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Peak-to-Average Power Ratio of OTFS modulation

G. D. Surabhi, Rose Mary Augustine, and Ananthanarayanan Chockalingam

Abstract—In this letter, we analyze the peak-to-average power
ratio (PAPR) of orthogonal time frequency space modulation
(OTFS) waveform. Towards this, we consider modulation symbols
on an N × M delay-Doppler grid, where N and M are the
number of Doppler and delay bins, respectively. We derive an
upper bound on the PAPR of the OTFS signal and show that
the maximum PAPR grows linearly with N (and not with M ,
the number of subcarriers, as observed in conventional multicar-
rier schemes such as OFDM). We analytically characterize the
complementary cumulative distribution function (CCDF) of the
PAPR of OTFS with rectangular pulse for large values of N . We
present the simulated CCDF of the PAPR of OTFS for different
pulse shapes and compare it with those of OFDM and generalized
frequency division multiplexing (GFDM). It is shown that OTFS
can have better PAPR compared to OFDM and GFDM.

keywords: OTFS modulation, delay-Doppler domain, peak-

to-average power, OFDM, GFDM.

I. INTRODUCTION

Orthogonal time frequency space (OTFS) modulation is

a recently proposed two-dimensional (2-D) modulation tech-

nique which uses the delay-Doppler domain for multiplexing

information symbols. OTFS uses pre- and post-processing

operations on conventional multicarrier modulation schemes,

resulting in improved bit error performance compared to

conventional multicarrier techniques. Also, a rapidly time-

varying multipath channel will exhibit slow variations in the

delay-Doppler domain. That is, delay-Doppler representation

of a multipath channel makes it time invariant for a longer

duration compared to that in time-frequency representation.

This can simplify the equalizer design and allow the channel

to be estimated less frequently in OTFS, reducing the channel

estimation overhead in a rapidly time-varying channel.

OTFS modulation was first introduced in [1], where it was

shown to exhibit significantly superior error performances

compared to OFDM systems for vehicle speeds as high as

500 km/h. Subsequently, several works on various aspects of

OTFS modulation have emerged [2]-[8]. OTFS being a new

modulation scheme, it is of interest to understand its PAPR

characteristics. A formal PAPR characterization of OTFS has

not been reported so far. In this letter, for the first time in the

literature, we present an analysis of the PAPR performance

of OTFS. An OTFS waveform in which MN information

symbols are multiplexed across M delay bins and N Doppler
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Fig. 1: OTFS modulation scheme.

bins is considered. For this waveform, we derive an analytical

upper bound on the PAPR. This bound is found to increase

linearly with the number of Doppler bins N and not with

the number of delay bins M (or equivalently, the number

of subcarriers in time-frequency domain). This is unlike in

conventional multicarrier waveforms where the PAPR grows

linearly with M . A consequence of this is that OTFS with

N < M (which typically is the case) can have a lower PAPR

compared to a multicarrier system with M subcarriers. We

also analytically characterize the complementary cumulative

distribution function (CCDF) of the PAPR of OTFS for rect-

angular pulse shape. For other pulse shapes, simulation results

of the CCDF are obtained. We compare the CCDF of the PAPR

of OTFS with those of the OFDM and generalized frequency

division multiplexing (GFDM) waveforms. Our results show

that OTFS has better PAPR characteristics when N < M .

II. SYSTEM MODEL

Figure 1 shows the block diagram of OTFS modulation

architected over a general multicarrier modulation system.

At the OTFS transmitter, the information symbols (e.g.,

QAM/PSK symbols) are treated as points in two dimensional

delay-Doppler grid and are mapped to the time-frequency

(TF) plane through the 2D inverse symplectic finite Fourier

transform (ISFFT). The TF signal so obtained is then passed

through a multicarrier modulation system. The TF signal is

transformed to a time domain signal for transmission using

Heisenberg transform. The output of the Heisenberg transform

is transmitted over the linear time variant channel. At the

receiver, the received time domain signal is transformed to

TF domain using Wigner transform (inverse of Heisenberg

transform) which are mapped back to delay-Doppler domain

symbols using symplectic finite Fourier transform (SFFT).

