA OTFS WITH RAS

In this section, we analyze the performance of multi-antenna
OTFS systems with RAS by deriving explicit upper bounds on
pairwise error probability (PEP). We carry out the diversity
analysis for full rank and rank deficient cases in the following
subsections.

A. Full rank multi-antenna OTFS systems with RAS

Consider the case of full rank multi-antenna OTFS systems
with receive antenna selection. Let ~Xi and ~Xj be two distinct
symbol matrices. Assuming perfect DD channel knowledge
and maximum likelihood (ML) detection at the receiver, the
conditional PEP between the symbol matrices ~Xi and ~Xj ,
assuming ~Xi to be the transmitted symbol matrix, is given by

P (~Xi ! ~Xj j~H; ~Xi) = Q

0
@
s
k~H(~Xi � ~Xj)k2

2N0

1
A; (29)

where Q(x) = 1p
2�

R1
x
e�t

2=2dt. For convenience, the entries
of ~X are normalized so that average energy per symbol time
is one and the SNR, denoted by , is given by  = 1=N0.
Therefore, (29) can be written as

P (~Xi ! ~Xj j~H; ~Xi) = Q

0
@
s
k~H(~Xi � ~Xj)k2

2

1
A: (30)

Averaging over the distribution of ~H and upper bounding using
Chernoff bound, an upper bound on the unconditional PEP can
be written as

P (~Xi ! ~Xj) � E~H

"
exp

 
� k

~H(~Xi � ~Xj)k2
4

!#
: (31)



The distribution of ~H is given by [29],[30]

f~H(h
0
1; � � � ;h0ns) =

nr!

(nr � ns)!ns!

�
� nsX
l=1

"
1� e�Pkh

0
lk2

ntP�1X
k=0

P kkh0lk2k
k!

#nr�ns

� I ~Hl
(h01; � � � ;h0ns)

�
� P

Pntns

�Pntns
e�P (kh

0
1k2+���+kh0nsk

2);

(32)
where h0i is the ith row of ~H, I ~Hl

(h01; � � � ;h0ns) is the indicator
function given by

I ~Hl
(h01; � � � ;h0ns) =

(
1 if (h01; � � � ;h0ns) 2 ~Hl

0 else;
(33)

and the region ~Hl is defined as ~Hl = fh01; � � � ;h0ns : kh0lk <kh0kk; k = 1; � � � ; l � 1; l + 1; � � � ; nsg. The PEP bound can
be written as

P (~Xi ! ~Xj) �
nsX
l=1

Z
~Hl

e
�
4 k~H(~Xi�~Xj)k2 nr!

(nr � ns)!ns!

�
 
1� e�Pkh

0
lk2

ntP�1X
k=0

P kkh0lk2k
k!

!nr�ns

� P
nsntP

�nsntP
e�P (kh

0
1k2+���+kh0nsk

2)dh01 � � � dh0ns :
(34)

Letting
p
Ph0l = sl, l = 1; � � � ; ns, S to be an ns�ntP matrix

whose lth row is sl and region ~Hl = fs1; � � � ; sns : kslk <
kskk; k = 1; � � � ; l � 1; l + 1; � � � ; nsg, we can write (34) as

P (~Xi ! ~Xj) �
nsX
l=1

Z
~Hl

e
�
4P kS(~Xi�~Xj)k2 nr!

(nr � ns)!ns!

�
 
1� e�kslk

2
ntP�1X
k=0

kslk2k
k!

!nr�ns

� (
p
P )nsntP

�nsntP
e�(ks1k

2+���+ksnsk2)ds1 � � � dsns :
(35)

The term kS(~Xi � ~Xj)k2 in (35) can be simplified as

kS(~Xi � ~Xj)k2 = TrfS(~Xi � ~Xj)(~Xi � ~Xj)
HSHg

= TrfSU�(SU)
Hg

=

ntPX
k=1

�kkckk2; (36)

where (36) uses the eigenvalue decomposition of (~Xi �
~Xj)(~Xi � ~Xj)

H , U is the unitary matrix whose columns
are the eigenvectors of (~Xi � ~Xj)(~Xi � ~Xj)

H , � is the
diagonal matrix containing its eigenvalues, and ck is the kth
column of SU. Let c0l be the lth row of SU so that ~Hl =
fc01; � � � ; c0ns : kc0lk < kc0kk; k = 1; � � � ; l � 1; l + 1; � � � ; nsg.
Defining K , ntP and � , (

p
P )nsntP , and changing

variables in (35) by substituting cij = sij for i = 1; � � � ; ns

and j = 1; � � � ; ntP , we get

P (~Xi ! ~Xj) � � � nr!
(nr � ns)!ns!

