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Orthogonal time frequency space (OTFS) is a framework for communication and active sensing that processes signals in the
delay-Doppler (DD) domain. This paper explores three key features of the OTFS framework, and explains their value to applications.
The first feature is a compact and sparse DD domain parameterization of the wireless channel, where the parameters map directly
to physical attributes of the reflectors that comprise the scattering environment, and as a consequence these parameters evolve
predictably. The second feature is a novel waveform / modulation technique, matched to the DD channel model, that embeds
information symbols in the DD domain. The relation between channel inputs and outputs is localized, non-fading and predictable,
even in the presence of significant delay and Doppler spread, and as a consequence the channel can be efficiently acquired and
equalized. By avoiding fading, the post equalization SNR remains constant across all information symbols in a packet, so that
bit error performance is superior to contemporary multi-carrier waveforms. Further, the OTFS carrier waveform is a localized
pulse in the DD domain, making it possible to separate reflectors along both delay and Doppler simultaneously, and to achieve
a high-resolution delay-Doppler radar image of the environment. In other words, the DD parameterization provides a common
mathematical framework for communication and radar. This is the third feature of the OTFS framework, and it is ideally suited to
intelligent transportation systems involving self-driving cars and unmanned ground/aerial vehicles which are self/network controlled.
The OTFS waveform is able to support stable and superior performance over a wide range of user speeds. In the emerging 6G
systems and standards, it is ideally suited to support mobility-on-demand envisaged in next generation cellular and WiFi systems,
as well as high-mobility use cases. Finally, the compactness and predictability of the OTFS input-output relation makes it a natural
fit for machine learning and AI algorithms designed for intelligent non-myopic management of control plane resources in future
mobile networks.

Index Terms—OTFS, Delay-Doppler domain, Doubly spread channel, channel predictability, non-fading.

I. INTRODUCTION

Cellular mobile communication technology evolves as new
services and new wireless channels emerge. As user demand
shifted from simple voice-only services to high speed data,
wireless technology shifted from narrowband time-division in
2G systems to frequency-division in 4G and 5G systems [1]-
[4]. To some degree, it is innovation at the physical layer that
distinguishes one generation from the next. Mobile communi-
cations systems serving billions of people all over the world
have been made possible by theoretical advances in coding
[5],[6], in methods that provide spatial diversity [7]-[12],
and in methods of user cooperation [13],[14]. This flow of
ideas has transformed the teaching of wireless communications
[15]-[19]. We expect that innovation at the physical layer
will continue as carrier frequencies increase (mmWave and
THz), and new high-mobility use cases emerge (bullet trains,
autonomous vehicles, airplanes). However, perhaps the most
fundamental change in mobile communications is the relative
importance of the physical layer, the network layer and the
services layer. As the IP revolution transformed the wireless
world, cell phones migrated to smartphones which are complex
software platforms. Demand for capacity could not be met by
circuit switched networks engineered to provide worst case
coverage at the cell boundary, and the physical layer changed
in response [17]. We emphasize predictability in this article

because a physical layer that is predictable simplifies network
management and the provision of services.

Enhancements to mobile communication services across
wireless generations have been enabled by judicious allocation
of time and frequency resources. To date, these enhancements
have been achieved primarily within the framework of time
domain modulation (TDM) or frequency domain modulation
(FDM). In TDM based schemes, information is carried by a
narrow time domain (TD) pulse, and an information packet
is a superposition of such TD pulses. In TDM, the signal is
localized in the TD but not in the frequency domain (FD),
and as a consequence, the interaction between a TD pulse
and the environment leads to time selective fading. Likewise,
in FDM based schemes, information is carried by a narrow
FD pulse, which is essentially a sinusoid in the time domain.
The FDM signal is localized in the FD but not in the TD,
and this lack of localization in the TD causes frequency
selective fading. The lack of time frequency (TF) localization
in TDM/FDM signals also makes the relation between channel
inputs and channel outputs less predictable. Fading and lack
of predictability degrade the performance of TDM/FDM on
doubly-spread channels, that is, channels that are selective in
both time and frequency [19]. As carrier frequencies increase
and high-speed use cases emerge, we encounter doubly-spread
channels that are more extreme. TDM/FDM have served well
in wireless generations to date, but better TF localization may



2

be required in the wireless generations to come.

TF localization is particularly important to emerging in-
telligent transportation systems, where accurate and high-
resolution radar imaging can identify potential hazards in fast-
moving environments and enable responses that enhance road
safety [20]. Waveforms with better TF localization enable
more accurate location of objects like pedestrians and bicycles
which have small radar cross sections. Looking back to
1953, only 5 years after Claude Shannon created information
theory, Philip Woodward described how to think of radar in
information theoretic terms [21]. He suggested that we view
the radar scene as an unknown operator parametrized by delay
and Doppler, and that we view radar waveforms as questions
that we ask the operator. Woodward proposed to define a
good question in terms of lack of ambiguity in the answer,
and he sought questions with good localization in delay and
Doppler. By identifying a single waveform, good for both
channel estimation and communication, we seek to decrease
system complexity, reduce electromagnetic interference, and
mitigate spectrum related concerns [22].

We describe wireless channels in terms of delay and
Doppler operators, and we describe how to use certain ge-
ometric modes of these operators for communication and
sensing. These special modes constitute the orthogonal time
frequency space (OTFS) waveforms, introduced in [23] (see
also [24], [25]). When viewed in the time domain, an OTFS
waveform is a pulse train modulated by a tone, a pattern
that we refer to as a pulsone and we provide a compre-
hensive review of its mathematical foundation. The heart of
this foundation is the Zak transform, which converts the TD
signal into a quasi-periodic function in delay and Doppler.
We describe how OTFS waveforms are pulses in the DD
domain, that are engineered to mirror the dynamics of the
wireless channel. We derive their TF localization properties
from first principles, explaining why the relation between
channel inputs and channel outputs is predictable, and why
fading is eliminated. We also explain how this approach to TF
localization provides a geometric interpretation of the Nyquist
rate. In the context of radar, we explain why Woodward might
have thought of OTFS waveforms as good questions. In the
context of communications, we explain how OTFS waveforms
give rise to a modulation scheme that multiplexes information
in the DD domain. The wireless channel is determined by a
small number of dominant reflectors, which means that in the
DD domain, it admits a sparse representation. Moreover, this
representation changes only at the speed of the underlying
physics of the reflectors which renders it “effectively” station-
ary. In this context, we explain how better TF localization
of the carrier waveform takes advantage of this DD domain
stationary representation of the channel, translating to better
performance under doubly-spread channels.

This is the first of two papers, providing the mathematical
foundation for signal processing in the delay-Doppler domain.
It prepares the ground for the second paper which studies
the performance of OTFS in comparison to other modulation
schemes such as TDM and FDM, and explores the utility of
the OTFS waveform for radar sensing.

II. THE DELAY-DOPPLER DOMAIN

A typical wireless channel between a transmitter and a
receiver is determined by a relatively small number of dom-
inant propagation paths. Fig. 1 shows a time-domain (TD)
signal x(t) transmitted by a base station (BS) and received
at some user equipment (UE) through four propagation paths.
Each path is characterized by the path delay, which is the
time taken by the signal to propagate along the path, and by
the path Doppler shift, which is the frequency shift induced
by the relative motion of transmitter, reflector, and receiver.
In Fig. 1, we assume the BS and UE are stationary so
that only reflector motion determines path Doppler shift. The
signal copy received at UE along the ith path is given by
hix(t− τi) e

j2πνi(t−τi), where hi is the complex channel path
gain, τi seconds is the path delay, and νi Hz is the path Doppler
shift.