At the transmitter, the time domain signal obtained as the

output of Heisenberg transform has to be amplified before

it is transmitted through the wireless channel. Hence, the

PAPR of this time domain signal is of interest and has to

be characterized. In the following subsection, we derive the

expression for the discrete-time samples of the OTFS signal

transmitted through the channel.

A. OTFS transmit signal

The transmitted signal in OTFS modulation in a given

packet burst has a duration of NT and occupies a bandwidth

B = M
T = M∆f . The information symbols denoted by x[k, l],

k = 0, 1, · · · , N − 1, l = 0, 1, · · · ,M − 1 and x[k, l] ∈ A,

where A is the modulation alphabet (e.g., QAM / PSK), are
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treated as points in the 2D delay-Doppler grid. The transmitter

maps these symbols in the delay-Doppler domain to the time-

frequency domain using the inverse symplectic finite Fourier

transform (ISFFT), given by

X[n,m] =

N−1
∑

k=0

M−1
∑

l=0

x[k, l]e−j2π(ml
M

−
nk
N

). (1)

The time-frequency signal obtained as the output of ISFFT

operation is then converted to time domain for transmission

using the Heisenberg transform, given by

s(t) =
N−1
∑

n=0

M−1
∑

m=0

X[n,m]gtx(t− nT )ej2πm∆f(t−nT ), (2)

where gtx(t) is the transmit periodic prototype pulse shape

of duration NT as in [8]. The discrete time representation

of (2) can be obtained by sampling (2) with a sampling rate

Fs =
1
Ts

= B (Nyquist sampling), given by

s(uTs) =

N−1
∑

n=0

M−1
∑

m=0

X[n,m]gtx(uTs − nT )ej2πm∆f(uTs−nT )
, (3)

where u = 0, 1, · · · ,MN − 1. We consider Nyquist sampling

(oversampling ratio = 1) in the analysis. It is convenient to

express the samples s(u), u = 0, 1, · · · ,MN−1 as an N×M
matrix with entries denoted by s(q, r) such that u = r +
qM , where r = 0, 1, · · · ,M − 1 and q = 0, 1, · · · , N − 1.

Substituting u = r + qM and (1) in (3), we get

s(r + qM) =

N−1
∑

n=0

M−1
∑

m=0

N−1
∑

k=0

M−1
∑

l=0

x[k, l]e−j2π(ml
M

−
nk
N

)

. gtx([r + qM − nM ]MN )ej
2π
M

m(r+qM). (4)

Here, mod-MN operation denoted by [.]MN confines the

frame transmission within the duration NT [8]. Further, (4)

can be simplified as

s(r + qM) =

N−1
∑

k=0

M−1
∑

l=0

x[k, l]

M−1
∑

m=0

e
j2πm

M
(−l+r)

.

N−1
∑

n=0

gtx([r + qM − nM ]MN )e
j2πnk

N . (5)

Now, defining F ,
M−1
∑

m=0
e

j2πm

M
(−l+r), we observe that

F =

{

0 if r 6= l

M if r = l.
(6)

Substituting (6) in (5), we get

s(r + qM) = M

N−1
∑

n=0

N−1
∑

k=0

x[k, r]e
j2πnk

N gtx([r + qM − nM ]MN ).

(7)

Observe that
N−1
∑

k=0

x[k, r]e
j2πnk

N is the nth (n = 0, 1, · · · , N−1)

N -point IDFT of x[k, r], k = 0, 1, · · · , N − 1, for a given r.

Denoting x̃r[n] =
N−1
∑

k=0

x[k, r]e
j2πnk

N , (7) can be written as

s(r + qM) = M

N−1
∑

n=0

x̃r[n]gtx([r + qM − nM ]MN ). (8)

III. PAPR IN OTFS MODULATION

In this section, we derive an upper bound on the PAPR of

OTFS transmit waveform and characterize the CCDF of the

PAPR with rectangular pulse shape for large values of N .

