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Abstract—Orthogonal time frequency space (OTFS) modula-
tion is a two-dimensional modulation scheme which has superior
performance compared to conventional multicarrier modulation
schemes. In this paper, we propose low-complexity linear equal-
izers for 2 × 2 multiple-input-multiple-output (MIMO) OTFS
system. The proposed equalizers are designed by exploiting the
structure of the effective delay-Doppler MIMO channel matrix
in a MIMO-OTFS system. The channel matrix in a MIMO-
OTFS system is a block matrix composed of blocks which have
a block circulant with circulant block structure. The proposed
approach makes use of the properties of block matrices and
block circulant matrices to reduce the computational complexity
of linear equalizers. For a 2 × 2 MIMO-OTFS system that
uses N × M OTFS modulation, where N and M denote the
number of Doppler and delay bins, respectively, the proposed
linear equalizers provide exact solution with a computational
complexity of O(MN logMN), whereas conventional linear
equalizers require a complexity of O(M3N3).

keywords: OTFS modulation, MIMO-OTFS, linear equaliz-

ers, block circulant matrices, computational complexity.

I. INTRODUCTION

Orthogonal time frequency space (OTFS) modulation is

a new waveform design that is well suited to combat the

effects of time and frequency selective nature of wireless

channels. This modulation scheme was introduced in [1],[2],

where it was shown to achieve superior error performance

compared to conventional multicarrier modulation schemes

like orthogonal frequency division multiplexing (OFDM) in

high mobility environments. Fundamentally, OTFS modulation

differs from conventional multicarrier modulation schemes in

the way it multiplexes information symbols. In OTFS, infor-

mation symbols are multiplexed in the delay-Doppler domain,

unlike in conventional multicarrier modulation schemes where

information symbols are multiplexed in the time-frequency

domain. The symbols multiplexed in the delay-Doppler do-

main undergo two-dimensional (2D) periodic convolution with

the channel response in the delay-Doppler domain such that

each symbol experiences a near-constant channel gain even in

rapidly time varying wireless channels [2]-[4]. Further, the

channel when represented in the delay-Doppler domain is

sparse in nature and exhibits slow variation compared to that

in time-frequency representation, thereby reducing the com-

plexity of channel estimation in high Doppler environments.

Detection of OTFS modulated signals has been addressed in

several papers in the literature [4]-[9]. OTFS signal detection

based on message passing and Markov chain Monte Carlo

(MCMC) techniques have been proposed in [4] and [5],

respectively. In [6], OTFS has been viewed in the general-

ized frequency division multiplexing (GFDM) framework and

detection is carried out using minimum mean squared error

(MMSE) detector. Further, [7] proposes MMSE equalization in

time-frequency domain which is followed by a low-complexity

interference cancellation based non-linear equalizer. Low-

complexity linear equalization in delay-Doppler domain, ex-

ploiting the block circulant nature of the effective delay-

Doppler channel in OTFS, has been reported in [8],[9]. While

the approach in [8] uses LU decomposition for the design

of linear equalizers with reduced complexity, [9] uses eigen

value decomposition (EVD) and fast Fourier transforms (FFT)

to achieve complexity reduction. The detection techniques

mentioned above are proposed for OTFS in a single-input

single-output (SISO) setting. The system model and a message

passing based signal detection technique for OTFS in a MIMO

setting have been presented in [10]. The design and perfor-

mance of low-complexity linear equalizers for OTFS in MIMO

setting have not been reported so far in the literature. In this pa-

per, we propose low-complexity MMSE and zero forcing (ZF)

equalizers which exploit the structure of the effective delay-

Doppler MIMO channel matrix in a MIMO-OTFS system

and achieve significant reduction in computational complexity

compared to that of conventional linear equalizers.

The conventional MMSE and ZF equalizers involve in-

version of matrices for computing the solutions. The com-

putational complexity required to perform matrix inversion

is very high, especially when the dimensions of matrices

involved are large. In this paper, we propose an approach

that makes use of the structure in the effective delay-Doppler

MIMO channel matrix to achieve significant reduction in the

computational complexity compared to those of conventional

linear equalizers. Specifically, the channel matrix of a 2 × 2
MIMO-OTFS system is composed of blocks which have a

block circulant with circulant block structure. The proposed

approach recognizes this structure and uses it to achieve

exact MMSE/ZF solution at a significantly reduced order

of complexity. For example, the proposed equalizers provide

the exact MMSE/ZF solutions at a computational complexity

of O(MN logMN), whereas conventional linear equalizers

require a complexity of O(M3N3).