�
nsX
l=1

Z
~Hl

e
�
4P (�1(jc11j2+���+jcns1j2)+���+�K(jc1K j2+���+jcnsK j2))

�
 
1� e�(jcl1j

2+���+jclK j2)
K�1X
k=0

(jcl1j2 + � � �+ jclK j2)k
k!

!nr�ns

� 1

�nsK
e�
Pns

i=1

PK
j=1 jcij j2dc11 � � � dcnsK : (37)

Evaluating the integral in (37) over the region is difficult. But
because of symmetry of pdf it is possible to evaluate over the
whole space which results in an upper bound. Because of the
symmetry of the pdf, the integral over ~Hl for each l is same.
The lth term in (37) can be rewritten using standard integration
as

Il = � � nr!
(nr � ns)!ns!

Z 1

0

� � �
Z 1

0

� e�4P (�1(jc11j2+���+jcns1j2)+���+�K(jc1K j2+���+jcnsK j2))

�
 
1� e�(jcl1j

2+���+jclK j2)
K�1X
k=0

(jcl1j2 + � � �+ jclK j2)k
k!

!nr�ns

� 1

�nsK
e�
Pns

i=1

PK
j=1 jcij j2dc11 � � � dcnsK : (38)

Changing the variables cij = �ije
j�ij , i = 1; � � � ; ns, j =

1; � � � ;K (with differential element dcij = �ijd�ijd�ij), after
evaluating integral w.r.t d�ij over [0; 2�], we get

Il = 2nsK� � nr!
(nr � ns)!ns!

�
Z 1

0

� � �
Z 1

0

e
�
4P (�1(�

2
11+���+�2ns1)+���+�K(�21K+���+�2nsK))

�
 
1� e�(�

2
l1+���+�2lK)

K�1X
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� e�
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PK
j=1 �

2
ij�11 � � ��nsKd�11 � � � d�nsK : (39)

Substituting �2ij = vij , i = 1; � � � ; ns, j = 1; � � � ;K, we get

Il = � � nr!
(nr � ns)!ns!

�
Z 1

0

� � �
Z 1

0

e
�
4P (�1(v11+���+vns1)+���+�K(v1K+���+vnsK))

�
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K�1X
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� e�
Pns

i=1

PK
j=1 vijdv11 � � � dvnsK : (40)



Now, (40) can be written as

Il = � � nr!
(nr � ns)!ns!

Z 1

0

� � �
Z 1

0

e
�
4P

PK
i=1 �i(

Pns
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Z 1

0

e
�
4P

PK
i=1 �ivli
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1� e�(vl1+���+vlK)

K�1X
k=0

(vl1 + � � �+ vlK)
k

k!

!nr�ns

� e�(vl1+���+vlK)dvl1 � � � dvlK :
(41)

Let I(1)l denote the first integral and I(2)l denote the sec-
ond integral in the above expression. Evaluating I(1)l usingR1
0
e��xdx = 1

� , we get

I(1)l =

 
1QK

i=1(1 +
�i
4P )

!ns�1

; (42)

and I(2)l as

I(2)l =

Z 1

0

� � �
Z 1

0

e
�
4P

PK
i=1 �ivli

�
 
1� e�(vl1+���+vlK)

K�1X
k=0

(vl1 + � � �+ vlK)
k
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!nr�ns

� e�(vl1+���+vlK)dvl1 � � � dvlK :
(43)

Let g(u) = 1 � e�u
PK�1

m=0
um

m! be the incomplete Gamma
function satisfying g(u) � uK

K! for u > 0. Upper bounding the
RHS of (43) by uK

K! with u = vl1 + � � �+ vlK in (43), we can
write

I(2)l � 1

(K!)nr�ns

Z 1

0

� � �
Z 1

0

e
�
4P

PK
i=1 �ivli

� (vl1 + � � �+ vlK)K(nr�ns)e�(vl1+���+vlK)dvl1 � � � dvlK :
(44)