A. Upper bound on PAPR

Consider the samples of transmitted OTFS signal in (8).

The PAPR of the discrete-time samples of one frame of OTFS

transmit signal is defined as

PAPR =
max
r,q

{|s(r + qM)|2}

Pavg

, (9)

where Pavg = 1
MN

M−1
∑

r=0

N−1
∑

q=0
E{|s(r+ qM)|2}. From (8), the

numerator in (9) can be written as

max
r,q

|s(r + qM)|2 = M2 max
r,q

∣

∣

∣

∣

∣

N−1
∑

n=0

x̃r[n]gtx([r + qM − nM ]MN )

∣

∣

∣

∣

∣

2

.

(10)

Using Cauchy-Schwarz inequality, (10) can be bounded as

max
r,q

|s(r + qM)|2 ≤ M2 max
r,q

N−1
∑

n=0

|x̃r[n]|
2

.max
r,q

N−1
∑

n=0

|gtx([r + qM − nM ]MN )|2.

(11)

Recall that x̃r[n] =
N−1
∑

k=0

x[k, r]e
j2πnk

N , for a given r. Using

Parseval’s theorem, we can write

max
r

N−1
∑

n=0

|x̃r[n]|
2 ≤ N2 max

k,l
|x[k, l]|2. (12)

Therefore, substituting (12) in (11), we get

max
r,q

|s(r + qM)|2 ≤ M2N2 max
k,l

|x[k, l]|2

.max
r,q

N−1
∑

n=0

|gtx([r + qM − nM ]MN )|2.

(13)

Defining B1 , max
r,q

N−1
∑

n=0
|gtx([r+qM−nM ]MN )|2, (13) can

be written as

max
r,q

|s(r + qM)|2 ≤ M2N2 max
k,l

|x[k, l]|2B1. (14)

Now, the denominator in (9) can be written as

Pavg =
M2

MN

M−1
∑

r=0

N−1
∑

q=0

E
{

|

N−1
∑

n=0

x̃r[n]gtx([r+ qM − nM ]MN )|2
}

.

(15)

Note that for a given value of r, x̃r[n]s are IDFT values of
x[k, r], k = 0, 1, · · · , N − 1. Since x[k, l]s are information
symbols from a modulation alphabet A, they can be treated
i.i.d. with zero mean and variance σ2

a = E{|x[k, l]|2}. Also,
due to the Nyquist sampling of the transmit signal, the
samples x̃r[n]s are mutually uncorrelated and hence (15) can
be simplified as

Pavg =
M2

MN

M−1
∑

r=0

N−1
∑

q=0

N−1
∑

n=0

E{|x̃r[n]|
2}|gtx([r + qM − nM ]MN )|2.

(16)

Observe that E{|x̃r[n]|
2} = Nσ2

a, ∀ r, n. With this, (16) can

be further simplified as

Pavg =
M2Nσ2

a

MN

N−1
∑

n=0

M−1
∑

r=0

N−1
∑

q=0

|gtx([r + qM − nM ]MN )|2.

(17)
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Defining B2 , 1
MN

N−1
∑

n=0

M−1
∑

r=0

N−1
∑

q=0
|gtx([r+qM−nM ]MN )|2,

the PAPR of OTFS transmit signal can be upper bounded as

PAPR ≤

M2N2 max
k,l

|x[k, l]|2B1

M2Nσ2
aB2

=

N max
k,l

|x[k, l]|2B1

σ2
aB2

.

