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Abstract—When the delay period of the Zak-OTFS carrier is
greater than the delay spread of the channel, and the Doppler
period of the carrier is greater than the Doppler spread of the
channel, the effective channel filter taps can simply be read off
from the response to a single pilot carrier waveform. The input-
output (I/O) relation can then be reconstructed for a sampled
system that operates under finite duration and bandwidth con-
straints. We introduce a framework for pilot design in the delay-
Doppler (DD) domain which makes it possible to support users
with very different delay-Doppler characteristics when it is not
possible to choose a single delay and Doppler period to support all
users. The method is to interleave single pilots in the DD domain,
and to choose the pilot spacing so that the I/O relation can be
reconstructed by solving a small linear system of equations.

Index Terms—Zak-OTFS, predictable, pilot, interleaved, DD
domain.

I. INTRODUCTION

The Zak-OTFS carrier waveform is a pulse in the delay-
Doppler(DD) domain, that is a quasi-periodic localized func-
tion defined by a delay period τp and a Doppler period νp
where τp νp = 1. The time-domain (TD) realization of the
carrier is a pulsone, that is a train of pulses modulated by
a tone where adjacent pulses are spaced τp seconds apart.
The frequency-domain (FD) realization of the carrier is a train
of pulses in the frequency domain (FD) modulated by a FD
sinusoid where adjacent pulses are spaced νp Hz apart. We
have shown [1] that the Zak-OTFS input-output (I/O) relation
is predictable1 and non-fading2 when the delay period of the
pulsone is greater than the delay spread of the channel and
the Doppler period of the pulsone is greater than the Doppler
spread of the channel [2]. We refer to this condition as the
crystallization condition. When the crystallization condition
holds, the taps of the effective DD domain channel filter
can simply be read off from the DD domain response to a
single pilot carrier waveform, and the I/O relation can be
reconstructed for a sampled system that operates under finite
duration and bandwidth constraints. Section II describes the
Zak-OTFS system model.

4G and 5G wireless communication networks use OFDM
rather than Zak-OTFS. However OFDM exhibits poor reli-
ability for high delay and Doppler spreads characteristic of
next generation communication scenarios [3], [4]–[6]. The
first instantiation of OTFS was designed to be compatible

1Predictability implies that the channel response to an input DD pulse at any
arbitrary discrete DD location (kp, lp) can be predicted from the knowledge
of the channel response to a DD pulse at some other location.

2Consider the DD domain energy distribution of the channel response to
an input DD pulse. The I/O relation is said to be non-fading if the energy
distribution around the pulse is invariant of its location.

with 4G/5G modems and is called MC-OTFS (Multicarrier
OTFS). MC-OTFS is superior to OFDM for high delay and
Doppler spreads [7], [8], but is inferior to Zak-OTFS [1].
Note that in MC-OTFS, modulation, detection and estimation
are all performed in the DD domain [9]–[12]. The OTFS
Special Interest Group (SIG) website [13] is a rich source
of information about MC-OTFS.

In MC-OTFS, DD domain information symbols are trans-
formed to time-frequency (TF) symbols which are then used to
generate the transmitted TD signal. This two-step modulation
can be avoided by using the Zak-transform [14], [15] to
obtain the transmitted TD signal directly from the DD domain
information symbols (see [16], [17] for details). This method
of modulation is called Zak-OTFS (see [1], [18] for details)
and it achieves better throughput/reliability than MC-OTFS,
particularly in high delay/Doppler spread scenarios. There are
also implementations based on the discrete Zak transform
[19] and on TF windowing [20]. Filtering in the discrete DD
domain generate noise-like pilot waveforms (spread pilots) that
enable integrated sensing and communication (ISAC) in the
same Zak-OTFS subframe [21].

We emphasize that we are learning the I/O relation without
estimating the physical channel parameters (gain, delay and
Doppler shift of each physical path). By focusing not on
acquiring the channel, but on acquiring the interaction of
channel and modulation, Zak-OTFS circumvents the legacy
channel model dependent approach to wireless communica-
tions and operates model-free. We present numerical sim-
ulations in Section VI for the Veh-A channel model [24]
which consists of six channel paths and is representative
of real propagation environments. In these simulations, we
deliberately choose the channel bandwidth so that not all paths
are separable/resolvable, and it is not possible to estimate the
physical channel.

Why Zak-OTFS rather than OFDM? Perhaps the most im-
portant reason is that 6G propagation environments are chang-
ing the balance between time-frequency methods focused on
OFDM signal processing and delay-Doppler (DD) methods
focused on Zak-OTFS signal processing. OFDM signals live
on a coarse information grid (i.e., integer multiples of the sub-
carrier spacing), and cyclic prefix/carrier spacing are designed
to prevent inter carrier interference (ICI). When there is no
ICI, equalization in OFDM is relatively simple once the I/O
relation is acquired. However, acquisition of the Input/Output
(I/O) relation in OFDM is non-trivial and model-dependent,
and the interaction of the OFDM carrier with the channel
varies in both TD and FD. By contrast Zak-OTFS signals live
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Fig. 1. Orthogonal/non-overlapping allocation of time-frequency (TF) re-
source to different users having distinct delay-Doppler profile.

on a fine information grid.3 Since information carrying DD
pulses are located on a finer grid, they interfere with each other
resulting in inter-carrier interference due to which equalization
is more involved. However, when the crystallization condition
holds the I/O relation can be read off from the response to a
single pilot signal. In this paper we consider acquiring the I/O
relation.

In a time and bandwidth limited communication sys-
tem, users can be allocated different non-overlapping time-
frequency (TF) resources by simply shifting each user’s signal
in time and frequency (orthogonal multiple-access). In this
paper, we consider Zak-OTFS based orthogonal TF access
(there is no multi-user interference). A typical orthogonal
allocation for four user terminals (UTs) is illustrated in Fig. 1.
One important issue with OFDM, is that its numerology (sub-
carrier spacing) is not flexible. In OFDM, a single user subject
to inter-carrier interference causes carrier spacing to increase
for all users, since OFDM does not allow for users to have
different sub-carrier spacing. This increases the overall cyclic-
prefix (CP) overhead substantially since a large sub-carrier
spacing implies a small OFDM symbol duration whereas the
CP duration is determined by the delay-spread of the channel.

On the other hand, Zak-OTFS numerology is more flexi-
ble. Each user can choose a different delay/Doppler period
parameter (τp, νp) depending on its own channel, i.e., a user
which experiences a higher Doppler spread would choose a
higher νp so that the crystallization condition holds (in Fig. 1,
UT3 and UT4 experience higher Doppler spreads than UT1
and UT2). However, the implementation of such a system
with different delay/Doppler period parameters for different
users is challenging. Therefore, in this paper we consider
supporting users with different delay-Doppler characteristics
without changing the delay and Doppler periods of their Zak-
OTFS modulation. We propose interleaved DD domain pilots,
so that with Q interleaved pilots it is possible to accurately
acquire the I/O relation as long as the Doppler spread 2νmax is

3In Zak-OTFS, information symbols are carried by DD pulses having
locations separated by integer multiples of the inverse bandwidth along the
delay domain and separated by integer multiples of the inverse subframe
duration along the Doppler domain.

less than Qνp. Although the associated pilot/guard overhead
is higher for larger number of interleaved pilots, each user
separately configures its own number of interleaved pilots
depending on only its own channel Doppler spread.