We observe that

(vl1 + � � �+ vlK)K(nr�ns) =
KX

i1=1

� � �
KX

iK(nr�ns)=1

vli1 � � � vliK(nr�ns)
; (45)

where index ik in vlik takes values from the set � =
f1; � � � ;Kg with k 2 f1; � � � ;K(nr � ns)g. Let the in-
dex j appear mj times among the subscripts of the term
vli1 � � � vliK(nr�ns)

in (45). Then,

vli1 � � � vliK(nr�ns)
=

KY
j=1

(vlj)
mj (46)

such that
PK

j=1mj = K(nr � ns). Using (45) and (46) in
(44) and changing the order of summation and integration, we

get

I(2)l � 1

(K!)nr�ns
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(47)

Using
R1
0
xne�axdx = n!

an+1 , (47) can be written as

I(2)l � 1

(K!)nr�ns

� KX
i1=1

� � �
KX

iK(nr�ns)=1

� m1! � � �mK !

(1 + �1
4P )m1+1 � � � (1 + �K

4P )mK+1

�
: (48)

Using (48) and (42) in (41), Il can be written as

Il � � � nr!
(nr � ns)!ns!(K!)nr�ns

 
1QK

i=1(1 +
�i
4P )

!ns�1

KX
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� � �
KX

iK(nr�ns)=1
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4P )m1+1 � � � (1 + �K
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(49)

The above bound is independent of l. Therefore, substituting
(49) in (37), we can write

P (~Xi ! ~Xj)

� � � nr!
(nr � ns)!(ns � 1)!(K!)nr�ns

 
1QK

i=1(1 +
�i
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!ns�1
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:

(50)

In the high SNR regime, with some algebraic manipulations,
we can write

P (~Xi ! ~Xj) � � � nr!
(nr � ns)!(ns � 1)!(K!)nr�ns

1�QK
i=1 �i

�ns
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(51)

Finally, substituting
PK

i=1mi = K(nr � ns) in (51), we get

P (~Xi ! ~Xj) � � � nr!
(nr � ns)!(ns � 1)!(K!)nr�ns

� 1�QK
i=1 �i
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Note that the inequality (52) implies that a diversity order of
nrK (= nrntP ) is achieved in a full rank multi-antenna OTFS
system when ns antennas are selected at the receiver. We can
now specialize the above diversity result for the considered
multi-antenna OTFS systems which are full rank as follows.

� SIMO-OTFS systems without phase rotation for P = 1
and with phase rotation for P > 1 are full rank.
Therefore, in these cases, full spatial and DD diversity of
nrP is achieved when ns receive antennas are selected.

� STC-OTFS systems with Alamouti code without phase
rotation for P = 1 and with phase rotation for P > 1
are also full rank. Therefore, in these cases, full spatial
and DD diversity of 2nrP is achieved when ns received
antennas are selected.

The above diversity results have been summarized in Table I.

B. Rank deficient multi-antenna OTFS systems with RAS

Consider the case of rank deficient multi-antenna OTFS
systems with receive antenna selection. Let ~Xi and ~Xj be
two distinct symbol matrices. Let r < K be the minimum
rank of (~Xi � ~Xj). For rank deficient case, the diversity
analysis follows from (37)-(49), except now �1; � � � ; �r > 0,
�r+1 =; � � � ;= �K = 0. Therefore, in the high SNR regime,
the average PEP between ~Xi and ~Xj , assuming ~Xi to be the
transmitted symbol matrix, is given by

P (~Xi ! ~Xj) � � � nr!
(nr � ns)!(ns � 1)!(K!)nr�ns

� 1
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Since
PK

i=1mi = K(nr�ns), it follows that 0 �Pr
i=1mi �

K(nr�ns). It is observed that the term in the square brackets
is function of 

4P and there exist terms i1 � � � iK(nr�ns) such
that

Pr
i=1mi = 0. Regrouping the terms in (53), we can write

P (~Xi ! ~Xj) � � � nr!
(nr � ns)!(ns � 1)!(K!)nr�ns
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(54)

where j =
Pr

i=1mi and  j is the sum of the terms multiply-
ing

�

4P

��Pr
i=mi with the same exponents. For sufficiently

high SNRs, the term
�

4P

��j
vanishes for

Pr
i=1mi > 0. Thus,

we have

P (~Xi ! ~Xj) � � � nr!
(nr � ns)!(ns � 1)!(K!)nr�ns

� 1

(
Qr

i=1 �i)
ns  0 �

� 

4P

��rns
:

(55)

The above expression shows that a diversity order of nsr is
achieved for a rank deficient multi-antenna OTFS system when
ns antennas are selected at the receiver. We specialize the

OTFS system # ant.
selected

# DD Diversity order
paths without PR with PR

SIMO-OTFS, ns � 1 P = 1 nr nr
nr � 1 P > 1 ns nrP

MIMO-OTFS, ns � nt P � 1 ns nsP
nr � nt
STC-OTFS (Alamouti) ns � 1 P = 1 2nr 2nr
nt = 2, nr � 1 P > 1 2ns 2nrP

TABLE I: Summary of diversity order results for multi-
antenna OTFS systems with RAS.

above diversity result for the considered multi-antenna OTFS
systems which are rank deficient as follows.

� The minimum rank of (~Xi � ~Xj) is 1 for SIMO-
OTFS (P > 1) and MIMO-OTFS (P � 1) systems
without phase rotation. Therefore, these systems achieve
a diversity of ns when ns antennas are selected at the
receiver.

� For MIMO-OTFS (P � 1) systems with phase rotation,
the minimum rank of (~Xi � ~Xj) is P , which is rank
deficient. Therefore, these systems achieve a diversity of
nsP when ns receive antennas are selected.

� For STC-OTFS (P > 1) systems with Alamouti code
without phase rotation, the minimum rank of (~Xi � ~Xj)
is 2, which is rank deficient. Therefore, these systems
achieve a diversity of 2ns when ns receive antennas are
selected.

The above diversity results have been summarized in Table I.

IV. SIMULATION RESULTS

In this section, we present simulation results on the bit
error performance that validate the analytical diversity results
derived in the previous section. We evaluate the bit error rate
(BER) of the considered multi-antenna OTFS systems without
and with phase rotation for P = 1; 2; 4 and ns � 1. The
simulation parameters used are listed in Table II.

SIMO-OTFS (without phase rotation) for P = 1: Figure
4 shows the simulated BER performance of SIMO-OTFS
without phase rotation for P = 1, M = N = 2, ns = 1,
nr = 1; 2; 3; 4, BPSK, and ML detection. A carrier frequency
of 4 GHz, subcarrier spacing of 3.75 kHz, and a maximum
speed of 506.2 km/h are considered. The considered carrier
frequency and maximum speed correspond to a maximum
Doppler of 1.875 kHz. The DD channel model is as per (4)
and the DD profiles for different values of P are presented
in Table II. The considered system is full rank and the
analytically predicted diversity order is nr (refer Table I and
Sec. III-A). The BER plots in Fig. 4 show that the system
indeed achieves first, second, third, and fourth order diversity
slopes for nr = 1; 2; 3; and 4, respectively, corroborating the
analytically predicted diversity orders.

SIMO-OTFS (without phase rotation) for P > 1: Figure 5
shows the simulated BER performance of SIMO-OTFS with-
out phase rotation for P = 4, M = N = 2, ns = 1, nr = 1; 4,
BPSK, and ML detection. Other simulation parameters are
as given in Table II. In addition to the simulated BER plot,
upper bound and lower bounds on the bit error performance
are also plotted. The upper bound on the bit error probability



Parameter Value
Carrier frequency, fc
(GHz) 4
Subcarrier spacing, �f
(kHz) 3.75
DD profile for P = 1
(�i (sec), �i (Hz)) ( 1

M�f
, 1

NT
)

DD profile for P = 2
& M = 2; 4, N = 2 (0; 0), ( 1

M�f
, 1

NT
)

DD profile for P = 2
& M = 4, N = 4 ( 1

M�f
, 1

NT
), ( 2

M�f
, 2

NT
)