We refer to wireless channels as doubly-spread, character-
ized by the delay, Doppler shift, and complex channel gain
of each channel path. The action of the wireless channel on
the transmitted signal x(t) is specified by the delay-Doppler
(DD) spreading function h(τ, ν), where τ ∈ R and ν ∈ R are
the delay and Doppler variables, respectively. In Fig. 1

h(τ, ν) =

4∑
i=1

hi δ(τ − τi) δ(ν − νi), (1)

where δ(·) denotes the Dirac-delta impulse function. The
noise-free TD signal received at the UE is given by [26]

y(t) =

∫ ∫
h(τ, ν)x(t− τ) ej2πν(t−τ) dτ dν. (2)

In Fig. 1,

y(t) =

4∑
i=1

hi x(t− τi) e
j2πνi(t−τi), (3)

which is the sum of the signal copies received along the four
paths.

III. TIME AND FREQUENCY DOMAIN MODULATION

In time domain modulation (TDM), information is carried
by a narrow TD pulse, and an information packet is the
superposition of distinct TD pulses, each modulated by an
information symbol. In frequency domain modulation (FDM),
information is carried by a narrow FD pulse, which is essen-
tially a sinusoid in the time domain. An information packet
is a TD signal, which is the inverse Fourier transform of a
superposition of distinct FD pulses, each modulated by an
information symbol.

The information carrier in TDM is localized in the TD but
not in the FD. Similarly, the information carrier in FDM is
localized in the FD but not in the TD (the sinusoid ej2πf0t

shown in Fig. 2 is spread in time, but localized at f = f0 in
frequency). As will be explained in the sequel, the implication
of this lack of localization is that the TDM/FDM input-output
relation under doubly-spread channel witnesses fading and
non-predictability, where fading results with a degradation
in the BER performance and non-predictability results with
frequent acquisition of the effective channel response in order
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Fig. 1: The delay-Doppler spreading function h(τ, ν) of a doubly-spread wireless channel. Four dominant paths between the
base station (BS) and the user equipment (UE) result in a function h(τ, ν) comprising impulses at (τ, ν) = (τi, νi) where τi is
the ith path delay and νi is the ith path Doppler shift. Note that the first and third reflectors do not introduce Doppler shifts
since they are stationary. Also, the Doppler shift induced by the second and the fourth reflector have opposite polarity as these
mobile reflectors are travelling in opposite directions.

Fig. 2: Information carriers for TDM/FDM/OTFS in modulation domain and time domain. Traditional TDM and FDM carriers
are narrow pulses in TD and FD but spread in FD and TD respectively, manifesting the fundamental obstruction for TF
localization. In contrast, the OTFS carrier is a quasi-periodic pulse in the DD domain, viewed as “effectively” localized jointly
in time and frequency.

to maintain good performance (see Section VI-A and Section
VI-B). The Heisenberg uncertainty principle implies that a
signal cannot be simultaneously localized jointly in time and
frequency. However, as will be explained in the sequel, this
obstruction can be “effectively” eliminated as long as a certain
quasi-periodic condition is maintained (see Section IV). In
OTFS, information is carried by a DD domain quasi-periodic

pulse. The translation from a DD signal into a TD signal is
carried by the inverse Zak transform (see Section IV), just as
the translation from an FD signal into a TD signal is carried
by the inverse Fourier transform. The bottom part of Fig. 2
depicts the TD realization of a DD domain pulse. We refer to
this TD signal as a pulsone, since it is essentially comprised
of a pulse train modulated by a frequency tone (see also [25]
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and [29])1. The main beneficial property of the pulsone is that
its interaction with a doubly-spread channel is both non-fading
and predictable, which translates to superior BER performance
and more efficient channel acquisition (see Section VI-C).

IV. DELAY-DOPPLER MODULATION

Fig. 3: A DD domain pulse is localized only within the
fundamental DD domain period D0, as it repeats infinitely
many times in a quasi-periodic fashion.

As mentioned in the previous section, in OTFS, information
is carried over a DD domain pulse. In this section, we
give the formal definition of a DD domain pulse and study
its local structure. In addition, we illustrate the impact of
various DD domain pulse parameters on its TD and FD
realizations. Finally, we derive the global properties of the
OTFS modulation from the local properties of a DD domain
pulse. The definition of a DD domain pulse depends on a
choice of two periods: the delay period, denoted by τp ∈ R≥0

and the Doppler period, denoted by νp ∈ R≥0. The two
periods should be reciprocal, that is, νp = 1/τp. For any
given choice of the periods, there is an associated transform,
called the time Zak transform, denoted by Zt, that establishes
a unitary equivalence between TD signals and a sub-class of
quasi-periodic DD domain signals.2 The time Zak transform
of a TD signal x(t) is given by

xdd(τ, ν) = Zt(x(t))

∆
=

√
τp

∞∑
k=−∞

x(τ + kτp) e
−j2πνkτp . (4)

Observe from (4) that, for any n,m ∈ Z, xdd(τ, ν) satisfies

1As we shall see later in Section IV, the “effective” localization of a
pulsone (of approximate bandwidth B and time duration T ) is not exact
and that the corresponding DD domain pulse has most of its energy spread
in a narrow region having width B−1 and T−1 along the delay and Doppler
axis, respectively.

2The definition of the time Zak transform depends on the values of the
periods. For clarity, we omit the periods from the notation, assuming their
values to be clear from the context.

xdd(τ + nτp, ν +mνp)

=
√
τp

∞∑
k=−∞

x(τ + (k + n)τp) e
−j2π(ν+mνp)kτp

=
√
τp

∞∑
k′=−∞

x(τ + k′τp) e
−j2πνk′τpej2πnντp

= ej2πnντp xdd(τ, ν) , n,m ∈ Z. (5)

The condition in (5) is referred to as the quasi-periodicity
condition. Fig. 2 depicts a quasi-periodic pulse which is
localized at the point (τ, ν) = (τ0, ν0) within the rectangular
region

D0
∆
= {(τ, ν)

∣∣∣ 0 ≤ τ < τp, 0 ≤ ν < νp}. (6)

We refer to D0 as the fundamental period of the DD domain.
Due to its quasi-periodicity (see (5)), the pulse is present at
all integer translates (τ, ν) = (τ0 + nτp, ν0 + mνp), where
m,n ∈ Z, as shown in Fig. 3. Note that the phase of the pulse
changes when the pulse location shifts by an integer multiple
of τp along the delay axis, but there is no change in phase
when the pulse location shifts by an integer multiple of νp
along the Doppler axis. In summary, the DD domain pulse
comprises of a configuration of infinitely many pulses which
repeat at integer multiples of τp along the delay axis, and at
integer multiples of νp = 1/τp along the Doppler axis. The
center part of Fig. 4 depicts a DD domain pulse xdd(τ, ν)
located at (τ, ν) = (τ0, ν0) within the fundamental period D0.
Along the delay axis, it is spread over a characteristic length
1/B < τp, and along the Doppler axis, it is spread over a
characteristic length 1/T < νp. Since the DD domain pulse
is quasi-periodic, it repeats infinitely many times as shown in
Fig. 3. We first analyze the structure of the TD realization,
which is obtained by applying the inverse time Zak transform
[27], [28], i.e.,

x(t) = Z−1
t

(
xdd(τ, ν)

)
∆
=

√
τp

∫ νp

0

xdd(t, ν) dν. (7)

The top part of Fig. 4 shows that x(t) is a pulse train of
finite duration T . Each pulse in the train is spread over a
time duration 1/B, and consecutive pulses are separated by
the delay period τp. The pulses are located at time instances
t = nτp + τ0, n ∈ Z, where τ0 is the delay coordinate of the
underlying DD domain pulse. The pulse train is modulated by
a sinusoid of frequency ν0, where ν0 is the Doppler coordinate
of the underlying DD domain pulse.