Section III describes how to place two interleaved pilots
on the original Zak-OTFS grid so that the I/O relation for
the second user can be obtained by solving a 2 × 2 linear
system. The method is simple and effective, but it is not the
maximum likelihood (ML) estimate. In Section V, we analyze
the ML estimator which is given by the samples of the cross-
ambiguity between the received DD domain interleaved pilot
and the transmitted DD domain interleaved pilot. The cross-
ambiguity function is supported on a rectangular lattice in
the DD domain, and the effective channel taps can be read
off by restricting to any fundamental domain of this lattice.
The delay and Doppler spacing of this lattice determine a
second effective crystallization condition and interleaved pilots
make it possible to support users that satisfy either of the
two crystallization conditions on a system with a single delay
period and single Doppler period.

In Section VI we simulate the bit error rate (BER) perfor-
mance of a Zak-OTFS subframe with interleaved pilots. For
a fixed data signal power to noise power ratio (SNR) and
fixed pilot power to data power ratio (PDR), it is observed
that with every doubling in the number of interleaved pilots
the maximum Doppler spread for which reliable/predictable
operation is achieved, is also roughly doubled, i.e., extension in
the region of predictable operation. Also, the peak to average
power ratio (PAPR) of the transmit TD signal reduces by 3
dB for every doubling in the number of interleaved pilots.

II. SYSTEM MODEL

Zak-OTFS transceiver processing is illustrated in Fig. 2 (see
Section II of [1] also). We transmit MN symbols x[k0, l0] in
each subframe, k0 = 0, 1, · · · ,M − 1, l0 = 0, 1, · · · , N − 1.
The discrete DD domain pulse x

(k0,l0)
dd [k, l] carries the infor-

mation symbol x[k0, l0], i.e.

x
(k0,l0)
dd [k, l] =

∑
n,m∈Z

(
ej2π

nl0
N x[k0, l0] δ[k − k0 − nM ]

δ[l − l0 −mN ]
)
, (1)

for all k, l ∈ Z. From (1) it is clear that this pulse carrying
the (k0, l0)-th information symbol consists of infinitely many
Dirac-delta impulses at discrete DD locations (k0 + nM, l0 +

mN), n,m ∈ Z. Also, irrespective of (k0, l0), x
(k0,l0)
dd [k, l] is

a quasi-periodic function with period M along the delay axis
and period N along the Doppler axis, i.e., for any n,m ∈ Z,
x
(k0,l0)
dd [k, l] satisfies

x
(k0,l0)
dd [k + nM, l +mN ] = ej2π

nl0
N x

(k0,l0)
dd [k, l]. (2)

The discrete DD domain pulses corresponding to all MN
information symbols are superimposed resulting in the discrete
quasi-periodic DD domain signal

xdd[k, l] =

M−1∑
k0=0

N−1∑
l0=0

x
(k0,l0)
dd [k, l]. (3)
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Fig. 2. Zak-OTFS transceiver processing.

xdd[k, l] is supported on the information lattice Λdd =

{
(

kτp
M ,

lνp

N

)
| k, l ∈ Z}, i.e., we lift the discrete signal xdd[k, l]

to the continuous DD domain signal

xdd(τ, ν) =
∑
k,l∈Z

xdd[k, l] δ

(
τ − kτp

M

)
δ

(
ν − lνp

N

)
.(4)

Note that, for any n,m ∈ Z

xdd(τ + nτp, ν +mνp) = ej2πnντp xdd(τ, ν), (5)

so that xdd(τ, ν) is periodic with period νp along the Doppler
axis and quasi-periodic with period τp along the delay axis.

We use a pulse shaping filter wtx(τ, ν) to limit the TD
Zak-OTFS subframe to time duration T = Nτp and bandwidth
B = Mνp. The DD domain transmit signal xwtx

dd (τ, ν) is given
by the twisted convolution4 of the transmit pulse shaping filter
wtx(τ, ν) with xdd(τ, ν).

xwtx

dd (τ, ν) = wtx(τ, ν) ∗σ xdd(τ, ν), (6)

where ∗σ denotes the twisted convolution operator [1], [18].
The TD realization of xwtx

dd (τ, ν) gives the transmitted TD
signal which is given by

std(t) = Z−1
t (xwtx

dd (τ, ν)) , (7)

where Z−1
t denotes the inverse Zak transform (see Eqn. (7)

in [18] for more details).5

The received TD signal is given by

rtd(t) =

∫∫
hphy(τ, ν) std(t− τ) ej2πν(t−τ) dτ dν + ntd(t),

(8)

where hphy(τ, ν) is the delay-Doppler spreading function of
the physical channel and ntd(t) is AWGN. At the receiver,
we pass from the TD to the DD domain by applying the Zak
transform Zt to the received TD signal rtd(t), and we obtain

ydd(τ, ν) = Zt (rtd(t)) . (9)

4For any two DD functions, a(τ, ν), b(τ, ν), a(τ, ν) ∗σ b(τ, ν) =∫∫
a(τ ′, ν′) b(τ − τ ′, ν − ν′) ej2πν′(τ−τ ′) dτ ′ dν′.

5Just as the Fourier transform relates the TD and FD realizations of a signal,
the Zak transform relates the TD and DD realizations of a signal. The inverse
Zak-transform of a quasi-periodic continuous DD domain function/signal
gives its TD realization and the Zak-transform of a TD signal gives its DD
realization. Note that TD realization only exists for quasi-periodic DD domain
functions. Since twisted convolution of a quasi-periodic DD function with any
arbitrary DD function is quasi-periodic, it follows that xwtx

dd (τ, ν) in (6) is
also quasi-periodic.

Substituting (8) into (9) it follows that [1], [18]

ydd(τ, ν) = hphy(τ, ν) ∗σ xwtx

dd (τ, ν) + ndd(τ, ν),(10)

where ndd(τ, ν) is the DD representation of the AWGN. Note
that, in the DD domain the channel acts on the input xwtx

dd (τ, ν)
through twisted convolution with hphy(τ, ν). This is similar
to how in linear time invariant (LTI) channels (i.e., delay-
only channels), the channel acts on a TD input through linear
convolution with the TD channel impulse response. Twisted
convolution is the generalization of linear convolution for
doubly-spread channels.