DD profile for P = 4
& M = 2, N = 2 (0; 0), (0; 1

NT
), ( 1

M�f
; 0), ( 1

M�f
, 1

NT
)

Maximum speed (km/h) 506.2
Modulation scheme BPSK, 16-QAM

TABLE II: Simulation parameters.
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Fig. 4: BER performance of SIMO-OTFS without phase
rotation for P = 1, M = N = 2, ns = 1, and nr = 1; 2; 3; 4.

is obtained from PEP using union bound, as

Pb � 1

LntMN log2 jAj
LX
i=1

LX
j=1;j 6=i

P ( ~Xi ! ~Xj); (56)

where L = jAntMN j. The lower bound is obtained based
on summing the PEPs corresponding to all the pairs Xi

and Xj such that the difference matrix (Xi �Xj) has rank
one [25]. The considered system is rank deficient and the
analytically predicted diversity order is ns (refer Sec. III-B
and Table I). Since the number of antennas selected is ns = 1,
the predicted diversity order is 1. We can make two key
observations from Fig. 5. First, the diversity slope is one
for both nr = 1 and nr = 4. Second, The upper bound,
lower bound, and simulated BER almost merge at high SNRs.
These observations validate the simulation results as well the
analytically predicted diversity order.

SIMO-OTFS (without and with phase rotation) for P > 1:
Figure 6 shows the BER performance of SIMO-OTFS without
and with phase rotation for P = 2, M = N = 4, ns = 1,
nr = 1; 2, BPSK, ML detection, and other parameters as in
Table II. For P > 1, SIMO-OTFS without phase rotation is
rank deficient and the analytical diversity order is ns. With
phase rotation, the system is full-ranked and it has a diversity
order of nrP (refer Sec. III-B, Sec. III-A, and Table I). For
the considered system, the predicted diversity orders are 1 and

0 5 10 15 20 25 30 35 40

SNR  in dB

10
-6

10
-4

10
-2

10
0

B
i
t
 e

r
r
o

r
 r

a
t
e

Fig. 5: BER performance of SIMO-OTFS without phase
rotation for P = 4, M = N = 2, ns = 1, and nr = 1; 4.
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Fig. 6: BER performance of SIMO-OTFS without and with
phase rotation for P = 2, M = N = 4, ns = 1, and nr = 1; 2.

4 for without and with phase rotation, respectively. The slopes
in the BER plots in Fig. 6 are observed to be in line with the
predicted diversity orders.

SIMO-OTFS (without and with phase rotation) for 16-QAM:
Figure 7 shows the BER performance of SIMO-OTFS without
and with phase rotation for 16 QAM, P = 2, M = N = 2,
ns = 1, nr = 1; 2, ML detection, and other parameters as in
Table II. For P > 1, the analytically predicted diversity orders
for the considered SIMO-OTFS system without and with phase
rotation are 1 (ns) and 4 (nrP ), respectively. In Fig. 7, the
diversity slopes are found to follow these diversity orders.

Alamouti STC-OTFS (without and with phase rotation) for
P > 1: Figure 8 shows the BER performance of Alamouti
STC-OTFS without phase rotation for P = 2, M = N = 2,
nt = 2, ns = 1; 2, nr = 1; 2; 3, BPSK, ML detection, and
other parameters as in Table II. From Fig. 8, it is observed
that the achieved diversity order is 2 for ns = 1 and 4
for ns = 2. This corroborates with the predicted diversity
order of 2ns, the system being rank deficient. For the above
Alamouti STC-OTFS system, Fig. 9 shows the performance
with phase rotation. This system with phase rotation is full-
ranked with a predicted diversity order of 2nrP . The diversity



0 5 10 15 20 25 30 35 40

SNR  in dB

10
-8

10
-6

10
-4

10
-2

10
0

B
i
t
 e

r
r
o
r
 r

a
t
e

Fig. 7: BER performance of SIMO-OTFS without and with
phase rotation for P = 2, M = N = 2, ns = 1, nr = 1; 2,
and 16-QAM.
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Fig. 8: BER performance Alamouti STC-OTFS without phase
rotation for P = 2, M = N = 2, nt = 2, ns = 1; 2, and
nr = 1; 2; 3.

slopes observed in Fig. 9 are in accordance with this analytical
prediction.