II. MIMO-OTFS SYSTEM MODEL

The transforms involved in the transmit and receive sides

of OTFS system are presented below.

A. Transforms involved in OTFS modulation

• Inverse symplectic finite Fourier transform (ISFFT): MN

information symbols are multiplexed on a delay-Doppler

grid of size N × M . These symbols in the delay-

Doppler domain, denoted by x[k, l], k = 0, · · · , N − 1,

l = 0, · · · ,M−1, x[k, l] ∈ A, where A is a conventional

modulation alphabet (e.g., QAM), are transmitted in a

packet of duration NT in a given bandwidth B = M∆f ,



where ∆f = 1
T . The symbols x[k, l]s in the delay-

Doppler domain are first mapped to the time-frequency

(TF) plane using ISFFT, as

X[n,m] =
1

MN

N−1
∑

k=0

M−1
∑

l=0

x[k, l]ej2π(
nk
N −

ml
M ). (1)

• Heisenberg transform: The TF signal X[n,m] is then

converted to time domain for transmission using Heisen-

berg transform, as

x(t) =

N−1
∑

n=0

M−1
∑

m=0

X[n,m]gtx(t− nT )ej2πm∆f(t−nT ),

(2)
where gtx(t) denotes the transmit pulse shape.

• Transmission through the channel: The time domain

signal x(t) is transmitted through the wireless channel,

whose complex baseband response in delay-Doppler do-

main is denoted by h(τ, ν), where τ and ν are delay

and Doppler variables, respectively. The received signal

is given by

y(t) =

∫

ν

∫

τ

h(τ, ν)x(t− τ)ej2πν(t−τ)dτdν. (3)

• Wigner transform: The received time domain signal y(t)
is converted into a time-frequency signal using Wigner

transform, as

Y [n,m] =Agrx,y(t, f)|t=nT,f=m∆f ,

Agrx,y(t, f) =

∫

y(t)g∗rx(t
′ − t)e−j2πf(t′−t)dt′, (4)

where grx(t) denotes the receive pulse shape.

• Symplectic finite Fourier transform (SFFT): Finally, the

TF signal Y [n,m] is transformed back to the delay-

Doppler domain using SFFT, as

y[k, l] =
N−1
∑

n=0

M−1
∑

m=0

Y [n,m]e−j2π(nk
N −

ml
M ). (5)

B. Vectorized input-output (I/O) relation

Using (1)-(5), end-to-end I/O relation can be derived as [3]

y[k, l] =
1

MN

M−1
∑

l′=0

N−1
∑

k′=0

x[k′, l′]hw

(

k − k′

NT
,
l − l′

M∆f

)

+v[k, l],

(6)

where hw

(

k−k′

NT , l−l′

M∆f

)

= hw(ν, τ)|ν= k−k′

NT ,τ= l−l′

M∆f

and

hw(ν, τ) is as defined in [3]. This equation can be vectorized

as [4]

y = Hx+ n, (7)

where x ∈ C
MN×1 is the transmitted OTFS vector, y ∈

C
MN×1 is the received vector, H ∈ C

MN×MN is the effective

channel matrix in the delay-Doppler domain, and n ∈ C
MN×1

denotes the AWGN vector whose entries are distributed as

CN (0, σ2).

C. OTFS in MIMO setting

Consider a MIMO-OTFS system with nt transmit and nr

receive antennas. Each transmit antenna transmits an NM ×1
OTFS signal vector. Let xk denote the transmit vector from kth

transmit antenna and Hlk denote the effective delay-Doppler

channel between kth transmit and lth receive antennas. The

vectorized I/O relation in MIMO-OTFS is given by [10]

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, (8)

where yl and nl denote the received vector and noise vector,

respectively, at the lth receive antenna. The vectorized input-

output relation in (8) can be compactly written as

yMIMO = HMIMOxMIMO + nMIMO, (9)

where, yMIMO = [yT
1 y

T
2 · · ·yT

nr
]T , xMIMO = [xT

1 x
T
2 · · ·xT

nt
]T ,

and HMIMO is the delay-Doppler MIMO channel matrix as

described in (8).