Next, we apply a matched filter wrx(τ, ν) which acts by
twisted convolution on ydd(τ, ν) to give

ywrx

dd (τ, ν) = wrx(τ, ν) ∗σ ydd(τ, ν) (11)

This filtered signal is then sampled on the information lattice
Λdd resulting in the quasi-periodic discrete DD domain signal
ydd[k, l]. This discrete DD output signal is related to the input
discrete DD signal xdd[k, l] through the input-output (I/O)
relation6 [1], [18]

ydd[k, l] = heff[k, l] ∗σ xdd[k, l] + ndd[k, l], (12)

where7 heff[k, l] is the effective DD domain channel filter and
ndd[k, l] are the DD domain noise samples. Note that heffk, l]
is simply

heff(τ, ν) = wrx(τ, ν) ∗σ hphy(τ, ν) ∗σ wtx(τ, ν) (13)

sampled on the information lattice Λdd, i.e.

heff[k, l]
∆
= heff

(
τ =

kτp
M

,ν =
lνp
N

)
. (14)

From the I/O relation in (12) it is clear that for detecting the
DD domain information symbols from ydd[k, l], it suffices to
have knowledge of heff[k, l] only. The receiver does not need
to acquire hphy(τ, ν). Instead it acquires heff[k, l] directly from
the channel response to pilots in the discrete DD domain. This

6The relation between discrete and continuous I/O relation for delay-only
channels and doubly-spread channels is similar and has been described in
detail in [18] (see Tables-I, II and III and the related discussion in [18]). In
delay-only channels, the discrete-time I/O relation forms the basis for practical
implementation and this is also the case for doubly-spread channels where
the discrete-DD domain I/O relation (see (12)) forms the basis for practical
implementation.

7For any two discrete DD functions a[k, l] and b[k, l], the discrete twisted
convolution between them i.e., a[k, l]∗σ b[k, l] =

∑
k′,l′∈Z

a[k′, l′] b[k−k′, l−

l′] ej2πl′ (k−k′)
MN .
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makes the Zak-OTFS I/O relation applicable to any model of
the underlying physical channel and is therefore model-free.
Next, we consider the acquisition of heff[k, l].

Consider transmitting a pilot signal xp,dd[k, l] together with
a data signal xd,dd[k, l] within a single Zak-OTFS subframe.
Each signal is quasi-periodic, hence is completely specified
by the values it takes within the fundamental region D =
{(k, l) | k = 0, 1, · · · ,M − 1, l = 0, 1, · · · , N − 1}. The pilot
signal xp,dd[k, l] is determined by a unit energy Dirac-delta
impulse at the pilot location (kp, lp) ∈ D and repeats along
the delay and Doppler axis by integer multiples of the delay
and Doppler period respectively. It is given by

xp,dd[k, l] =
∑

n,m∈Z
ej2πn

lp
N δ[k − kp − nM ] δ[l − lp −mN ].

(15)

The data signal xd,dd[k, l] is determined by the unit energy in-
formation symbols x[k0, l0] (E

[
|x[k0, l0]|2

]
= 1) at locations

(k0, l0) ∈ I, where I ⊂ D, and is given by

xd,dd[k, l] =
∑

n,m∈Z

∑
(k0,l0)∈I

(
x[k0, l0] e

j2π
l0
N δ[k − k0 − nM ]

δ[l − l0 −mN ]

)
. (16)

The transmit DD domain signal is

xdd[k, l] =

√
Ed

|I|
xd,dd[k, l] +

√
Epxp,dd[k, l]. (17)

The data signal has energy
M−1∑
k=0

N−1∑
l=0

∣∣∣√Ed

|I| xd,dd[k, l]
∣∣∣2 = Ed

and the pilot signal has energy Ep. The ratio Ep/Ed is the
ratio of pilot power to data power (PDR).

For simplicity, we first consider channel estimation in the
absence of interference from data, and we let S denote the
support of the effective channel heff[k, l]. From (12) and (15),
the received pilot is given by

heff[k, l] ∗σ
(√

Ep xp,dd[k, l]
)
=
√

Ep

∑
n,m∈Z

hn,m[k, l].(18)

The (n,m)-th term hn,m[k, l] is the channel response to the
Dirac-delta impulse of the quasi-periodic pilot signal xp,dd[k, l]
located at (kp + nM, lp +mN), and is given by

heff[k, l] ∗σ
(
ej2πn

lp
N δ[k − kp − nM ] δ[l − lp −mN ]

)
=
(
heff[k − kp − nM, l − lp −mN ] ej2π

nlp
N

ej2π
(l−lp−mN)(kp+nM)

MN

)
. (19)

The support Sn,m of hn,m[k, l] is S + (kp + nM, lp +mN).
The crystallization condition is Sn,m ∩ Sn′,m′ = ϕ for
(n,m) ̸= (n′,m′), and when it is satisfied, there is no

DD domain aliasing. We have emphasized in [1] that the
crystallization condition is satisfied when8

kmax
∆
=

⌈
Mτmax

τp

⌉
< M,

lmax
∆
=

⌈
2Nνmax

νp

⌉
< N. (20)

Here τmax > 0 and νmax > 0 are respectively the maximum
possible delay and Doppler shift induced by any physical
channel path. The first condition in (20) is that the channel
delay spread τmax is less than the delay period τp, and the
second condition is that the channel Doppler spread 2νmax is
less than the Doppler period νp. We refer the reader to [1],
Section II-D for a more extensive discussion of crystallization
conditions.

When the crystallization condition holds

h0,0[k, l] = heff[k − kp, l − lp] e
j2π

kp(l−lp)

MN (21)

for (k, l) ∈ (kp, lp) + S and therefore

heff[k, l] = h0,0[k + kp, l + lp] e
−j2π

kpl

MN (22)

for (k, l) ∈ S. For (k, l) ∈ S + (kp, lp), the received
pilot response (AWGN-free) is simply h0,0[k, l] since the
support sets of hn,m[k, l], n,m ∈ Z do not overlap when
the crystallization condition is satisfied. Hence, the taps of
the effective channel filter can simply be read off from the
received pilot response within S + (kp, lp). As a result the
Zak-OTFS I/O relation in (12) is predictable, i.e., the AWGN-
free channel response to any arbitrary input xdd[k, l] can be
accurately predicted to be heff[k, l] ∗σ xdd[k, l].

We now consider channel estimation in the presence of
interference from data. We transmit a pilot at location (kp, lp),
and we surround it with pilot and guard regions where no data
is transmitted. The pilot region P is given by

P = {(k, l) | kp − 1 ≤ k ≤ kp + kmax

l = 0, 1, · · · , N − 1}. (23)

The guard region G separates the pilot region from the data
region comprising locations (k0, l0) ∈ I. Fig. 3 shows pilot,
guard and data regions as strips in the Zak-OTFS subframe
that run parallel to the Doppler axis. We use the pulsones in
the pilot region (yellow strip) to acquire the taps of heff[k, l],
and therefore they do not carry information symbols. We do
not transmit data in the entirety of the yellow strip so that we
are able to acquire the I/O relation for a wide range of Doppler
spreads (support of heff[k, l] is shown as a pink ellipse).

The guard region on the left of the pilot region is bigger
compared to that on the right. This is because, the channel
path delays are positive and therefore the delay spread of the
effective DD domain channel filter heff[k, l] is asymmetric, i.e.,
more for positive delay tap values and less for negative delay
tap values. The guard region on the left is required to minimize
interference to the pilot region from information symbols in
the data region to the left and the guard region on the right

8For any real number x ∈ R, ⌈x⌉ is the smallest integer greater than or
equal to x.
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Fig. 3. Zak-OTFS DD frame with single pilot (depicted by a red dot) at
(kp, lp). The pink shaded ellipse depicts the support set of the channel
response to the pilot (i.e., S + (kp, lp)).