MIMO-OTFS (without and with phase rotation) for P >
1: Figure 10 shows the BER performance of MIMO-OTFS
without and with phase rotation for P = 2, M = 4, N = 2,
nt = 2, ns = 2, nr = 2; 3, BPSK, and other parameters as in
Table II. The considered systems are rank deficient, and the
predicted diversity orders are ns and nsP for without and with
phase rotation, respectively. It can be seen in Fig. 10 that, as
predicted, MIMO-OTFS without phase rotation achieves 2nd
order diversity slope and with phase rotation achieves 4th order
diversity slope.

V. CONCLUSIONS

We analyzed the diversity performance of receive antenna
selection in multi-antenna OTFS systems. Antennas were se-
lected based on the maximum channel Frobenius norms in the
DD domain. Our diversity analysis results showed that, with no
phase rotation, SIMO-OTFS and MIMO-OTFS systems with
RAS are rank deficient, and therefore they do not extract the
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Fig. 9: BER performance of Alamouti STC-OTFS with phase
rotation for P = 2, M = N = 2, nt = 2, ns = 1, and
nr = 1; 2.
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Fig. 10: BER performance of MIMO-OTFS without and with
phase rotation for P = 2, M = 4, N = 2, nt = 2, ns = 2,
and nr = 2; 3.

full receive diversity as well as the diversity present in the DD
domain. Also, Alamouti coded STC-OTFS system with RAS
and no phase rotation was shown to extract the full transmit
diversity, but it failed to extract the DD diversity. On the other
hand, SIMO-OTFS and STC-OTFS systems with RAS become
full-ranked when phase rotation is used, because of which they
extracted the full spatial as well as the DD diversity present
in the system. When phase rotation is used, MIMO-OTFS
systems with RAS was shown to extract the full DD diversity,
but they did not extract the full receive diversity because
of rank deficiency. Detailed simulation results validated the
analytically predicted diversity performance.

APPENDIX
ANALYSIS FOR FRACTIONAL DELAYS AND DOPPLERS

A. Input-Output relation with fractional delays and Dopplers

Considering the channel representation in DD defined in (4)
with non-zero fractional delays and Dopplers, we have

�i =
�i + ai
M�f

; �i =
�i + bi
NT

; (57)



where �i = [�iM�f ]�, �i = [�iNT ]
�, [:]� denotes the

rounding operator (nearest integer), �i, �i are assumed to be
integers corresponding to the indices of the delay tap and
Doppler frequency associated with �i and �i, respectively,
and ai, bi are the fractional delay and Doppler satisfying
� 1

2 < ai; bi � 1
2 . The DD channel with fractional delays

and Dopplers, assuming rectangular window functions, can be
written as

h(�; �) =

PX
i=1

hie
�j2��i�iG(�; �i)F(�; �i); (58)

where

G(�; �i) ,
N�1X
n0=0

e�j2�(���i)n
0T ;

F(�; �i) ,

M�1X
m0=0

ej2�(���i)m
0�f :

(59)

The input-output relation with fractional delay-Doppler can be
written as [25]

y[k; l] =

PX
i=1

M�1X
q=0

N�1X
q0=0

�
ej2�(�q�ai) � 1

Mej
2�
M
(�q�ai) �M

�

�
 

e�j2�(�q
0�bi) � 1

Ne�j
2�
N
(�q0�bi) �N

!
hie

�j2��i�i

� x[(k � �i + q0)N ; (l � �i + q)M ]:

(60)

Vectorizing the input-output relation in (60), we can write

y = Hx+ v; (61)

where y 2 CMN�1 is the received signal vector, x 2 CMN�1

transmit signal vector, H 2 CMN�MN is the equivalent
channel matrix, and v 2 CMN�1 is the noise vector.

Based on (60), the input-output relation with receive anten-
nas selection in (18) can be extended to fractional delays and
Dopplers, as

�y0 = �H0�x+ �v0; (62)

where �y0 2 CnsMN�1 is the received signal vector, �H0 2
CnsMN�ntMN is the channel matrix with antenna selection,
�x 2 CntMN�1 is the OTFS transmit vector, and �v0 2
CnsMN�1 is the noise vector.