Next, we analyze the structure of the FD realization, which
is obtained by applying the inverse frequency Zak transform
Z−1

f [27], [28], i.e.,

X(f) = Z−1
f (xdd(τ, ν))

∆
=

√
νp

∫ τp

0

xdd(τ, f) e
−j2πfτdτ. (8)

The left part of Fig. 4 shows that X(f) is also a pulsone,
comprising of a pulse train which extends over a bandwidth
B. Each pulse in the train is spread over a frequency interval
1/T . Consecutive pulses are separated by the Doppler period
νp. The pulses are located at frequencies f = mνp + ν0, m ∈
Z, where ν0 is the Doppler coordinate of the underlying DD
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Fig. 4: A DD domain pulse and its TD/FD realizations referred to as TD/FD pulsone. The TD pulsone comprises of a finite
duration pulse train modulated by a TD tone. The FD pulsone comprises of a finite bandwidth pulse train modulated by a
FD tone. The location of the pulses in the TD/FD pulse train and the frequency of the modulated TD/FD tone is determined
by the location of the DD domain pulse (τ0, ν0). The time duration and bandwidth of a pulsone are inversely proportional
to the characteristic width of the DD domain pulse along the Doppler axis and the delay axis, respectively. The number of
non-overlapping DD pulses, each spread over an area B−1T−1, inside the fundamental period D0 (which has unit area) is
equal to the time-bandwidth product BT and the corresponding pulsones are orthogonal to one another, rendering OTFS an
orthogonal modulation that achieves the Nyquist rate. As νp → ∞, the FD pulsone approaches a single FD pulse which is
the FDM carrier. Similarly, as τp → ∞, the TD pulsone approaches a single TD pulse which is the TDM carrier. OTFS is
therefore a family of modulations parameterized by τp that interpolates between TDM and FDM.

domain pulse. The pulse train is modulated by a FD sinusoid
e−j2πτ0f where τ0 is the delay coordinate of the underlying
DD domain pulse.

Fig. 5 depicts the effect of shifting the location of the DD
domain pulse on the structure of the corresponding TD and
FD pulsones. In a nutshell, a shift of the DD domain pulse
along the delay axis translates to a time displacement of the TD
pulsone, and a shift of the DD domain pulse along the Doppler
axis translates to a frequency displacement of the FD pulsone.
Fig. 6 and Fig. 7 depict the effect of increasing the width of
the DD domain pulse on the structure of the corresponding TD
and FD pulsones. In a nutshell, Fig. 6 shows that an increase
of the width of the DD domain pulse along the delay axis
translates to a reduction of the FD pulsone bandwidth, and
Fig. 7 shows that an increase of the width of the DD domain
pulse along the Doppler axis translates to a reduction of the
TD pulsone time duration.

We now derive global properties of the OTFS modulation
from the local properties described above.

Orthogonality of pulsones: From Fig. 4 we see that a DD
domain pulse is localized within a rectangular DD domain
region which is 1/B seconds wide along the delay axis and
1/T Hz wide along the Doppler axis. Geometrically, this
implies almost no overlap between two DD pulses whose delay
domain locations differ by 1/B or whose Doppler domain
locations differ by 1/T , i.e., such pulses are almost orthogonal.

The same observation can be made by separately observing
the TD and FD realizations of a DD pulse. We know from
Fig. 5, that shifting the location of the DD domain pulse
by 1/B along the delay axis induces a time displacement
of the TD pulsone by 1/B seconds. From Fig. 4, we also
know that each pulse in the TD pulsone has time duration
1/B and that consecutive pulses are separated by τp. When a
DD domain pulse is shifted by 1/B along the delay axis the
corresponding TD pulsones do not overlap. Similarly, when
a DD domain pulse is shifted by 1/T Hz along the Doppler
axis, the corresponding FD pulsones do not overlap. Delay
shifts by integer multiples of 1/B and Doppler shifts by
integer multiples of 1/T lead to TD/FD pulsones that are
almost orthogonal. Here, the impact of delay and Doppler
shifts on the orthogonality between pulsones is understood
separately through their TD and FD realizations, respectively.
The geometric interpretation of orthogonality in the previous
paragraph is however much simpler since we view the pulsone
as a pulse in the DD domain.

Optimality as time- and bandlimited signals: Slepian, Lan-
dau and Pollack [30], [31] introduced the family of prolate
spheroidal waveforms to measure the space of essentially time-
and bandlimited signals. For signals limited approximately to
a time duration of T seconds and bandwidth B Hz, they
showed that the number of orthogonal carrier waveforms is
approximately equal to the time-bandwidth product BT . We
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Fig. 5: Impact of DD domain pulse location on the TD/FD pulsone characteristics. The figure consists of six plots organized
into three rows and two columns (one column for TD and the other for FD). The TD plot in the second row of the figure
shows that, a shift in the delay axis location of a DD domain pulse from τ0 to τ ′0 translates to a time displacement of the TD
pulsone by (τ ′0 − τ0) seconds. The effect of this shift on the corresponding FD pulsone (shown on the right in the same row)
is that the modulating FD tone changes from e−j2πτ0f to e−j2πτ ′

0f (only the real part of the TD/FD pulsones is plotted). The
FD plot in the third row of the figure shows that, a shift in the Doppler axis location of a DD domain pulse from ν0 to ν′0
translates to a frequency displacement of the FD pulsone by (ν′0 − ν0) Hz. The effect of this shift on the corresponding TD
pulsone (shown on the left in the same row) is that the modulating TD tone changes from ej2πν0(t−τ0) to ej2πν

′
0(t−τ0).

Fig. 6: Impact of DD domain pulse width along delay axis on the TD/FD pulsone characteristic. Increasing the width of the
DD domain pulse along the delay axis from 1

B to 1
B′ translates to a reduction of the FD pulsone bandwidth from B to B′ and

an increase in the width of each TD pulse in the corresponding TD pulsone from 1
B to 1

B′ .

use pulsones with time-duration T and bandwidth B to span
this same space. Recall that pulsones are almost orthogonal if
the location of the corresponding DD domain pulses differ
by integer multiples of 1/B along the delay axis and by
integer multiples of 1/T along the Doppler axis. The number
of approximately orthogonal carrier waveforms is essentially
τpνp
1
B

1
T

= BT , which is the time-bandwidth product.
TDM as a limiting case: In the TD pulsone shown in Fig. 4,

as τp → ∞, the TD pulses located at t = τ0+nτp, n ∈ Z, n ̸=
0, move towards ±∞ and only the TD pulse at t = τ0 remains,
i.e., the TD pulsone approaches a single TD pulse which is the
TDM carrier. In other words, as the Doppler domain collapses,

the OTFS carrier tends to the TDM carrier.
FDM as a limiting case: In the FD pulsone, as νp → ∞

(i.e., τp = (1/νp) → 0), the pulses located at f = ν0 +
mνp,m ∈ Z,m ̸= 0, move towards ±∞ and only the FD
pulse at f = ν0 remains, i.e., the FD pulsone approaches a
single FD pulse which is the FDM carrier. In other words,
as the delay domain collapses, the OTFS carrier tends to the
FDM carrier.