Fig. 4. Doppler domain aliasing. Assuming that the channel path Doppler
shift lies in [−νmax , νmax], the maximum Doppler spread is 2νmax. The
Doppler resolution is νp/N (size of each Doppler bin) and the spread of the
channel response is roughly 2νmaxN/νp bins along the Doppler axis. (a)
Doppler spread is less than N Doppler axis bins, and the ellipses representing
the channel response to constituent pilot impulses do not overlap. (b) Doppler
spread is greater than N bins, and the ellipses overlap, preventing accurate
estimation of the effective channel heff[k, l].

is required to minimize interference from the data region to
the right. Due to the asymmetric delay spread of heff[k, l], the
symbols in the data region to the left can spread farther to the
right when compared to the symbols in the data region to the
right which can spread only a few taps to the left.

For the single pilot in Fig. 3, the delay axis width of the
guard region to the left of the pilot region is kmax taps and
that of the guard region to the right of the pilot region is one
tap. The width of the pilot region is (kmax+2) taps. Since no
information symbols are transmitted in the guard and the pilot
regions, the fractional pilot overhead (i.e., ratio of the number
of pulsones which do not carry information to the total number
of pulsones) is (2kmax + 3)/M .

Fig. 4 illustrates the phenomenon of Doppler domain alias-
ing. In Fig. 2(b) the crystallization condition is not satisfied
since the channel Doppler spread 2νmax is greater than the
Doppler period νp. In this case Doppler domain aliasing

prevents accurate estimation of the effective channel heff[k, l].
One solution is to increase νp so that νp > 2νmax, but this
changes the Zak-OTFS delay and Doppler period parameters.
In this paper, we design interleaved pilots that resolve Doppler
domain aliasing, thus enabling accurate estimation of the effec-
tive channel heff[k, l] without changing the period parameters.

III. TWO INTERLEAVED PILOTS

For simplicity, we suppose 2νp > 2νmax ≥ νp. We transmit
two interleaved pilots at locations (kp1 , 0) and (kp2 , 0) in D,
and Fig. 5 illustrates how we surround each pilot with pilot and
guard regions. The purpose of data, guard and pilots regions
is the same as for the single pilot Zak-OTFS frame in Fig. 3.
Data is not transmitted in the pilot and guard regions. Just as
in Fig. 3, in Fig. 5 also the pilot region (yellow strip) is used
to acquire heff[k, l].

Fig. 6 illustrates the channel responses to the impulses
forming the two pilots. For i = 1, 2, the response h

(i)
0,0[k, l]

to the impulse at (kpi , 0) is shown in blue, and the response
h
(i)
0,1[k, l] to the impulse at (kpi

, N) is shown in red. Since
2νp > 2νmax ≥ νp, it is only the response of adjacent
impulses that overlap along the Doppler axis.

For simplicity, we consider channel estimation in the ab-
sence of noise, and in the absence of interference from data.
The pilot region P1 is given by

P1 = {(k, l) | kp1
− 1 ≤ k ≤ kp1

+ kmax,

l = 0, 1, · · · , N − 1}. (24)

It follows from (18) that the response y
(1)
dd [k, l] to the pilot at

(kp1
, 0), received in P1, is given by9

y
(1)
dd [k, l] =

√
Ep

2
h
(1)
0,0[k, l] +

√
Ep

2
h
(1)
0,1[k, l], (25)

for (k, l) ∈ P1.10 It now follows from (19) that for −1 ≤ k ≤
kmax and l = 0, 1, · · · , N − 1

y
(1)
dd [k + kp1 , l] =

√
Ep

2
heff[k, l] e

j2π
lkp1
MN

+

√
Ep

2
heff[k, l −N ] ej2π

(l−N)kp1
MN .(26)

Note that y
(1)
dd [k + kp1

, l] is a linear combination of the
unknown taps heff[k, l] and heff[k, l−N ]. Let y(2)dd [k, l] denote
the response to the pilot at (kp2

, 0) received in the pilot region
P2. Therefore

y
(2)
dd [k + kp2

, l] =

√
Ep

2
heff[k, l] e

j2π
lkp2
MN

+

√
Ep

2
heff[k, l −N ] ej2π

(l−N)kp2
MN ,(27)

for −1 ≤ k ≤ kmax, l = 0, 1, · · · , N − 1. When kp1 ̸= kp2

(mod M ), equations (26) and (27) are linearly independent,

9To highlight the main idea, we have made the simplifying assumption
that pilot spacing along the delay axis is such that the responses to the two
pilots do not overlap. We make no such assumption in Section VI, and in the
simulations reported there, the pilot responses alias along the delay domain.

10Since there are two interleaved pilots, the energy of each pilot is now
Ep/2.
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ĥeff[k, l]

ĥeff[k, l −N ]

]
=

√
2

Ep

([
ej2π

lkp1
MN ej2π

(l−N)kp1
MN

ej2π
lkp2
MN ej2π

(l−N)kp2
MN

])−1 [
y
(1)
dd [k + kp1 , l]

y
(2)
dd [k + kp2

, l]

]
(28)

and it is possible to solve for heff[k, l] and heff[k, l − N ].11

The least squares (LS) estimate of (heff[k, l], heff[k, l − N ])T

is given by (28) (see top of this page). When the channel
Doppler spread satisfies 2νp > 2νmax ≥ νp, the discrete
Doppler domain spread is less than 2N , and therefore the
effective channel taps heff[k, l] can be acquired accurately for
all (k, l) ∈ S.12 The I/O relation is predictable because it is
possible to acquire the effective channel.

For the Zak-OTFS frame with two interleaved pilots in
Fig. 5, the fractional pilot overhead (i.e., ratio of the number
of pulsones which do not carry information to the total number
of pulsones) is double of that for the single pilot Zak-OTFS
frame in Fig. 3, i.e., 2(2kmax + 3)/M .

If the data and guard regions were not present in
Fig. 5, the minimum possible delay domain pilot spacing
minn1,n2∈Z |kp2

+ n2M − kp1
− n1M | should be chosen as

kmax + 2 in order to avoid delay domain aliasing between
the response to pilots which are adjacent along the delay
axis. Since pilots are quasi-periodic with delay period M ,
we have M ≥ 2(kmax + 2) and therefore the delay spread
τmax satisfies τmax ≤ τp/2 − 2τp/M . We define the effective
delay period τp,eff = τp/2 and the effective Doppler period
νp,eff = 2νp, noting that the product τp,eff νp,eff = 1 is
unchanged. The I/O relation is predictable when the following
effective crystallization condition is satisfied

kmax + 2 ≤ M

2
and

⌈
2νmaxN

νp

⌉
< 2N. (29)

Interleaved pilots make it possible to change the aspect
ratio of the crystallization condition without changing the
fundamental periods, τp and νp. Here, we have illustrated the
method of interleaved pilots for the case 2νp > νmax ≥ νp.
By symmetry, a similar method applies when we have channel
scenarios with large delay spread, larger than τp. For example,
with 2τp > τmax ≥ τp, we apply the same method with the
only difference being that the pilots are interleaved along the
Doppler axis (instead of the delay axis) and are also multiplied
with distinct known unit modulus complex scalars. This is
required, since the pilot is periodic along the Doppler axis
and therefore without any multiplication with complex scalars
the corresponding equations (26) and (27) will not be linearly
independent. Note that there are important wireless markets
which have large cells.