B. Diversity analysis for P = 1

The selection rule in (15) and (16) are equivalent for P = 1.
Therefore, for diversity analysis for P = 1, the input-output
relation in (62) can be written in an alternate form as

~Y = ~H~X+ ~V; (63)

where ~Y 2 Cns�MN with its ith row corresponding to the re-
ceived signal in the ith selected receive antenna, ~H 2 Cns�nt
is the channel matrix whose (i; j)th element is hije�j2��� , ~X
is nt �MN symbol matrix whose ith column ~X[i] is given
by (64) shown at the top of next page, and ~V 2 Cns�MN is
the noise matrix.

1) Full rank case: Let ~Xi and ~Xj be two distinct symbol
matrices. The conditional PEP between ~Xi and ~Xj , assuming
perfect DD channel knowledge and ML detection, is given by

P (~Xi ! ~Xj j~H; ~Xi) = Q

0
@
s
k~H(~Xi � ~Xj)k2

2N0

1
A: (65)

Upper bounding (65) using Chernoff bound and averaging over
the distribution of ~H, the unconditional PEP can be written as

P (~Xi ! ~Xj) � E~H

"
exp

 
� k

~H(~Xi � ~Xj)k2
4

!#
: (66)

The distribution of ~H is given in (32). Therefore, the PEP can
be written as

P (~Xi ! ~Xj) �
nsX
l=1

Z
~Hl

e
�
4 k~H(~Xi�~Xj)k2 nr!

(nr � ns)!ns!

�
 
1� e�kh

0
lk2

nt�1X
k=0

kh0lk2k
k!

!nr�ns

� 1

�nsnt
e�(kh

0
1k2+���+kh0nsk

2)dh01 � � � dh0ns :
(67)

Following the steps from (35)-(52) in Sec. III-A, we can write
PEP as

P (~Xi ! ~Xj) � nr!

(nr � ns)!(ns � 1)!(nt!)nr�ns

� 1

(
Qnt

i=1 �i)
ns �

� ntX
i1=1

� � �
ntX

int(nr�ns)=1

m1! � � �mnt !

�m1
1 � � ��mnt

nt

�

�
�
4

��ntnr
: (68)

The above equation shows that, for fractional delay-Doppler
also, diversity of nrnt is achieved when ns antennas are
selected at the receiver. Therefore, full spatial diversity is
achieved for a full rank multi-antenna OTFS system. We can
specialize the above generalized result for multi-antenna OTFS
systems which are full rank for P = 1, as follows.

� SIMO-OTFS system for P = 1 is full rank. Therefore,
for this system, full spatial diversity of nr is achieved
when ns antennas are selected at the receiver.

� STC-OTFS system with Alamouti code for P = 1 is also
full rank. Therefore, this system also achieves full spatial
diversity of 2nr when ns receive antennas are selected.

2) Rank deficient case: Let ~Xi and ~Xj be two distinct
symbol matrices. Let r be the minimum rank of (~Xi-~Xj) and
�1; � � � ; �r > 0, �r+1 = � � � = �nt = 0 be the eigenvalues
of the matrix (~Xi� ~Xj)(~Xi� ~Xj)

H . Following the diversity
analysis for integer delay-Doppler in Sec. III-B, we can obtain
the PEP expression as

P (~Xi ! ~Xj) � nr!

(nr � ns)!(ns � 1)!(nt!)nr�ns
1

(
Qr

i=1 �i)
ns  0 �

�
4

��rns
: (69)

The above expression shows that, for the rank deficient case,
diversity of nsr is achieved when ns antennas are selected at
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Fig. 11: BER performance of SIMO-OTFS without phase
rotation for M = N = 2, P = 1, ns = 1, and nr = 1; 2; 3; 4,
with fractional delay and Doppler.

the receiver. MIMO-OTFS system with P = 1 is rank deficient
with minimum rank one. Therefore, diversity of ns is achieved
when ns antennas are selected in MIMO-OTFS.