OTFS is therefore a family of modulations parameterized
by τp that interpolates between TDM and FDM (see the
hyperbola τp νp = 1 in the top right corner of Fig. 4).
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Fig. 7: Impact of DD domain pulse width along the Doppler axis on TD/FD pulsone characteristic. Increasing the width of
the DD domain pulse along the Doppler axis from 1

T to 1
T ′ translates to a reduction of the TD pulsone time duration from T

to T ′ and an increase in the width of each FD pulse in the corresponding FD pulsone from 1
T to 1

T ′ .

TD pulsones encode wireless channel dynamics: TD pul-
sones are engineered to mirror the dynamics of the wireless
channel. The effect of channel path delay on a DD domain
pulse is to simply shift the pulse along the delay axis by an
amount equal to the path delay. The effect of a channel path
Doppler shift on a DD domain pulse is to simply shift the
pulse along the Doppler axis by an amount equal to the path
Doppler shift.

The Fourier transform as a composition: Fig. 4 illustrates
that we can map a TD signal to its FD realization by first
applying the Zak transform Zt from the TD to the DD domain,
then applying the inverse frequency Zak transform Z−1

f from
the DD domain to the FD. In other words, the Fourier
transform is the composition of Zt and Z−1

f . Fig. 8 represents
the three signal representations (TD, FD and DD domain)
as the three vertices of a triangle, and labels edges between
vertices by the transforms between signal representations.

V. INTERACTION OF CHANNEL PATHS AND CARRIER
WAVEFORMS

In this section, we use the example shown in Fig. 9, to
illustrate how a doubly-spread wireless channel interacts with
the carrier waveforms for TDM, FDM and OTFS. The doubly-
spread wireless channel considered in Fig. 9 comprises of four
paths. The first and the third paths are due to reflection from
stationary building and therefore these paths do not result in
any Doppler shift. The second and the fourth paths are due
to reflection from moving vehicles and these therefore induce
Doppler shift. To highlight the phenomenon of fading and non-
predictability of channel interaction in TDM, we consider the
first and the second path to have the same delay so that the TD
pulses received along these two paths superimpose in a time-
varying manner (due to the Doppler shift of the second path).
Similarly, choosing the first and the third path to have the
same Doppler shift (i.e., zero) but different delay, highlights
the phenomenon of fading and non-predictability of channel
interaction in FDM. However, since any two paths differ in
either delay or Doppler shift, in OTFS there is no superposition

Fig. 8: Three different basic signal realizations, TD, FD and
DD domains. Signal representations in these domains are
related through transforms. The well known Fourier transform
is in fact a composition of the Zak transform Zt and the inverse
Zak transform Z−1

f from DD domain to FD.

of DD domain pulses received along distinct paths. Due to this
reason, for suitable values of (τp, νp) the interaction of a DD
pulse with the channel is non-fading and predictable. The exact
values of the path gain, delay and Doppler shifts is mentioned
inside the parameter box in Fig. 9.

A. Interaction with a TD pulse

Fig. 9 illustrates the TD response to a transmitted signal

x(t) = δ(t− t0) + δ(t− t1). (9)

comprising two narrow TD pulses3 transmitted at t = t0 = 1
ms and t = t1 = 1.5 ms. We consider a stationary doubly-

3We represent the narrow pulses by Dirac-delta impulses since the width
of a pulse is much smaller than the channel path delays and the inverse of
the maximum Doppler shift.
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Fig. 9: Interaction of a doubly-spread channel with TDM/FDM carrier waveform. Two TD pulses are transmitted at t = t0
and t = t1. Due to the first and the second path (which have the same propagation delay), pulses are received at t = t0 +2µs
and t = t1 + 2µs. Due to the different Doppler shifts of these two paths, the magnitude and phase of these received pulses is
dependent on the time instances t0 and t1 in a non-simple manner. Therefore, the magnitude and phase of the pulse received
at t = t1 + 2µs cannot be simply predicted given the knowledge of the pulse received at t = t0 + 2µs. As the magnitude
and phase of these two received pulses are different, this interaction is non-predictable, fading and non-stationary. Similarly,
two FD pulses are transmitted at f = f0 and f = f1. Due to the first and the third path which induce the same zero Doppler
shift and have different path delays, the magnitude and phase of the received FD pulses along these two paths depends on the
FD location of the transmitted FD pulse. This dependence is non-simple and therefore the magnitude and phase of the FD
pulse received at f = f1 cannot be predicted based on the knowledge of the magnitude and phase of the FD pulse received
at f = f0. The dependence on the FD pulse location is due to the non-zero path delays of these two paths, which results in
a non-predictable, fading and non-stationary interaction between the channel and the FD pulse. The non-predictable, fading
and non-stationary interaction between the TD/FD pulse and the channel is not because of the fixed underlying channel (i.e.,
path gain, delays and Doppler shifts), but is because these pulses are not simultaneously localized in TD and FD.

spread channel comprising four channel paths with param-
eters hi, τi, νi listed in the channel parameter box. We let
h(t; ti), i = 0, 1 denote the TD impulse response of the
channel to a TD pulse transmitted at time ti. Then

h(t; t0) = (h1 + h2e
j2πν2t0)δ(t− 2µs)

+h3δ(t− 3µs) + h4e
j2πν4t0δ(t− 4µs),(10)

and

h(t; t1) = (h1 + h2e
j2πν2t1)δ(t− 2µs)

+h3δ(t− 3µs) + h4e
j2πν4t1δ(t− 4µs).(11)

We look to predict the received TD signal y1(t) = h(t−t1; t1)
from the previous signal y0(t) = h(t−t0; t0). After estimating
the path delays from y0(t), we can predict that y1(t) will
involve path delays of 2µs, 3µs and 4µs.

h3δ(t − 3µs): This term due to the third channel path is
common to h(t; t0) and h(t; t1). Channel paths which do not
induce Doppler shift and whose delay is distinct from that of
other paths result in a predictable channel interaction. The
complex gain h3 in this term does not depend on when the
pulse was transmitted, so the interaction of the pulse with
this path is stationary and non-fading (received pulse power is

independent of when the pulse was transmitted). The response
of such a channel path to any transmitted pulse can therefore
be predicted.

h4e
j2πν4t0δ(t − 4µs) and h4e

j2πν4t1δ(t − 4µs):
These terms are due to the fourth channel path, whose
Doppler shift ν4 interacts with the time at which the pulse
was transmitted. As it is not possible to simultaneously
estimate h4 and ν4 from h4e

j2πν4t0 , we cannot predict
the complex gain h4e

j2πν4t1 of the corresponding term
in h(t; t1). The received signal power is time-independent
since |h4e

j2πν4ti |2 = |h4|2 but the phase is time-dependent.
Channel paths, which induce Doppler shift and whose delay is
different from that of other paths, result in a non-predictable
channel interaction which is non-stationary and non-fading.(

h1 + h2e
j2πν2t0

)
δ(t − 2µs) and(

h1 + h2e
j2πν2t1

)
δ(t − 2µs): The first and second

paths have the same delay, but only the second
path introduces a Doppler shift. It is not possible to
predict

(
h1 + h2e

j2πν2t1
)
δ(t− 2µs) since it is not

possible to separately estimate h1, h2, ν1 and ν2 from(
h1 + h2e

j2πν2t0
)
δ(t− 2µs). Note that in this case both

the complex gain and received signal power are time-
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dependent (i.e., they depend on the time at which the pulse
is transmitted). Two or more channel paths which have the
same path delay and at least one of which induces a Doppler
shift which is different from that induced by the other paths,
result in non-predictable channel interaction which is fading
and non-stationary.