11In general, the received samples y
(1)

dd [k + kp1 , l] and y
(2)

dd [k + kp2 , l]
also contain noise and interference from data symbols. Therefore, for the
simulations reported in Section VI, we consider the least squares (LS) estimate
of the channel tap coefficients heff[k, l] and heff[k, l − N ]. This also holds
for the general case of Q interleaved pilots discussed in Section IV, where
we need to estimate Q channel tap coefficients from Q linear equations with
additive noise and data interference.

12heff[k, l], l = 0, 1, · · · , N − 1 gives the taps for Doppler indices
{0, 1, · · · , N − 1} and heff[k, l − N ] gives the taps for Doppler indices
{−1,−2, · · · ,−N}.

Fig. 5. Zak-OTFS subframe with two interleaved pilots (indicated by red
dots) at (kp1 , 0) and (kp2 , 0).

Fig. 6. Doppler domain aliasing with two superimposed pilots.

IV. MULTIPLE INTERLEAVED PILOTS

The generalization to Q interleaved pilots is required when
(Q − 1)νp ≤ 2νmax < Qνp. We transmit Q interleaved
pilots at locations (kpi

, 0) ∈ D, i = 1, 2 · · · , Q, separated
by pilots regions Pi and guard regions. The response y

(i)
dd [k, l]

to the pilot (kpi
, 0) received in Pi is a linear combination

of Q distinct taps of heff[k, l]. The responses y
(i)
dd [k, l], i =

1, 2, · · · , Q, yield Q linear equations in the Q unknown taps,
and since the pilot locations are distinct, these equations are
linearly independent. We estimate the taps heff[k, l], where
k = −1, · · · , kmax with l = −Q

2 N, · · · , 0, · · · , (Q2 − 1)N

if Q is even, and l = − (Q−1)
2 N, · · · , 0, · · · , (Q−1)

2 N if Q
is odd. With Q interleaved pilots and guard regions on both
sides (just as in Fig. 3 and Fig. 5 for single and two pilots), the
fractional pilot overhead is Q times that for the single pilot,
i.e., Q(2kmax + 3)/M .

The delay locations of consecutive pilots along the delay
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Axp,xp [k, l] =
Ep

2

∑
n,m∈Z

δ[k − (kp1 − kp2 − nM)] δ[l −mN ] e−j2π
mkp2

M

+
Ep

2

∑
n,m∈Z

δ[k − (kp2
− kp1

− nM)] δ[l −mN ] e−j2π
mkp1

M

+
Ep

2

∑
n,m∈Z

δ[k − nM ] δ[l −mN ]
(
e−j2π

mkp1
M + e−j2π

mkp2
M

)
. (36)

axis must be separated by kmax + 2 bins, in order to prevent
interference between the responses of adjacent pilots. Hence,
the channel filter heff[k, l] can be accurately acquired and
the I/O relation is predictable when the following effective
crystallization condition is satisfied.

kmax + 2 ≤ M

Q
and

⌈
2νmaxN

νp

⌉
< QN, (30)

which implies

τmax <
τp
Q

, 2νmax < Qνp. (31)

Therefore, the effective delay period is τp/Q and the effective
Doppler period is Qνp.

V. AUTO-AMBIGUITY OF INTERLEAVED PILOTS

For simplicity, we again consider channel estimation in the
absence of noise, and in the absence of interference from data.
We have shown that it is possible to read off the taps of the
effective DD domain channel filter heff[k, l] from the response
to an interleaved pilot. While simple and effective, this is not
the maximum likelihood (ML) estimate. We have shown (see
[21] for more details, also [25]) that the ML estimator is given
by the samples of the cross-ambiguity Ay,xp [k, l] between
the received DD domain interleaved pilot ydd[k, l] and the
transmitted DD domain interleaved pilot xp,dd[k, l]. For (k, l)
in the support S of heff[k, l]

Ay,xp
[k, l] =

M−1∑
k′=0

N−1∑
l′=0

(
ydd[k

′, l′]x∗
p,dd[k

′ − k, l′ − l]

e−j2πl
(k′−k)
MN

)
. (32)

We have shown ( [21], Theorem 6 of Appendix D) that

Ay,xp
[k, l]=heff[k, l] ∗σ Axp,xp

[k, l] (33)

where

Axp,xp [k, l] =

M−1∑
k′=0

N−1∑
l′=0

(
xp,dd[k

′, l′]x∗
p,dd[k

′ − k, l′ − l]

e−j2πl
(k′−k)
MN

)
(34)

is the auto-ambiguity function of the interleaved pilot

xp,dd[k, l] =

√
Ep

Q

Q∑
i=1

∑
n,m∈Z

δ[k − kpi − nM ] δ[l −mN ],

(35)

with pilot locations (kpi
, 0), i = 1, 2, · · · , Q.

We now express the linear estimation method derived
in Section III in terms of ambiguity functions. The auto-
ambiguity function for two interleaved pilots (Q = 2) is given
by (36) (see top of next page).

When |kp1
− kp2

| = M/2, it follows from (36) that the
auto-ambiguity function Axp,xp

[k, l] is non-zero only on the
rectangular lattice Λ2 = {(nM/2, 2mN) |m,n ∈ Z}. The
lattice points are spaced apart by M/2 along the delay axis
and by 2N along the Doppler axis. We translate heff[k, l] by
lattice points in Λ2 to obtain the cross-ambiguity Ay,xp

[k, l]
in (33). If 2νmax < 2νp, then the discrete Doppler spread of
heff[k, l] does not exceed 2N , and if τmax < τp/2 then the
discrete delay spread of heff[k, l] does not exceed M/2. In
this case, the translates of the support S of heff[k, l] by lattice
points in Λ2 do not overlap. The crystallization condition (29)
is then satisfied and the I/O relation is predictable. In fact the
taps of heff[k, l] can be read off from Ay,xp

[k, l] by restricting
to any fundamental domain of Λ2.

From (36) it also follows that when |kp1 −kp2 | ̸= M/2, the
auto-ambiguity function Axp,xp

[k, l] is non-zero only at DD
points

(k, l) = (kp1
− kp2

+ nM,mN),

(k, l) = (kp2
− kp1

+ nM,mN),

or (k, l) = (nM,mN) (37)

for n,m ∈ Z. The spacing along the Doppler axis is N rather
than 2N , and when 2νmax > νp it is not possible to accurately
estimate heff[k, l].

In the Zak-OTFS frame for two interleaved pilots (see
Fig. 5), one can choose the two pilot locations such that there
is no data region in between enabling the use of a common
guard region which can reduce overhead. However, the two
pilot locations will then be closer than M/2 delay taps due
to which the auto-ambiguity function of the interleaved pilot
signal will have a period of only N along the Doppler axis and
not 2N due to which the I/O relation cannot be acquired for
νp < 2νmax < 2νp resulting in poor error rate performance.