III. LOW-COMPLEXITY LINEAR EQUALIZERS FOR 2× 2
MIMO-OTFS

Consider a 2 × 2 MIMO-OTFS system whose vectorized

I/O relation can be written in the form (8). The MMSE

and ZF solutions are given by x̂MMSE = GMMSEyMIMO and

x̂ZF = GZFyMIMO, respectively, where GMMSE = (HH
MIMO

HMIMO +
σ2IMNnr×MNnt

)−1HH
MIMO

and GZF = (HH
MIMO

HMIMO)
−1HH

MIMO
.

The key idea behind the proposed low-complexity MMSE

and ZF equalizers is to compute GMMSEyMIMO and GZFyMIMO

with low-complexity using FFTs, IFFTs, and the properties

of HMIMO and GMMSE.

A. Low-complexity MMSE equalizer

The effective delay-Doppler MIMO channel matrix in 2×2
MIMO-OTFS systemis a block matrix given by

HMIMO =

[

H11 H12

H21 H22

]

. (10)

Observe that HMIMO in (10) is a block matrix of size 2NM ×
2NM with each block Hij , i, j ∈ {1, 2} having a block

circulant with circulant block structure. Each of the Hijs in

HMIMO is a block circulant matrix with M circulant blocks of

size N × N . Let BM,N denote the class of block circulant

matrices with M circulant blocks of size N × N . Now,

Hij ∈ BMN , i, j ∈ {1, 2}, and hence the matrix Hij has

the eigen value decomposition (EVD) given by [11]

Hij = (FM ⊗ FN )HΛij(FM ⊗ FN ), (11)

where FM and FN denote discrete Fourier transform (DFT)

matrices of size M × M and N × N , respectively, and Λij

denotes the diagonal matrix containing the eigen values of

Hij . The entries of Λij will be of the form

Λij =

M−1
∑

k=0

Ωk
M ⊗Λ

(k)
ij , (12)



where ΩM = diag{1, ω, · · · , ωM−1} with ω = ej2π/M and

Λ
(k)
ij denotes the N × N diagonal matrix containing the

eigen values of kth circulant block of Hij . Now, in order to

compute GMMSEyMIMO and GZFyMIMO, we make use of some of

the properties of GMMSE and GZF. Towards this, we first prove

the following lemma on the structure of GMMSE and GZF .

Lemma 1. For a 2× 2 block matrix HMIMO with blocks Hij ∈
BMN , i, j ∈ {1, 2}, the matrices GMMSE and GZF are also 2×2
block matrices with blocks in BMN .

Proof. We prove this for GMMSE. The proof for GZF also

follows with similar steps. Consider GMMSE = (HH
MIMO

HMIMO +
σ2I)−1HH . Let A = (HH

MIMO
HMIMO + σ2I). Now, A can be

written in the form

A =

[

A11 A12

A21 A22

]

, (13)

A11 =H
H
11H11 +H

H
21H21 + σ

2
I, A12 = H

H
11H12 +H

H
21H22,

A21 =H
H
12H11 +H

H
22H21, A22 = H

H
12H12 +H

H
22H22 + σ

2
I.

(14)

Here, observe that Hij ∈ BMN , i, j ∈ {1, 2} and Aijs are

composed of Hijs. Now, we use the following properties of

BMN to understand the structure of Aijs.

Property 1: For any matrix P ∈ BMN , the matrices PT ,

PH , and P−1 (if exists) are all in BMN .

Property 2: For any two matrices P, Q ∈ BM,N , PQ ∈
BMN , QP ∈ BMN , and PQ = QP. Also, for any two scalars

δ1 and δ2, δ1P+ δ2Q ∈ BMN .

Now, using properties 1 and 2, it can be seen that the matrices

Aij ∈ BMN , i, j ∈ {1, 2}. The inverse of the 2 × 2 block

matrix A−1 is of the form given by

A−1 =

[

U11 U12

U21 U22

]

, (15)

U11 =(A11 −A12A
−1
22 A21)

−1
,

U12 =−A
−1
11 A12(A22 −A21A

−1
11 A12)

−1
,

U21 =−A
−1
22 A21(A11 −A12A

−1
22 A21)

−1
,

U22 =(A22 −A21A
−1
11 A12)

−1
. (16)

Again, from properties 1 and 2, it can be seen that Uij ∈
BMN , i, j ∈ {1, 2}. Now, GMMSE = A−1HH

MIMO
is given by

GMMSE =

[

U11 U12

U21 U22

] [

H∗
11 H∗

21

H∗
12 H∗

22

]

=

[

G11 G12

G21 G22

]

, (17)

G11 =U11H
∗

11 +U12H
∗

12,G12 = U11H
∗

21 +U12H
∗

22,

G21 =U21H
∗

11 +U22H
∗

12,G22 = U21H
∗

21 +U22H
∗

22. (18)

Again, from properties 1 and 2 it can be seen that Gij ∈ BMN ,

i, j ∈ BMN . Therefore, GMMSE is a block matrix with blocks

Gij ∈ BMN .