(18)

Note that (18) is a bound on the PAPR of transmit signal in

OTFS with any pulse shape gtx(t). Now, consider OTFS with

rectangular pulse shape. In this case B1/B2 = 1, and hence

the maximum PAPR will meet the bound in (18), i.e.,

PAPRmax =
N max

c∈A

|c|2

σ2
a

. (19)

Note that the upper bound on the PAPR of OTFS trans-

mit signal grows linearly with N and not with M . This

is an interesting feature of OTFS modulation compared to

other multicarrier modulations where the PAPR depends on

the number of subcarriers (M ) and grows linearly with the

number of subcarriers used. In practice, the number of delay

bins/subcarriers (M ) is chosen such that ∆f = B/M satisfies

νmax < ∆f < 1/τmax, where τmax and νmax denote the max-

imum delay and Doppler spread of the channel, respectively.

The value of N decides the Doppler resolution and it is

generally chosen such that the maximum latency constraint of

the application is satisfied (larger N results in larger decoding

delay). Hence, in practice N is less than M .

B. CCDF of PAPR

While the maximum PAPR analysis presented above is of

interest, it is also important to characterize the CCDF of PAPR.

For the ease of analysis, we consider OTFS modulation with

rectangular pulse. From (8), it can be seen that the time domain

samples of the OTFS transmit signal with rectangular pulse are

nothing but the N -point IDFT values of the symbols in the

delay-Doppler domain. Hence, if N is large, then by central

limit theorem, the transmitted samples can be approximated

to have complex Gaussian distribution with zero mean [9].

Therefore, the instantaneous envelope |s[u]| is Rayleigh dis-

tributed and hence the instantaneous-to-average power ratio

(IAPR = |s[u]|2/E{|s|2}) of each time domain sample follows

exponential distribution. Therefore, the probability that the

IAPR does not exceed a threshold γ0 is given by

P (IAPR ≤ γ0) ≈ (1− e−γ0). (20)

Assuming the transmitted samples to be mutually uncorrelated,

which is true for Nyquist sampling (oversampling ratio=1), the

probability that the PAPR of the transmit OTFS signal in a

frame does not exceed γ0 is given by

P (PAPR ≤ γ0) ≈
NM−1
∏

i=0

(

1− e−γ0

)

=
(

1− e−γ0

)MN
. (21)

Note that the assumption that the transmitted samples are

uncorrelated does not hold when the transmit signal is over-

sampled [10]. Now, the CCDF of PAPR is given by

P (PAPR > γ0) ≈ 1−
(

1− e−γ0

)MN
. (22)

Note that the PAPR in OTFS is bounded by PAPRmax derived

in Sec. III-A, i.e., P (PAPR > γ0) = 0 for γ0 > PAPRmax.

However, the CCDF in (22) does not capture this. Hence, (22)

is an approximation to the actual CCDF. The actual CCDF of

PAPR converges to the CCDF in (22) as N → ∞.

IV. RESULTS AND DISCUSSIONS

Figure 2a shows the simulated CCDF of IAPR of the

transmitted OTFS signal with rectangular pulse and Nyquist

sampling (oversampling ratio=1) using 4-QAM for M =
32, 256 and N = 32, 128. We also plot the analytical CCDF of

IAPR using (20). From Fig. 2a, we observe that the simulated

CCDF gets closer to the analytical CCDF for higher values

of N , indicating that the transmitted samples attain Gaussian

distribution as N grows. Note that the CCDF of IAPR does

not depend on M . Next, Fig. 2b shows the CCDF of PAPR

for OTFS modulation with rectangular pulse for systems with

M = 256 and N = 4, 8, 32, 128, and 256. All the systems

use 4-QAM modulation and Nyquist sampling. The simulated

CCDF of PAPR along with the analytical CCDF in (22) for

all the systems are plotted. We see that the simulated CCDF

matches very closely with the analytical CCDF in (22) for

higher values of N , indicating that the analytical CCDF is

more accurate in the large N regime. We also observe that

the systems with smaller value of N have lower PAPR and

the PAPR increases with increase in the value of N . Hence, it

is evident that the maximum PAPR in OTFS modulation grows

with N , as inferred from the upper bound in Sec. III-A.