We explain this in detail with the help of Figs. 7, 8, 9
and 10. We consider M = 64, N = 24. Fig. 7 shows the
heatmap of the auto-ambiguity function of the transmitted two
interleaved pilots (Q = 2) when the delay domain spacing
|kp2

− kp1
| = M/2 = 32. It is observed that the auto-

ambiguity function is supported on a rectangular lattice with
periods 2N and M/2 respectively along the Doppler and delay
axis as discussed above (based on (36)). However, when the
delay domain spacing is only 7 delay taps (as in Fig. 9, the
auto-ambiguity function is no more supported on a lattice and
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Fig. 7. Heatmap showing the magnitude of the auto-ambiguity function
Axp,xp [k, l] of two interleaved pilots (Q = 2) at (0, 0) and (32, 0)
(M = 64, N = 24 ). The pilot spacing is regular (M/2 = 32), hence
the auto-ambiguity function has period 2N = 48 along the Doppler axis.

Fig. 8. Heatmap showing the magnitude of the cross-ambiguity function
Ay,xp [k, l] for two interleaved pilots (Q = 2) at (0, 0) and (32, 0) (M = 64,
N = 24 ). Six path Veh-A channel model [24] with maximum Doppler
shift νmax = 6 KHz and νp = 7.5 KHz. Two interleaved pilots separated
by M/2 = 32 along delay axis. The Doppler spread 2νmax = 12 KHz
satisfies νp < 2νmax ≤ 2νp. An accurate estimate for the effective channel
heff[k, l] can be read off from samples of the cross-ambiguity function within
the support S of the effective channel (rectangle with red boundary).

repeats with a period of N (and not 2N ) along the Doppler
axis.

In Fig. 8 and Fig. 10, we plot the heatmap of the cross-
ambiguity between the received and the transmitted two in-
terleaved pilots, when their spacing is 32 and 7 respectively.
We consider a six-path Veh-A channel [24] with νmax = 6
KHz and νp = 7.5 KHz. Note that the Doppler spread is
2νmax = 12 KHz which is more than νp but less than 2νp
and this is why the taps of heff[k, l] can be read-off accurately
from the received samples within the red rectangle shown in
Fig. 8, when the delay spacing between the pilots is M/2 = 32
taps. However, when the pilot spacing is 7 ̸= M/2, the cross-
ambiguity in Fig. 10 looks completely different due to aliasing
of responses h

(i)
0,0[k, l] and h

(i)
0,1[k, l] due to which accurate

Fig. 9. Heatmap showing the magnitude of the auto-ambiguity function
Axp,xp [k, l] when the pilot signal consists of two interleaved pilots (Q = 2)
at (0, 0) and (7, 0). M = 64, N = 24 and the pilot spacing along the delay
axis is not equal to M/2. The period of the auto-ambiguity function along the
Doppler axis is N rather than 2N (see (37) for the precise non-zero locations
of the auto-ambiguity function).

Fig. 10. Heatmap showing the magnitude of the cross-ambiguity function
Ay,xp [k, l] for two interleaved pilots (Q = 2) at (0, 0) and (7, 0) with
M = 64, N = 24. Six path Veh-A channel model [24] with maximum
Doppler shift νmax = 6 KHz and νp = 7.5 KHz. Note that the Doppler
spread 2νmax = 12 KHz satisfies νp < 2νmax ≤ 2νp. The pilot spacing
along the delay axis is not equal to M/2 and the period of the auto-ambiguity
function along the Doppler axis is N rather than 2N . Aliasing of the responses
h
(i)
0,0[k, l] and h

(i)
0,1[k, l] prevents accurate acquisition of the effective channel

heff[k, l] (compare this heatmap with the heatmap in Fig. 8 where there is no
aliasing).

acquisition of the effective channel heff[k, l] is not possible.
We see from (32) that the complexity of ML estimation

using the cross-ambiguity Ay,xp
[k, l] is O(M2N2). This com-

pares unfavorably with the O(MN) complexity of solving the
linear system proposed in Sections III and IV. Although linear
estimation is sub-optimal, numerical simulations in Section VI
show that it achieves BER close to that achieved with cross-
ambiguity based estimation when the effective crystallization
condition is satisfied.

Next, we analyze how estimation accuracy of the pro-
posed linear estimation in Section III and Section IV de-
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TABLE I
POWER-DELAY PROFILE OF VEH-A CHANNEL MODEL

Path number (i) 1 2 3 4 5 6
τi (µs) 0 0.31 0.71 1.09 1.73 2.51

Relative power (pi) dB 0 -1 -9 -10 -15 -20

pends on the spacing between the interleaved pilots. For
simplicity, we take Q = 2 and apply linear estimation. The
determinant ∆ of the 2 × 2 linear system satisfies |∆| =
Ep

2

∣∣∣e−j2π
kp1
M − e−j2π

kp2
M

∣∣∣. As the minimum pilot spacing
min (|kp1

− kp2
| , M − |kp1

− kp2
|) decreases, the determi-

nant ∆ approaches 0, and the 2 × 2 system becomes highly
ill-conditioned. We expect estimation accuracy to degrade as
the minimum pilot spacing decreases.

The number of interleaved pilots that a user needs for
reliable communication depends on the Doppler spread of its
channel. In general, if the Doppler spread 2νmax lies between
(Q−1)νp and Qνp, then Q interleaved pilots are required (see
discussion in Section IV). With Q interleaved pilots regularly
spaced apart by M/Q delay axis taps, the auto-ambiguity
function of the transmitted Q interleaved pilots is supported
on a DD domain lattice having delay and Doppler period
M/Q and NQ respectively. Since the lattice period along
the Doppler axis is now Q times greater than the regular
lattice period N (with a single pilot), Doppler domain aliasing
does not happen as long as the Doppler spread is less than
Qνp. Therefore, each user will use a different number of
interleaved pilots depending on the maximum Doppler spread
it experiences. The above result is shown in the following
theorem.

Theorem 1: With Q interleaved pilots and kpi
= (i −

1)M/Q, i = 1, 2, · · · , Q, the auto-ambiguity function
Axp,xp

[k, l] in (33) is supported on the DD domain lattice
ΛQ given by

ΛQ=
{
(k, l)

∣∣∣ k = n
M

Q
, l = mQN, (n,m) ∈ Z

}
. (38)

Proof: See Appendix A.

VI. NUMERICAL SIMULATIONS

We report simulation results for the Veh-A channel model
[24] which consists of six channel paths. The channel gains
hi are modeled as independent zero-mean complex circularly
symmetric Gaussian random variables, normalized so that
6∑

i=1

E
[
|hi|2

]
= 1. Table I lists the power-delay profile for

the six channel paths. The Doppler shift of the i-th path is
modeled as νi = νmax cos (θi), where νmax is the maximum
Doppler shift of any path, and the variables θi, i = 1, 2, · · · , 6,
are independent and uniformly distributed in [−π , π).13

13We consider fractional delay and Doppler shifts, which is representative
of real propagation environments. Note that path delays in Table-I are non-
integer multiples of the delay domain resolution 1/B. The Doppler shifts
νi = νmax cos(θi) are also non-integer multiples of the Doppler domain
resolution 1/T since cos(θi) is continuous valued. Also, the proposed scheme
of using interleaved pilots for acquisition of the I/O relation is still applicable
if we have two paths with same delay but different Doppler shifts, since the
required number of interleaved pilots depends only on the maximum spread
of heff[k, l] along the Doppler axis.