B. Interaction with a FD pulse

We consider the same stationary doubly-spread channel
illustrated in Fig. 9. Here we consider the FD response to
a transmitted FD signal given by

X(f) = δ(f − f0) + δ(f − f1) (12)

comprising two FD pulses transmitted at f = f0 = 15 KHz
and f = f1 = 450 KHz. We let H(f ; fi) denote the FD
impulse response of the channel to a FD impulse transmitted
at frequency fi. Then

H(f ; f0) =
[
h1 e

−j2πf0τ1 + h3 e
−j2πf0τ3

]
δ(f)

+h2 e
−j2π(f0+ν2)τ2 δ(f + 950)

+h4 e
−j2π(f0+ν4)τ4 δ(f − 750) (13)

and

H(f ; f1) =
[
h1 e

−j2πf1τ1 + h3 e
−j2πf1τ3

]
δ(f)

+h2 e
−j2π(f1+ν2)τ2 δ(f + 950)

+h4 e
−j2π(f1+ν4)τ4 δ(f − 750). (14)

Again we look to predict the received FD signal Y1(f) =
H(f − f1; f1) due to a pulse transmitted at f = f1 from
the received signal Y0(f) = H(f − f0; f0) due to the
pulse transmitted at f = f0. Since the underlying channel
is stationary, we can accurately predict that H(f ; f1) will
comprise impulses at 0 Hz, −950 Hz and 750 Hz.
h2 e

−j2π(f0+ν2)τ2 δ(f + 950Hz): The second path in-
teracts with the FD pulse transmitted at f = f0 resulting
in a received pulse at f = f0 + ν2 having complex gain
h2 e

−j2π(f0+ν2)τ2 . From this complex gain we cannot predict
the complex gain h2 e

−j2π(f1+ν2)τ2 of the corresponding term
in Y1(f) since it is not possible to estimate h2 and τ2 from
h2 e

−j2π(f0+ν2)τ2 . Since there is no other path with the same
Doppler shift, the magnitude of the received FD pulse is
|h2 e

−j2π(fi+ν2)τ2 | = |h2|. There is no FD fading since
this magnitude does not depend on the FD location of the
transmitted pulse. The same analysis applies to the interaction
of the 4th channel path with the FD pulses. Channel paths
whose Doppler shift is distinct from that of other paths result in
a non-predictable, non-fading and non-stationary interaction
between the channel and the FD pulse.(

h1e
−j2πf0τ1 + h3e

−j2πf0τ3
)
δ(f): The 1st and 3rd

paths do not induce any Doppler shift and have different
path delays. The interaction of these two paths with the pulse
transmitted at f = f0 results in a received pulse at f = f0
having complex gain

(
h1e

−j2πf0τ1 + h3e
−j2πf0τ3

)
. From

this complex gain, it is not possible to predict the complex gain(
h1e

−j2πf1τ1 + h3e
−j2πf1τ3

)
of the pulse received due to the

interaction of the 1st and 3rd paths with the pulse transmitted

at f = f1. This is because, it is not possible to separately es-
timate h1, h3, τ1 and τ3 from

(
h1e

−j2πf0τ1 + h3e
−j2πf0τ3

)
.

This interaction is non-stationary and fading. Two or more
channel paths which induce the same Doppler shift, and at
least one of which has a path delay which is different from
that of the other paths result in a non-predictable channel
interaction which is fading and non-stationary.

C. Interaction with a DD domain pulse

We continue to study the stationary doubly-spread channel
illustrated in Fig. 9. In this section, we analyze the interaction
of this channel with two DD domain pulses transmitted at
(τ, ν) = (τa, νa) and (τ, ν) = (τb, νb), 0 ≤ τa, τb < τp,
0 ≤ νa, νb < νp. From (5) it follows that the corresponding
quasi-periodic DD domain signal is given by

xdd(τ, ν) =
∑
m∈Z

∑
n∈Z

ej2πnντp
[
δ(τ − nτp − τa)δ(ν −mνp − νa)

+ δ(τ − nτp − τb)δ(ν −mνp − νb)
]
. (15)

We obtain the transmitted TD signal x(t) by applying the
inverse Zak transform Z−1

t as in (7).

x(t) =
√
τp

∫ νp

0

xdd(t, ν) dν

=
√
τp

∑
n∈Z

ej2πnνaτp δ(t− τa − nτp)

+
√
τp

∑
n∈Z

ej2πnνbτp δ(t− τb − nτp). (16)

We obtain the received TD signal y(t) by substituting (16) in
(3).

y(t) =
√
τp

4∑
i=1

hi

[
ej2πνiτa

∑
n∈Z

ej2πn(νa+νi)τpδ(t− (τa + τi)− nτp)

+ ej2πνiτb
∑
n∈Z

ej2πn(νb+νi)τpδ(t− (τb + τi)− nτp)
]
. (17)

We obtain ydd(τ, ν), the DD domain representation of y(t)
by applying the Zak transform Zt as in (4). We write

ydd(τ, ν) = ydd(τ, ν; τa, νa) + ydd(τ, ν; τb, νb), (18)

where

ydd(τ, ν; τa, νa) =
4∑

i=1

hie
j2πνiτa

[∑
m,n∈Z

ej2πnντpδ(τ − τa − τi − nτp)

δ(ν − νa − νi −mνp)
]

(19)

is the response associated with the pulse transmitted at (τa, νa),
referred to as the a-response, and

ydd(τ, ν; τb, νb) =
4∑

i=1

hie
j2πνiτb

[∑
m,n∈Z

ej2πnντpδ(τ − τb − τi − nτp)

δ(ν − νb − νi −mνp)
]

(20)

is the response associated with the pulse transmitted at (τb, νb),
referred to as the b-response. Recall from Section IV, that
channel path delay shifts the DD domain pulse along the delay
axis, and that channel path Doppler shifts the DD domain pulse
along the Doppler axis. From (19), we see that the a-response
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Fig. 10: The transmit DD pulse at (τa, νa) is “effectively” localized along both delay and Doppler domain, and therefore DD
pulses are received along each path at distinct DD locations (τa+τi, νa+νi), i = 1, 2, 3, 4 which allows for accurate estimation
of the channel DD spreading function h(τ, ν) (see (1)). Due to quasi-periodicity, the transmit DD pulse is repeated along the
delay and Doppler domain with period τp and νp, respectively. These repetitions also interact with the channel resulting in
received DD pulses. If τp is less than the channel delay spread and/or if νp is less than the channel Doppler spread (i.e, (τp, νp)
does not satisfy (21)), then the received DD pulses corresponding to the quasi-periodic pulse repetition could overlap/alias
with the pulses received due to the DD pulse transmitted at (τa, νa) ∈ D0, thereby making channel prediction non-simple and
difficult. However, if (τp, νp) is properly chosen to satisfy (21) then the channel response to a DD pulse transmitted at some
other DD location (e.g., (τb, νb)) can be predicted from perfect knowledge of the channel response to the DD pulse transmitted
at (τa, νa). Also, when (τp, νp) satisfies (21), the energy of the received DD domain pulses is invariant of the location of
the transmitted DD pulse. Therefore, the interaction of a DD pulse with the channel is predictable and non-fading if (21) is
satisfied.

includes four distinct pulses received at (τa+ τi, νa+νi), and
from (20), we see that the b-response includes four distinct
pulses received at (τb+τi, νb+νi), where i = 1, 2, 3, 4. Fig. 10
illustrates that the received pulse along each path is observed
separately in the DD domain.