Effect of increasing M and N on CCDF of PAPR: Figure

3 shows the CCDF of PAPR of OTFS with M = 32, 64, and

128 for N = 4 and N = 8. All the systems use 4-QAM and

Nyquist sampling. From Sec. III-A, PAPRmax depends only

on N and grows linearly with N . The maximum PAPR with

N = 4 and 8 is 10 log 4 = 6.02 dB and 10 log 8 = 9.03
dB, respectively. From Fig. 3, we observe that the CCDF is

zero for γ0 > 6.02 dB for N = 4 and γ0 > 9.03 dB for

N = 8. Also, with increase in the value of M , the probability

to have large peaks increases, and hence the CCDF of PAPR

increases, as indicated by (22). Therefore, although increasing

M increases the CCDF, the maximum PAPR depends only on

N and P (PAPR > γ0) = 0 for γ0 > PAPRmax.

Effect of pulse shaping on PAPR: OTFS uses bi-orthogonal

pulses which are well localized in time and frequency at

the transmitter and the receiver to suppress ISI and ICI in

the time-frequency plane. Hence it is important to study the

PAPR of OTFS with different pulse shapes. Figure 4 shows

the comparison of the CCDF of PAPR with M = 256, N = 8
with i) rectangular pulse defined as rect(t/T ), ii) raised cosine

(RC) pulse defined as
sinc(t/T ) cos(πat/T )

(1−4a2(t/T )2) with a = 0.5, and

iii) Gaussian pulse defined as e−aπ(t/T )2 with a = 1, for

−NT/2 ≤ t < NT/2. All the pulses are sampled at a

rate 1/Ts to obtain MN discrete time samples which are

normalized to have unit energy. All the systems use 16-QAM

and are four times oversampled using an RC filter of length 6T
with a roll-off factor of 0.5. From Fig. 4, we observe that the

PAPR of OTFS with pulse shaping can increase as indicated

by the upper bound in (18). We see that OTFS with rectangular

pulse has a better PAPR compared to that of RC pulse which

in turn has a better PAPR compared to Gaussian pulse.
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Fig. 2: Analytical and simulated CCDF of IAPR and PAPR.
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Fig. 3: Effect of M and N on the CCDF of PAPR in OTFS.

Comparison with GFDM and OFDM: GFDM is a block

based time-frequency multicarrier transmission scheme that

offers flexible pulse shaping of individual subcarriers [11]. The

transmit waveform of GFDM follows (3) in which X[n,m]s
are the information symbols from the modulation alphabet A.

OFDM can be viewed as a special case of GFDM where

the pulse shape is rectangular and N = 1. In Fig. 5, we

compare the CCDF of the PAPR of OTFS with those of

GFDM and OFDM systems with M = 256, N = 4 and

M = 256, N = 32. All the systems use 16-QAM and an

oversampling ratio of four is used. For all the considered

systems, oversampling is done using an RC filter of length

6T and roll-off factor 0.5. Note that, for comparison of M -

subcarrier OFDM with OTFS and GFDM, which have MN
symbols in a frame, we consider the CCDF of concatenation

of N OFDM symbols. From Fig. 5, we observe that, for

the same number of subcarriers, OFDM has a slightly better

PAPR compared to GFDM, as was also shown in [12],[13].

We also observe that OTFS with rectangular pulse can have

better PAPR compared to OFDM and GFDM (using RC pulse

shaping with roll-off factor 0.5) systems. For example, OTFS

with N = 4 has a PAPR which is approximately 2.2 dB lower

than that of OFDM and approximately 2.4 dB lower than that

of GFDM at a probability of 10−3. However, increasing N
to 32 shifts the CCDF of OTFS closer to that of GFDM and

OFDM and the gain in PAPR compared to that of OFDM

reduces to 0.3 dB at a probability of 10−3. Therefore, as seen

in Sec. III-A, the maximum PAPR in OTFS increases with N ,

and hence OTFS can have better PAPR compared to OFDM

and GFDM when N < M . This demonstrates the good PAPR

characteristics of the OTFS waveform.
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