Since Gij ∈ BMN , i, j ∈ {1, 2}, the EVD of Gij is of the form

Gij = (FM ⊗ FN )HΓij(FM ⊗ FN ), (19)

where Γij denotes MN × MN diagonal matrix containing

the eigen values of Gij . Therefore, GMMSE can be written as

GMMSE = (Int
⊗ (FM ⊗FN )H)Γeff(Int

⊗ (FM ⊗FN )), (20)

where Γeff is given by

Γeff =

[

Γ11 Γ12

Γ21 Γ22

]

. (21)

Therefore, the MMSE solution is of the form

x̂MMSE = (Int
⊗ (FM ⊗ FN )H)Γeff(Int

⊗ (FM ⊗ FN ))yMIMO.

(22)
It can be observed that the computation of x̂MMSE in (22)

requires the computation of Γeff, which, in turn, involves the

computation of Γij for i, j ∈ {1, 2}.

Computation of Γijs: In order to compute Γijs, we follow

the following approach. We first compute the eigen values of

the effective delay-Doppler MIMO channel matrix HMIMO using

(12). We then compute Γijs by expressing Γijs in terms of

Λijs. Computing Γijs from Λijs constitutes one of the key

steps in the proposed algorithm. Consider the 2 × 2 block

matrix A in (13). The blocks Aij ∈ BMN , i, j ∈ {1, 2}, and

hence the EVD of Aij is of the form

Aij = (FM ⊗ FN )HΦij(FM ⊗ FN ), (23)

where Φij is NM×NM diagonal matrix containing the eigen

values of Aij . Now, substituting (11) in (14) and comparing

it with (23), Φijs can be expressed in terms of Λijs as

Φ11 =Λ
H
11Λ11 +Λ

H
21Λ21 + σ

2
I, Φ12 = Λ

H
11Λ12 +Λ

H
21Λ22,

Φ21 =Λ
H
12Λ11 +Λ

H
22Λ21, Φ22 = Λ

H
12Λ12 +Λ

H
22Λ22 + σ

2
I.

(24)
Next, consider A−1, which is also a block matrix with blocks

Uij ∈ BMN , i, j ∈ {1, 2}. The EVD of Uij is given by

Uij = (FM ⊗ FN )HΨij(FM ⊗ FN ), (25)

where Ψij denotes NM×NM diagonal matrix containing the
eigen values of Uij . Substituting (23) in (16) and comparing
it with (25), Ψijs can be expressed in terms of Φijs as

Ψ11 =(Φ11 −Φ12Φ
−1
22 Φ21)

−1
,

Ψ12 =−Φ
−1
11 Φ12(Φ22 −Φ21Φ

−1
11 Φ12)

−1
,

Ψ21 =Φ
−1
22 Φ21(Φ11 −Φ12Φ

−1
22 Φ21)

−1
,

Ψ22 =(Φ22 −Φ21Φ
−1
11 Φ12)

−1
. (26)

Finally, observe that G = A−1HH is also a 2 × 2 block

matrix with blocks Gij ∈ BMN . The EVD of Gij is given by

(19). Now, substituting (25) and (11) in (18) and comparing

it with (19), Γij can be expressed in terms of Ψij and Λij as

Γ11 =Ψ11Λ
∗

11 +Ψ12Λ
∗

12, Γ12 = Ψ11Λ
∗

21 +Ψ12Λ
∗

22,

Γ21 =Ψ21Λ
∗

11 +Ψ22Λ
∗

12, Γ22 = Ψ21Λ
∗

21 +Ψ22Λ
∗

22. (27)

Observe that since Ψijs can be expressed in terms of Φijs,

which, in turn, can be expressed in terms of Λijs, Γijs in

(27) can be computed from Λijs. The computation of Γijs

from Λijs can be done by substituting (26) and (24) in (27).

Therefore, the eigen values of GMMSE can be computed from

the eigen values of HMIMO. This is one of the key ideas in

the proposed low-complexity equalizer for 2 × 2 MIMO-

OTFS system. We now describe the steps involved in the

implementation of low-complexity MMSE equalizer.