Again we look to predict the received DD domain signal
ydd(τ, ν; τb, νb) from the signal ydd(τ, ν; τa, νa).

The channel interaction is predictable: The channel inter-
action is predictable when the delay period τp is greater than
the channel delay spread and the Doppler period νp is greater
than the channel Doppler spread, i.e.,

τp > (max
i

τi − min
i

τi),

and νp > (max
i

νi − min
i

νi). (21)

Condition (21) is called the crystallization condition. In our ex-
ample, when the crystallization condition holds, the b-response
can be predicted from the a-response. Fig. 10 illustrates this
fact. It shows that the complex gain of the pulse received along
the ith path is hie

j2πνiτa for the a-response, and hie
j2πνiτb

for the b-response. The later can be predicted from the former
via

hie
j2πνiτb = hie

j2πνiτa ej2πνi(τb−τa), i = 1, 2, 3, 4. (22)

The predictive relation (22) breaks down when responses as-
sociated with replicas outside the fundamental period interacts
with responses associated with replicas inside the fundamental
period. This phenomenon is referred to as DD domain aliasing.
The point is that when the crystallization condition holds, DD
domain aliasing is precluded. Here is an example of an aliasing
situation: say τp = τ4− τ1 and νp = ν4−ν1. In this situation,
the responses associated with the pulse transmitted at (τa, νa)
and its replica at (τa−τp, νa−νp) are both received at the same
location (τa + τ1, νa + ν1) along the 1st and the 4th channel
paths, respectively. At this location, the complex gain of the
a-response is

(
h1e

j2πν1τa + h4 e
j2πν4τa e−j2π(νa+ν1)(τ4−τ1)

)
,

from which it is difficult to separately estimate the terms
corresponding to h1 and h4. Therefore, the complex gain(
h1e

j2πν1τb + h4e
j2πν4τbe−j2π(νb+ν1)(τ4−τ1)

)
of the received

pulse at (τb + τ1, νb + ν1) in the b-response cannot be simply
predicted from the complex gain of the received pulse at
(τa + τ1, νa + ν1) in the a-response. Fig. 11 depicts the
phenomena of DD domain aliasing.

Conditions (21) preclude aliasing from the replicas of the
DD domain pulse transmitted in D0. Since τp νp = 1, we
require

(max
i

τi − min
i

τi) × (max
i

νi − min
i

νi) < 1, (23)



11

Fig. 11: A single DD domain pulse is transmitted in the fundamental DD domain period D0. Rectangular DD domain regions
containing the received DD domain pulses corresponding to the transmitted DD pulse in D0 and its quasi-periodic repetitions
are depicted as colour filled rectangles. The size of each such rectangular region is invariant of the delay and Doppler domain
period, i.e., they have length equal to the channel delay spread (maxi τi − mini τi) along the delay axis and equal to the
channel Doppler spread (maxi νi − mini νi) along the Doppler axis. Two choices of the delay and Doppler domain period
are considered, choice A: the delay and Doppler domain period satisfy the condition in (21), and choice B: Doppler domain
period is greater than the channel Doppler spread but the delay domain period is less than the channel delay spread. The
fundamental DD domain period D0 is depicted by a blue filled rectangle. For choice A, DD pulses received in D0 are within
the green and the red coloured rectangles which do not overlap and therefore there is no aliasing. However, in choice B, due
to small τp and the invariance of the size of the coloured rectangles, the green rectangle overlaps with the red and the yellow
coloured rectangles resulting in delay domain aliasing. Similarly, there would be aliasing along the Doppler domain if the
Doppler domain period is chosen to be smaller than the channel Doppler spread.

that is the product of the channel delay spread and Doppler
spread is less than one. This condition is generally satisfied
for most doubly-spread channels of practical interest. For
example, in a typical cellular wireless system with channel
delay spread 5µs and Doppler spread 1000 Hz, the product
of the delay and Doppler spread is only 5× 10−3.

The channel interaction is non-fading: The channel inter-
action is non-fading when the crystallization condition (21)
holds, in the sense that the amplitude of the response does not
depend on the location of the transmitted pulse. Specifically,
in our example, when the crystallization condition holds, the
power distribution of the b-response is equal to the power
distribution of the a-response. Fig. 10 illustrates this fact. It
shows that in both distributions the amplitude of the pulse
received along the i-th path is |hi|. When the crystallization
condition does not hold, due to aliasing effect, the power
distribution in general depends on the location of the trans-
mit pulse. We demonstrate this using the aliasing example
considered in the predictability discussion. In this example,
the amplitude of the pulse received at (τa + τ1, νa + ν1)
is |

(
h1e

j2πν1τa + h4 e
j2πν4τa e−j2π(νa+ν1)(τ4−τ1)

)
|. It can be

verified that this expression in general depends on the location
(τa, νa) of the transmitted pulse.

The channel interaction is non-stationary: It should be
noted that even when the crystallization condition holds, the
actual phases in the response depend on the location of the
transmitted pulse. In our example, the complex gain of the
pulse received along the ith path is hie

j2πνiτa in the a-
response and is hie

j2πνiτb in the b-response. The point is that
non-stationarity is not a major issue as long as predictability
(22) is maintained.

VI. TRANSCEIVER SIGNAL PROCESING

In this section, we show that OTFS is similar to TDM
and FDM in that it involves a similar sequence of signal
processing operations at the transmitter and receiver. In TDM
and FDM respectively, information is embedded in TD and
the FD, whereas in OTFS it is embedded in the DD domain.

Throughout this section, we consider transmitting a packet
of BT information symbols x[k], k = 0, 1, · · · , (BT − 1)
using a TD signal limited to time T and bandwidth B.
The information symbols are first converted to a discrete
information signal xM [·] in the modulation domain M. The
subscripts td, fd and dd identify the TD, FD and DD modula-
tion domains. Within the modulation domain, we then apply a
filter wtx(·) to ensure that the transmit TD information signal
std(t) satisfies the time and bandwidth constraints. The signal
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Transmitter Receiver

Time domainModulation domain Modulation domain

Fig. 12: Transceiver signal processing.

std(t) interacts with the doubly-spread channel to provide a
received TD signal rtd(t). This signal is then converted to
the appropriate modulation domain, using the inverse of the
transform used at the transmitter, to provide a signal yM(·).
Matched filtering at the receiver with the receive filter wrx(·)
then optimizes the signal to noise ratio (SNR) in the post-
filtered signal to produce a modulation domain analog signal
ywrx
M

(·). This signal is then sampled to provide the discrete
received modulation domain signal yM [·] which is processed
to recover the information symbols.

These steps are shown in Fig. 12 and are made explicit
in Table-I for TDM and FDM. Table-II lists the transforms,
filtering operation mentioned in Fig. 12 for TDM/FDM/OTFS.