C. Simulation results

In this subsection, we present the simulation results for
fractional delays and Dopplers. For all the simulation results
presented in this subsection, the fractional delays and Dopplers
are generated as follows. The Doppler shift corresponding
to ith channel tap is generated using Jakes formula [6]
�i = �max cos(�i), where �max is the maximum Doppler
shift and �i is uniformly distributed over [��; �]. The delay
corresponding to ith channel tap is generated as uniformly
distributed over [0; (M � 1)Ts], where Ts = 1=(M�f) and
�f is the subcarrier spacing. Exponential power delay profile
and Jakes Doppler spectrum are considered [31].

Figure 11 shows the simulated bit error performance of
SIMO-OTFS without phase rotation for M = 2, N = 2,
P = 1, ns = 1, nr = 1; 2; 3; 4, BPSK, and ML detection. The
carrier frequency, subcarrier spacing, and maximum Doppler
considered are 4 GHz, 3.75 kHz, and 1.875 kHz, respectively.
From Fig. 11, it is seen that system achieves 1st, 2nd, 3rd,
and 4th order diversity for nr = 1; 2; 3; and 4, respectively,
verifying analytically predicted diversity orders.

For the case of P > 1 with fractional delays and Dopplers,
the selection rule in (15) and (16) are not equivalent. There-
fore, it is difficult to find the distribution of ~H because of
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Fig. 12: BER performance comparison between SIMO-OTFS
with RAS and SIMO-OFDM with RAS for M = 64, N = 12,
P = 8, ns = 1, nr = 1; 2, MMSE detection, and fractional
delays/Dopplers.

spreading of channel coefficients in multiple DD bins, leading
to intractability of analysis. Consequently, for P > 1, we
present simulation results. For this, we consider simulation
parameters according to IEEE 802.11p standard for wireless
access in vehicular environments (WAVE) [32] and long term
evolution (LTE) standard [33]. Also, rectangular pulse shapes
are used. Since the values of M and N are large, ML detection
is not feasible. Therefore, we have used minimum mean square
error (MMSE) detection and message passing (MP) detection
[6]. Also, in these figures, we present a comparison between
the performance of SIMO/MIMO-OTFS and SIMO/MIMO-
OFDM with RAS.

Performance in IEEE 802.11p with rectangular pulse: Here,
we present a performance comparison between SIMO-OTFS
and SIMO-OFDM with RAS considering system parameters
according to IEEE 802.11p standard [32] as follows. The
carrier frequency and subcarrier spacing are taken to be 5.9
GHz and 0.156 MHz, respectively. A frame size of M = 64,
N = 12, number of paths P = 8, and a maximum speed
of 220 km/h (corresponding maximum Doppler of 1.2 kHz),
and BPSK modulation are considered. Figure 12 shows the
performance comparison between SIMO-OTFS with rectan-
gular pulse and SIMO-OFDM for M = 64, N = 12, P = 8,
ns = 1, nr = 2, and MMSE detection. From Fig. 12, we
observe that the performance of SIMO-OTFS with RAS is
significantly better than that of SIMO-OFDM with RAS. For
example, at a BER of 10�3, SIMO-OTFS with RAS has an
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Fig. 13: BER performance comparison between MIMO-OTFS
with RAS and MIMO-OFDM with RAS for M = 12, N =
7, P = 5, nt = 2, ns = 2, nr = 2; 3, MP detection, and
fractional delays/Dopplers.

SNR gain of about 11 dB compared to SIMO-OFDM with
RAS.

Performance in LTE with rectangular pulse: Here, we
present a performance comparison between MIMO-OTFS and
MIMO-OFDM with RAS considering system parameters ac-
cording to LTE standard [33] as follows. The carrier frequency
and subcarrier spacing are taken to be 4 GHz and 15 kHz,
respectively. A frame size of M = 12, N = 7, P = 5,
and a maximum speed of 500 km/h (corresponding maximum
Doppler of 1.85 kHz), and BPSK modulation are considered.
Figure 13 shows the performance comparison between MIMO-
OTFS with rectangular pulse and MIMO-OFDM for M = 12,
N = 7, P = 5, nt = 2, ns = 2, nr = 2; 3, and
MP detection. From Fig. 13, we observe that MIMO-OTFS
with RAS performs better than MIMO-OFDM with RAS. We
further note that while the performance for P > 1 in Figs.
12 and 13 are observed through simulations, an analytical
derivation of the diversity orders for P > 1 with RAS for the
fractional delay-Doppler case is open for future investigation.
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