1) Step 1: Computation of eigen values of Hijs: The first
step in the proposed MMSE equalizer is the computation



of eigen values of each block of HMIMO

(

i.e., Hij , i, j ∈
{1, 2}

)

. The eigen values of Hij are given using (12),
which can be written as

Λij = diag

{

M−1∑

k=0
Λ

(k)
ij ,

M−1∑

k=0
ej2πk/M

Λ
(k)
ij , ··· ,

M−1
∑

k=0

e
j2π(M−1)k/M

Λ
(k)
ij

}

. (28)

Here, Λ
(k)
ij denotes N×N diagonal matrix containing the

eigen values of kth circulant block of Hij . The diagonal

matrices Λ
(k)
ij s containing the eigen values of the circu-

lant blocks of Hij are obtained by computing the DFTs of

the first row of each block of Hij . Therefore, for a given

Hij , the computation of Λ
(k)
ij for k = 0, 1, · · · ,M − 1

involves computation of M N -point DFTs, requiring a

complexity of O(MN logN). Further, Λ
(k)
ij s are used

to compute Λijs in (28). Now, observe that (28) can be

computed as diag(FH
MCij)

T , where Cij is M×N matrix

whose rth row contains the diagonal elements of Λ
(r)
ij .

Therefore, Λij in (28) can be written as

Λij = diag{(FH
MCij)

T }. (29)

The complexity of computing (29) is O(MN logM).
Therefore, the total complexity involved in computing

Λij i, j ∈ {1, 2} is O(MN logMN).
2) Step 2: Computation of eigen values of GMMSE using eigen

values Hijs: Next, the eigen values of GMMSE (i.e., Γijs)

are computed using the eigen values of Hijs (i.e., Λijs)

using (24), (26), and (27). Since the matrices involved in

(24), (26), and (27) (i.e., Λij , Φij , Ψij) are all diagonal

matrices, the order of complexity involved in computing

Γijs from Λijs is O(MN).
3) Step 3: Computation of GMMSEyMIMO: This step involves

the computation of GMMSEyMIMO = (Int
⊗ (FM ⊗

FN )H)Γeff(Int
⊗ (FM ⊗ FN ))yMIMO, which can be car-

ried out with low complexity using FFTs and IFFTs.

Let Ỹ denote MN × 2 matrix with kth column being

NM × 1 vector received at kth antenna. Therefore,

Ỹ = [y1 y2], where y1 and y2 denote NM × 1 vectors

received at the first and second antennas, respectively.

Now, (Int
⊗ (FM ⊗ FN ))yMIMO can be written as

q = (Int
⊗ (FM ⊗ FN ))yMIMO = vec{(FM ⊗ FN )Ỹ}.

(30)
Further, let Y1 and Y2 denote N×M matrices such that

Y1 = vec(y1) and Y2 = vec(y2). Now,

q = vec[vec(FNY1F
H
M ) vec(FNY1F

H
M )]. (31)

Observe that the computation of (FNY1F
H
M ) involves

computing N -point FFT along the columns of Y1

and M -point IFFT along the rows of Y1. There-

fore, computing (FNY1F
H
M ) involves a complexity of

O(MN logMN) and hence computing q involves a

complexity of O(MN logMN). Next, r = Γeffq is

computed. Since Γijs are all MN × MN diagonal

matrices, the computation of Γeffq requires a complexity

of O(MN). Finally, the computation of GMMSEyMIMO =

(Int
⊗ (FM ⊗ FN )H)r is performed similar to the

computation of q. Let r1 denote the NM × 1 vector

containing the first NM entries of r, r2 denote the

NM × 1 vector containing the next NM entries of r,

and let R̃ denote NM × 2 matrix s.t. vec(R̃) = r. Now,

GMMSEyMIMO = vec{(FM ⊗ FN )R̃}

= vec[vec(FNR1F
H
M ) vec(FNR1F

H
M )],

(32)

where R1 = vec(r1) and R2 = vec(r2). Similar to the

computation of q, the computation of (32) involves a

complexity of O(MN logMN). Therefore, the overall

complexity involved in the computation of GMMSEyMIMO in

step 3 is O(MN logMN).