A. TDM input-output relation

It follows from Table-I that the output signal ytd[k], k ∈ Z
is obtained from the input signal xtd[k], k ∈ Z by a discrete
time convolution

ytd[k
′] =

∑
k∈Z

xtd[k]htd [k
′ − k ; k],

where, forn ∈ Z,

htd [n ; k]
∆
=

∫∫∫ [
ej2πν k

B h(τ, ν)wrx(τ
′)ej2πν( n

B
−τ−τ ′)

wtx

( n

B
− τ − τ ′

) ]
dτ dν dτ ′. (24)

The discrete TD filter htd [· ; k] represents the effective dis-
crete TD channel response to the kth discrete input symbol
xtd[k]. The dependence of htd [· ; k] on k is not simple,
and knowledge of this filter htd [· ; q] for some integer q is
not sufficient to accurately predict htd [· ; k] for all k ∈ Z.

Also, the expected received signal power E
[
|ytd[k

′]|2
]

varies
with k′. Therefore, for a generic doubly-spread channel, the
TDM input-output relation is non-predictable, fading and non-
stationary (cf. Section V-A).

If there is no Doppler shift, then h(τ, ν) = g(τ)δ(ν). Let
htd(t)

∆
= wrx(t) ∗ g(t) ∗ wtx(t), then substituting h(τ, ν) =

g(τ)δ(ν) in (24) we get htd [n ; k] = htd(t = n/B) which
is independent of k. In this case, the TDM input-output
relation is predictable, non-fading and stationary. These facts
are summarized in Table-IV.

B. FDM input-output relation

We see from Table-I that the output signal yfd[k], k ∈ Z is
obtained from the input signal xfd[k], k ∈ Z by the discrete
FD convolution

yfd[k
′] =

∑
k∈Z

xfd[k]hfd [k
′ − k ; k]

where, forn ∈ Z,

hfd [n ; k] =

∫∫∫ [
e−j2πτ k

T h(τ, ν)wrx(f
′)e−j2πτ( n

T
−f ′)

wtx

( n

T
− ν − f ′

) ]
dτ dν df ′. (25)

The discrete FD filter hfd [· ; k] represents the effective dis-
crete FD channel response to the kth discrete input symbol
xfd[k]. The dependence of hfd [· ; k] on k is not simple,
and knowledge of this filter hfd [· ; q] for some integer q is
not sufficient to accurately predict hfd [· ; k] for all k ∈ Z.

Also, the expected received signal power E
[
|yfd[k

′]|2
]

varies
with k′. Therefore, for a generic doubly-spread channel, the
FDM input-output relation is non-predictable, fading and non-
stationary (cf. Section V-B).

If there are no path delays (Doppler only channel), then
h(τ, ν) = δ(τ)g(ν). Let hfd(f)

∆
= wrx(f)∗g(f)∗wtx(f), then

substituting h(τ, ν) = δ(τ)g(ν) in (25) we get hfd [n ; k] =
hfd(f = n/T ) which is independent of k. In this special
case, the FDM input-output relation is predictable, non-fading
and stationary. These facts regarding FDM are summarized in
Table-IV.

C. OTFS input-output relation

OTFS modulation is parameterized by integers M ≈ Bτp
and N ≈ Tνp. Since OTFS is a 2-D modulation, the infor-
mation symbols are usually arranged as a 2-D finite array
x[k, l], k = 0, 1, · · · ,M −1, l = 0, 1, · · · , N −1. The discrete
DD domain information signal xdd [k

′, l′], k′, l′ ∈ Z is then
defined as follows. For all k = 0, 1, · · · ,M − 1 and all
l = 0, 1, · · · , N − 1 we have

xdd [k + nM, l +mN ]
∆
=

{
x[k, l] ,m = n = 0

x[k, l] ej2πn
l
N , otherwise

(26)
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TABLE I: Signal processing steps in TDM and FDM.

Transceiver operation TDM FDM

Generating the discrete xtd[k]
∆
=

{
x[k] , k = 0, 1, · · · , (BT − 1)

0 , otherwise
. xfd[k]

∆
=

{
x[k] , k = 0, 1, · · · , (BT − 1)

0 , otherwise
.

information signal
Generating the analog signal Λtd = {q/B | q ∈ Z} Λfd = {q/T | q ∈ Z}

on the information grid xtd(t) =
∑
k∈Z

xtd[k] δ(t− k/B) xfd(f) =
∑
k∈Z

xfd[k] δ(f − k/T )

Shaping the pulse xwtx

td (t) = wtx(t) ∗ xtd(t) xwtx

fd (f) = wtx(f) ∗ xfd(f)
at the transmitter

Converting from the modulation std(t) = xwtx

td (t) std(t) =
∫
xwtx

fd (f) ej2πft df

domain to the time domain
Applying the channel h(τ, ν) rtd(t) =

∫∫
h(τ, ν)std(t− τ) ej2πν(t−τ) dτ dν rtd(t) =

∫∫
h(τ, ν)std(t− τ) ej2πν(t−τ) dτ dν

Converting from the time domain ytd(t) = rtd(t) yfd(f) =
∫
rtd(t) e

−j2πft dt
to modulation domain

Shaping the pulse ywrx

td (t) = wrx(t) ∗ ytd(t) ywrx

fd (f) = wrx(f) ∗ yfd(f)
at the receiver

Sampling on the ytd[k] = ywrx

td (t = k/B) , k ∈ Z. yfd[k] = ywrx

fd (f = k/T ) , k ∈ Z.
information grid

TABLE II: Signal processing operations for TDM/FDM/OTFS
in Fig. 12.

TDM FDM OTFS
Modulation TD FD DD

domain
Transform Identity Fourier Zak
Filtering Linear Linear Twisted

convolution convolution convolution
in TD in FD in DD

where m,n ∈ Z. The DD domain information grid is given
by

Λdd
∆
=

{(
k
τp
M

, l
νp
N

) ∣∣∣ k, l ∈ Z
}
. (27)

The discrete DD domain information signal is then lifted to the
information grid Λdd , resulting in the continuous DD domain
analog information signal xdd(τ, ν) which is given by

xdd(τ, ν)
∆
=

∑
k,l∈Z

xdd [k, l] δ
(
τ − k

τp
M

)
δ
(
ν − l

νp
N

)
.(28)

Since xdd [·, ·] satisfies (26), it follows that xdd(τ, ν) is quasi-
periodic. In order to satisfy the time and bandwidth constraints
for the transmit TD signal, xdd(τ, ν) is filtered (twisted con-
volution) in the DD domain with a DD domain filter wtx(τ, ν)
resulting in the quasi-periodic DD domain signal4

xwtx

dd
(τ, ν)

∆
= wtx(τ, ν) ∗σ xdd(τ, ν). (29)

The inverse Zak transform (see (7)) of this filtered signal gives
the transmit TD signal std(t), i.e.,

std(t)
∆
= Z−1

t

(
xwtx

dd
(τ, ν)

)
. (30)

The received TD signal rtd(t) is then given by

rtd(t) =

∫∫
h(τ, ν)std(t− τ) ej2πν(t−τ) dτ dν. (31)

4Twisted convolution between two DD domain functions a(τ, ν) and
b(τ, ν) is given by a(τ, ν) ∗σ b(τ, ν)

∆
=

∫∫
a(τ ′, ν′) b(τ − τ ′, ν −

ν′) ej2πν′(τ−τ ′) dτ ′dν′. Unlike linear convolution, twisted convolution is
non-commutative, i.e., a(τ, ν) ∗σ b(τ, ν) ̸= b(τ, ν) ∗σ a(τ, ν). It is however
associative, i.e., a(τ, ν)∗σ [b(τ, ν)∗σc(τ, ν)] = [a(τ, ν)∗σb(τ, ν)]∗σc(τ, ν).