Fig. 11. Uncoded 4-QAM BER as a function of increasing νmax. One, two
and four interleaved pilots spaced apart regularly.

We consider Zak-OTFS modulation with Doppler spread
νp = 7.5 KHz, delay period τp = 1/νp = 133.33µs, M = 64,
N = 24. The channel bandwidth B = Mνp = 0.48 MHz and
the subframe duration T = Nτp = 3.2 ms. The information
lattice/grid Λdd = {(k/B, l/T ), k, l ∈ Z }.

The pulse shaping filter wtx(τ, ν) at the transmitter is a
factorizable root raised cosine (RRC) filter given by

wtx(τ, ν) =
√
BT rrcβτ

(Bτ) rrcβν
(νT ), (39)

where 0 ≤ βτ , βν ≤ 1 and rrc
β
(x) is the RRC waveform (see

[22]) given by

rrc
β
(x)=

sin(πx(1− β)) + 4βx cos(πx(1 + β))

πx (1− (4βx)2)
. (40)

We employ the matched filter wrx(τ, ν) =
w∗

tx(−τ,−ν) ej2πντ at the receiver. We choose roll-off
factors βν = βτ = 0.6 so that the effective bandwidth of the
Zak-OTFS subframe is B′ = (1 + βτ )B and the effective
time duration is T ′ = (1 + βν)T . The dependence of the
effective time/bandwidth and other characteristics of an OTFS
modulated signal on the pulse shaping filter is discussed in
detail in [23] (see equations (23) and (26) in [23] for the
expressions of the TD and FD realizations of the Zak-OTFS
pulsone).

We employ MMSE equalization of the matrix-vector form
of the Zak-OTFS I/O relation to detect information symbols
at the receiver (for more details, see [1]).

Fig. 11 plots bit error rate (BER) of uncoded 4-QAM as a
function of increasing νmax. The ratio of pilot to data power
(PDR) is 5 dB and the ratio of received signal power to noise
power (data SNR) is 25 dB. Discrete delay spread kmax = 2.
We plot the BER with channel estimates acquired using the
proposed linear estimation and that acquired by sampling the
cross-ambiguity function Ay,xp

[k, l] at DD taps in the support
set of heff[k, l].

BER performance for a single pilot (cyan and blue curves)
degrade sharply for νmax > 3.5 KHz. This is a consequence
of Doppler domain aliasing as νmax approaches νp/2 = 3.75
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Fig. 12. Uncoded 4-QAM BER as a function of increasing SNR, for
νmax = 1, 5, 9 KHz and fixed PDR= 5 dB.

KHz (see (20) and the discussion in Section II). By contrast,
BER performance for two interleaved pilots located at (0, 0)
and (M/2, 0) = (32, 0) is excellent, even for a Doppler spread
2νmax = 14 KHz which is greater than νp = 7.5 KHz
but less than 2νp = 15 KHz. The simulation is consistent
with our theoretical demonstration that two interleaved pilots
can enable reliable communication when the Doppler spread
2νmax satisfies νp ≤ 2νmax < 2νp.

Fig. 11 also illustrates BER performance for Q = 4 inter-
leaved pilots spaced apart regularly along the delay axis (green
and red curves). As expected, BER is good for Doppler spreads
at most 4νp, i.e., νmax < 15 KHz (see (30)). Fig. 11 also
shows that the BER performance achieved with the proposed
linear estimation method is almost the same as that achieved
with the more complex cross-ambiguity based estimation.

In Fig. 12 we plot the uncoded 4-QAM BER vs. SNR for
a fixed νmax and fixed PDR of 5 dB. We observe that the
conclusions made from Fig. 11 (for SNR= 25 dB) are in fact
valid over a much wider range of SNR values. Note that the
BER curve floors for the single pilot case when νmax = 5, 9
KHz and it floors for the double pilot case when νmax = 9
KHz. With four interleaved pilots, the BER curve does not
floor for νmax = 1, 5, 9 KHz, since the flooring would only
happen when the Doppler spread 2νmax exceeds 4νp = 30
KHz, i.e., when νmax > 15 KHz.

In Fig. 13 we plot the coded block error rate (BLER)
performance for Zak-OTFS modulation with the proposed
interleaved pilots for acquisition of I/O relation. We use the
3GPP 5G NR Low-Density Parity Check (LDPC) codes with
code-rate 1/2 and 4 − QAM modulation symbols. There is
no coding across different Zak-OTFS frames, and therefore
the code block size (number of information bits) for one, two
and four interleaved pilots is 1368, 1200 and 868 respectively
(larger number of pilots result in a larger pilot and guard
region overhead and therefore lesser number of information
symbols). From the error plots, we observe error flooring for
single pilot with Doppler spread more than νp = 7.5 KHz, i.e.,
νmax > νp/2 (νmax = 5, 9 in the figure), and also for two

Fig. 13. Coded 4-QAM block error rate (BLER) as a function of increasing
SNR, for νmax = 1, 5, 9 KHz and fixed PDR= 5 dB.

Fig. 14. Uncoded 4-QAM BER as a function of increasing νmax. Two
interleaved pilots with irregular spacing.

interleaved pilots with Doppler spread more than 2νp = 15
KHz, i.e., νmax > 7.5 KHz (νmax = 9 KHz in the figure).
These are exactly the same scenarios where error flooring
occurs in the uncoded BER plot of Fig. 12. This is because
of primary reason being the same, i.e., the channel in these
scenarios does not satisfy the crystallization condition w.r.t. the
lattice on which the auto-ambiguity function of the interleaved
pilots is supported.

Fig. 14 plots the BER performance for different spacing
between two interleaved pilots. Proposed linear estimation of
the taps of heff[k, l] is considered. BER performance degrades
as pilot spacing decreases, consistent with our discussion in
Section V.

In Fig. 15 we plot the normalized mean square error
(NMSE) of the proposed interleaved pilots based estimation
method as a function of increasing νmax. Let ĥeff[k, l] denote
the proposed estimate of heff[k, l], then the NMSE is given

by E

[ ∑
(k,l)∈S

|heff[k,l]−ĥeff[k,l]|
2

∑
(k,l)∈S

|heff[k,l]|2

]
where S is the support set



11

Fig. 15. Normalized mean square error (NMSE) of the acquired channel
estimates using the proposed method, as a function of increasing νmax for
the same setting as in Fig. 11.