B. Low complexity ZF equalizer

The ZF solution is given by GZFyMIMO, where GZF =
(HH

MIMO
HMIMO)

−1HH
MIMO

. Similar to GMMSE, the matrix GZF ∈
BMN . Hence, GZF can be written in the form

GZF = (Int
⊗ (FM ⊗ FN )H)Υeff(Int

⊗ (FM ⊗ FN )), (33)

where Υeff =

[

Υ11 Υ12

Υ21 Υ22

]

, (34)

and Υij ∈ BMN . The computation of Υijs from Λijs is

similar to the computation of Γijs from Λij as discussed in

Sec. III-A. As in the case of the low-complexity MMSE equal-

izer, the complexity of the above low-complexity ZF equalizer

is O(MN logMN). The complexity orders associated with

various steps of the proposed equalizers are given in Table I.

TABLE I: Complexity of proposed low-complexity equalizers

Step # Order of complexity

1: Computation of eigen values of
Hij , i, j ∈ {1, 2}

O(MN logMN)

2: Computation of Γeff / Υeff from Λijs O(MN)

3: Computation of GMMSEyMIMO/
GZFyMIMO

O(MN logMN)

Overall complexity (dominated by Step 3) O(MN logMN)

IV. RESULTS AND DISCUSSIONS

Figure 1 shows the bit error rate (BER) performance

of 2 × 2 MIMO-OTFS with conventional and the pro-

posed ZF and MMSE equalizers. We consider a MIMO-

OTFS system with nt = nr = 2, M = 64, N = 12.

A carrier frequency of 4 GHz, subcarrier spacing of 15

kHz, and BPSK modulation are considered. A channel with

P = 8 paths with exponential power delay profile and

Jakes’ Doppler spectrum is considered for the simulations.

The considered delay profile is {τi, i = 0, · · · , P − 1} =
{0, 1.04, 2.08, 3.12, 4.16, 5.20, 6.25, 7.29} µs and the Doppler

shifts νis associated with each path are generated according

to νi = νmax cos θi, where νmax is the maximum Doppler shift

in the channel and θis are distributed uniformly over [−π π].
A maximum Doppler shift of 1.2 kHz is considered for the

simulations. From Fig. 1, we observe that the performance

of 2 × 2 MIMO-OTFS with MMSE equalizer is superior
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Fig. 1: BER performance of the proposed low-complexity ZF

and MMSE equalizers for 2× 2 MIMO-OTFS system.
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Fig. 2: Computational complexity of the proposed low-

complexity ZF equalizer as a function of M .

compared to that of ZF equalizer. Further, the proposed low-

complexity ZF and MMSE equalizers achieve the same BER

performance as that of the conventional ZF and MMSE equal-

izers, respectively, demonstrating that the proposed equalizers

provide exactly same solutions as those of the conventional

equalizers.

Figure 2 shows a comparison of computational complexity

of the proposed low-complexity ZF equalizer with that of the

conventional ZF equalizer. We consider a 2× 2 MIMO-OTFS

system with N = 16 and plot the computational complexity

in terms of the number of real operations as a function M .

All other parameters are same as those used in Fig. 1. From

Fig. 2, we observe that the complexity of the proposed low-

complexity ZF equalizer is significantly lower compared to

that of conventional ZF equalizer. For example, the number of

real operations required to obtain ZF solution for M = 256
and N = 16 is 215437 in case of proposed low-complexity

ZF equalizer, whereas the conventional equalizer requires a

complexity of 1.4× 108 real operations.

Figure 3 shows the comparison of computational complexity

of proposed MMSE equalizer with that of the conventional

MMSE equalizer, as a function of M . The simulation uses

N = 16 and all other parameters used are same as those

used in Fig 1. From Fig. 3, we observe that the complexity

of the proposed MMSE equalizer is significantly lower than

that of the conventional MMSE equalizer. For example, for

M = 256, N = 16, the complexity of the proposed MMSE
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Fig. 3: Computational complexity of the proposed low-

complexity MMSE equalizer as a function of M .

equalizer is 333711 real operations, whereas the complexity

of the conventional equalizer is 2.19× 1012.

V. CONCLUSIONS

We proposed low-complexity linear equalizers for 2 × 2
MIMO-OTFS system. We derived exact ZF and MMSE equal-

izers of low complexities by exploiting the structure of the

effective delay-Doppler MIMO channel matrix in a 2 × 2
MIMO-OTFS system. We demonstrated that the proposed low-

complexity equalizers provide exact solutions at significantly

reduced complexities compared to those of conventional lin-

ear equalizers. Obtaining exact MMSE/ZF solutions at low

complexities can lead to efficient realizations of non-linear

equalizers which rely on MMSE/ZF equalizers for initial

solutions.
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