At the receiver, Zak transform (4) converts the received TD
signal to a DD domain signal ydd(τ, ν), i.e.,

ydd(τ, ν)
∆
= Zt

(
rtd(t)

)
. (32)

This received DD domain signal is then match-filtered with
a DD domain receive filter wrx(τ, ν) resulting in the filtered
DD domain signal

ywrx

dd
(τ, ν)

∆
= wrx(τ, ν) ∗σ ydd(τ, ν). (33)

This quasi-periodic signal is then sampled on the information
grid, resulting in the discrete DD domain received signal

ydd [k
′, l′]

∆
=ywrx

dd

(
τ = k′

τp
M

,ν = l′
νp
N

)
, k′, l′ ∈ Z. (34)

The signal processing steps from (26)-(34) are summarized
in Table-III.5 From (26)-(34), it follows that the OTFS input-
output relation can be expressed as a discrete twisted convo-
lution

ydd [k
′, l′]=

∑
k,l∈Z

hdd [k, l]xdd [k
′ − k, l′ − l] ej2π

(k′−k)
M

l
N

=
∑
k,l∈Z

hdd [k
′ − k, l′ − l]xdd [k, l] e

j2π
(l′−l)

N
k
M , (35)

where hdd [k, l] is the discrete effective DD domain channel
filter, given by sampling the continuous effective DD domain
channel filter hdd(τ, ν), i.e.,

hdd [k, l]
∆
= hdd(τ, ν)

∣∣∣(
τ=

kτp
M , ν=

lνp
N

) ,
hdd(τ, ν)

∆
= wrx(τ, ν) ∗σ h(τ, ν) ∗σ wtx(τ, ν). (36)

Typically, the transmit and receive filters are localized and
the channel admits bounded delay and Doppler spreads, and

5The receiver processing, i.e., Zak transform of the received TD signal
followed by twisted convolution with the receive DD filter and subsequent
DD domain sampling can be implemented efficiently in the discrete DD
domain using the Discrete Zak Transform (DZT [32]) on the sampled
received TD signal (sampled at integer multiples of 1/B). For a given
(M,N), the complexity of DZT is O(MN logN) when compared to the
O(MN log(MN)) complexity of DFT/IDFT processing in a FDM based
system with the same frame duration T and bandwidth B.
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TABLE III: Signal processing steps in OTFS.

Transceiver operation OTFS

Generating the discrete information signal xdd [k + nM, l+mN ]
∆
=

{
x[k, l] ,m = n = 0

x[k, l] ej2πn l
N , otherwise

.

Generating the analog signal on the information grid Λdd =
{(

k
τp
M

, l
νp
N

) ∣∣∣ k, l ∈ Z
}

xdd (τ, ν) =
∑
k,l∈Z

xdd [k, l] δ
(
τ − k

τp

M

)
δ
(
ν − l

νp

N

)
Shaping the pulse at the transmitter xwtx

dd
(τ, ν) = wtx(τ, ν) ∗σ xdd (τ, ν)

Converting from the modulation domain to the time domain std (t) = Z−1
t

(
xwtx

dd
(τ, ν)

)
Applying the channel h(τ, ν) rtd(t) =

∫∫
h(τ, ν)std(t− τ) ej2πν(t−τ) dτ dν

Converting from the time domain to modulation domain ydd (τ, ν) = Zt

(
rtd (t)

)
Shaping the pulse at the receiver ywrx

dd
(τ, ν) = wrx(τ, ν) ∗σ ydd (τ, ν)

Sampling on the information grid ydd [k
′, l′] = ywrx

dd
(
τ = k′

τp
M

, ν = l′
νp
N

)
, k′, l′ ∈ Z

TABLE IV: Attributes of input-output relation.

Attribute Channel type TDM FDM OTFS

Non-fading
Delay spread only ✓ × ✓

Doppler spread only × ✓ ✓
Doubly-spread × × ✓

Predictable
Delay spread only ✓ × ✓

Doppler spread only × ✓ ✓
Doubly-spread × × ✓

hence, in this case, hdd(τ, ν) is zero whenever τ > τmax, τ <
0 or |ν| > νmax. We refer to τmax and 2νmax as the effective
delay and Doppler spreads, respectively. Consequently, if the
periods satisfy the crystallization condition (21) with respect
to the effective spreads, that is, τp > τmax and νp > 2νmax,
the input-output relation becomes non-fading and predictable
(cf. Section V-C).

Crystallization of the OTFS input-output relation: Fig. 13
depicts the non-fading and predictability attributes of the
OTFS input-output relation for the channel example from
Fig. 9. Recall, that the delay and Doppler spreads of this
channel are 2µs and 1700 Hz, respectively. The main point is
that despite this channel being doubly-spread, the OTFS input-
output relation is non-fading and predictable whenever the DD
periods satisfy the crystallization condition with respect to the
channel spreads. For this example, it means that τp > 2µs
and νp > 1700 Hz. Moreover, the constraint τp νp = 1
implies that the crystalline regime is 2µs < τp < 588µs
and 1700 < νp < 5 × 105 Hz (see the green rectangle in
Fig. 13). Operating the system in the crystalline regime allows
to maintain uniform performance over a wide a range of chan-
nel spreads and multitude of use-cases (e.g., Leo-satellites/
UAV communication, mmWave/THz communication). These
practical aspects will be discussed in more detail in the second
part of this paper. Table IV summarizes attributes of the input-
output relations for TDM, FDM and OTFS.

VII. CONCLUSIONS

The roots of OTFS modulation go back to the Erlangen
Program, introduced by Felix Klein in 1872, which sought
to understand mathematical structures, like channels, through
the symmetries which leave them invariant. It provides an
umbrella for several results in information theory and coding,

beginning with the fact that it is Gaussian inputs that achieve
capacity on Gaussian channels [33]. It suggests that we should
take advantage, when channel errors form a group. Quantum
computing provides an example, since bit flips provide discrete
analogs of delay operators, and phase flips provide discrete
analogs of Doppler operators. A commutative subgroup of
the Pauli group determines a quantum error correcting codes,
which stores information on common eigenmodes of the
subgroup [34]. The parallels with OTFS are very clear.

We have described the OTFS modulation within a mathe-
matical framework of Zak theory. Within this framework, the
OTFS carrier is a quasi-periodic DD domain pulse which when
converted to time via the inverse Zak transform is realized by
a pulsone. The main technical message of this paper is that
whenever the DD periods of the pulse are taken to be large
compared with the channel spreads, the OTFS input-output
relation is non-fading and predictable. When this constraint
holds, we say that one operates in the crystalline regime.
The follow-up of this paper will demonstrate in detail the
performance advantages of operating in the crystalline regime.

Compatibility with contemporary multi-carrier signaling
motivated an approximation [23], which we refer to as MC-
OTFS, to the Zak theoretic variant of OTFS described in this
paper, which we refer to as Zak-OTFS. In MC-OTFS, DD
domain signals are periodic functions of two variables (instead
of quasi-periodic functions) and the conversion to the TD is
carried in two steps (instead of one step Zak transform): the
first step is conversion to the TF domain using the inverse
symplectic finite Fourier transform, and the second step is
conversion from TF domain to TD using the Heisenberg
transform. In the follow-up of this paper, we will provide
a detailed performance comparison between Zak-OTFS and
MC-OTFS variants.

The first wave of OTFS research mainly focused on MC-
OTFS. We expect the next wave of OTFS research to be
focused on Zak-OTFS, which can offer performance and
complexity advantages.
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