Fig. 16. Effective throughput vs. νmax for the same setting as in Fig. 11.

for heff[k, l] and the expectation is w.r.t. the random channel
realizations. It is observed that with a single pilot, the estima-
tion accuracy is poor as soon as the Doppler spread exceeds
νp i.e., νmax > νp/2 = 3.75 KHz. With two interleaved,
the estimation accuracy is poor when the Doppler spread
exceeds 2νp and with four pilots the accuracy suffers only
when the Doppler spread exceeds 4νp. This is due to the fact
that with Q interleaved pilots (regularly spaced along delay
axis), the Doppler period of the auto-ambiguity function of
the interleaved pilots is Qνp i.e., Q times more than that
for a single pilot and which is why the the cross-ambiguity
between the received and the transmitted Q interleaved pilot
exhibits Doppler domain aliasing only when 2νmax > Qνp.
In Figs. 12 and 13 the error rate performance floors only for
those scenarios where 2νmax > Qνp. This confirms that the
degradation in the error rate performance is primarily due to
the inaccurate channel estimates (i.e., high NMSE).

In Fig. 16 we plot the effective throughput as a function of
increasing νmax for the same simulation setting as in Fig. 11.
Effective throughput is the ratio of the number of bits reliably
communicated in each subframe to the available degrees of

Fig. 17. BER vs PDR for six-path Veh-A channel used in Fig. 11 and 16,
with a fixed νmax = 2.5 KHz.

freedom (B′T ′). The number of bits communicated reliably
in a subframe is simply (1 − H(BER)) times the number
of information bits transmitted in each subframe. Here BER
denotes the bit error rate and H(·) denotes the binary entropy
function. We maximize effective throughput by interleaving
the minimum number of pilots required to accurately estimate
the effective channel. We minimize the number of pilots to
avoid introducing unnecessary guard and pilot regions that
would reduce effective throughput. When 2νmax < νp we use
a single pilot, when νp < 2νmax < 2νp we use 2 interleaved
pilots, and when 2νp < 2νmax < 4νp we use 4 interleaved
pilots. Note that although a higher number of interleaved pilots
results in stable throughput for a wider range of Doppler
spreads (i.e., extension of the region of predictable operation),
the throughput achieved is smaller due to a higher pilot and
guard region overhead. Since kmax = ⌈Mτmax/τp⌉ = 2, with
single, double and four interleaved pilots, the fractional pilot
overhead is 7/64, 14/64 and 28/64 respectively..

Fig. 17 illustrates BER performance as a function of in-
creasing PDR. The characteristic “U” shape is independent of
the number of interleaved pilots. At low PDR, estimation of
the effective channel is inaccurate, hence BER performance
is poor. As the pilot becomes stronger, effective channel
estimation becomes more accurate and BER improves. When
the pilot power exceeds data power, interference to data from
the pilot dominates over noise, and the BER degrades as the
PDR increases.

The peak to average power ratio (PAPR) of the transmitted
TD pilot (no data transmission) depends on the number of
interleaved pilots. For the Zak-OTFS system considered here,
the PAPR decreases from 19.4 dB, to 16.4 dB to 13.4 dB as
the number of interleaved pilots increases from 1, to 2, to 4.
This reduction is illustrated in Fig. 18. When the number of
interleaved pilots doubles, the separation between pulses in the
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Fig. 18. Energy of the TD samples of interleaved pilot samples (sampled at
rate 16B′) for the Zak-OTFS system parameters considered in this Section
VI.

TD pilot pulse train halves.14 There are twice as many pulses,
and each pulse is scaled down by

√
2 to maintain constant

average power. Hence the PAPR is halved with every doubling
of the number of interleaved pilots.15

In summary, with increasing number of interleaved pilots,
the PAPR decreases, the guard/pilot region overhead increases
and the complexity of acquiring the I/O relation also increases.
As long as νmax < Qνp/2, the error rate performance does
not floor.

VII. CONCLUSIONS

We have introduced a framework for pilot design in the DD
domain which makes it possible to support users with very
different delay-Doppler characteristics when it is not possible
to choose a single delay and Doppler period to support all
users. We have translated the problem of I/O reconstruction
to that of designing an interleaved pilot consisting of Zak-
OTFS carriers which are selected so that in combination they
produce zeros in the auto-ambiguity function of the interleaved
pilot. When the interleaved pilots are spaced regularly, the
auto-ambiguity function is supported on a sub-lattice of the
information grid, and the I/O relation can be reconstructed
from the restriction of the cross-ambiguity function (between
the received and the transmitted interleaved pilot) to any
fundamental region of this sub-lattice. Since the nominal
complexity of computing the cross-ambiguity is high, we have

14The TD realization of a single impulse pilot at DD location (kp1 , 0) is
a TD pulse train with narrow TD pulses at time instances

(
kp1

τp
M

+ nτp
)

,
n = −N/2, · · · , 0, (N/2− 1) for even N (see [18] and [1]). Therefore, the
TD realization of Q interleaved pilots spaced regularly apart at DD locations
(iM/Q, 0), i = 0, 1, · · · , (Q− 1) is a superposition of Q pulse trains, each
pulse train being the TD realization to one of the Q pilots. The TD realization
of Q interleaved pilots is therefore a pulse train consisting of narrow TD pulses
spaced τp/Q seconds apart. For the same total pilot energy Ep, the energy
of each narrow TD pulse is therefore Ep/Q.

15The PAPR of full signal (comprising both data and pilot) is smaller than
that of a pilot only signal. This is because, pilot is transmitted on only a
single pulsone, whereas each data symbol is transmitted on a different pulsone
which reduces the peaky nature of the overall signal in TD since data pulsones
located on different delay bins have peaks at different time instances. Please
see Fig. 11 in [21].

introduced a method of estimating the I/O relation that only
requires solving a small system of linear equations.

APPENDIX A
PROOF OF THEOREM 1

Substituting the expression of xp,dd[k, l] from (35) into the
R.H.S. of (34) we get (41) (see top of next page). With
k′ = 0, 1 · · · ,M − 1, and l′ = 0, 1, · · · , N − 1, and i1 =

1, 2, · · · , Q, the Dirac-delta terms δ
[
k′ − (i1 − 1)MQ − n1M

]
and δ [l′ −m1N ] are non-zero if and only if l′ = n1 =
m1 = 0 and k′ = (i1 − 1)M/Q. With this we then get
the second step in (41). In the R.H.S. of the second step,
the term δ [−l −m2N ] implies that Axp,xp

[k, l] is non-zero
only when l is an integer multiple of N (i.e., l = −m2N for
some m2 ∈ Z). Therefore, for l = −m2N the expression
for Axp,xp [k, l = −m2N ] is given by (42) (see top of
next page). From the Dirac-delta term in the R.H.S. of (42)
it follows that Axp,xp

[k, l = −m2N ] is non-zero only for
k = (i1 − i2)M/Q − n2M , i.e., k is an integer multiple of
M/Q. In general, Axp,xp

[k, l = −m2N ] is non-zero only for
k = pM/Q−n2M , where p = 0, 1, · · · , (Q−1) and n2 ∈ Z.
From this, it follows that for any k ≡ pM/Q (modulo M )
(i.e., k is congruent to pM/Q modulo M ), we get (43). From
(43), it is clear that Axp,xp

[k, l] is non-zero and equal Ep if
and only if k is an integer multiple of M/Q and l is an integer
multiple of QN .
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Ep

Q
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