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Abstract—In this paper, we present a low-complexity algorithm
for detection in high-rate, non-orthogonal space–time block
coded (STBC) large-multiple-input multiple-output (MIMO)
systems that achieve high spectral efficiencies of the order of
tens of bps/Hz. We also present a training-based iterative de-
tection/channel estimation scheme for such large STBC MIMO
systems. Our simulation results show that excellent bit error
rate and nearness-to-capacity performance are achieved by the
proposed multistage likelihood ascent search ( -LAS) detector
in conjunction with the proposed iterative detection/channel
estimation scheme at low complexities. The fact that we could
show such good results for large STBCs like 16 16 and 32 32
STBCs from Cyclic Division Algebras (CDA) operating at spectral
efficiencies in excess of 20 bps/Hz (even after accounting for the
overheads meant for pilot based training for channel estimation
and turbo coding) establishes the effectiveness of the proposed
detector and channel estimator. We decode perfect codes of large
dimensions using the proposed detector. With the feasibility
of such a low-complexity detection/channel estimation scheme,
large-MIMO systems with tens of antennas operating at several
tens of bps/Hz spectral efficiencies can become practical, enabling
interesting high data rate wireless applications.

Index Terms—Channel estimation, high spectral efficiencies,
large-multiple-input multiple-output (MIMO) systems, low-com-
plexity detection, non-orthogonal space–time block codes.

I. INTRODUCTION

C URRENT wireless standards (e.g., IEEE 802.11n and
802.16e) have adopted multiple-input multiple-output

(MIMO) techniques [1]–[3] to achieve the benefits of transmit
diversity (using space–time coding) and high data rates (using
spatial multiplexing). They, however, harness only a limited
potential of MIMO benefits since they use only a small number
of transmit antennas (e.g., two to four antennas). Significant
benefits can be realized if large number of antennas are used;
e.g., large-MIMO systems with tens of antennas in communi-
cation terminals can enable multi-giga bit rate transmissions
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at high spectral efficiencies of the order of several tens of
bps/Hz.1 Key challenges in realizing such large-MIMO systems
include low-complexity detection and channel estimation,
RF/IF technologies, and placement of large number of an-
tennas in communication terminals.2 Our focus in this paper
is on low-complexity detection and channel estimation for
large-MIMO systems.

Spatial multiplexing (V-BLAST) with large number of
transmit antennas can offer high spectral efficiencies, but
it does not give transmit diversity. On the other hand, well
known orthogonal space–time block codes (STBC) have the
advantages of full transmit diversity and low decoding com-
plexity, but they suffer from rate loss for increasing number
of transmit antennas [3], [5], [6]. However, full-rate, non-or-
thogonal STBCs from Cyclic Division Algebras (CDA) [7]
are attractive to achieve high spectral efficiencies in addition
to achieving full transmit diversity, using large number of
transmit antennas. For example, a 32 32 STBC matrix from
CDA has 1024 symbols (i.e., 32 complex symbols per channel
use), and using this STBC along with 16-QAM and rate-3/4
turbo code offers a spectral efficiency of 96 bps/Hz. While
maximum-likelihood (ML) decoding of orthogonal STBCs can
be achieved in linear complexity, ML or near-ML decoding of
non-orthogonal STBCs with large number of antennas at low
complexities has been a challenge. Channel estimation is also
a key issue in large-MIMO systems. In this paper, we address
these two challenging problems; our proposed solutions can po-
tentially enable realization of large-MIMO systems in practice.
Sphere decoding and several of its low-complexity variants are
known in the literature [8]–[11]. These detectors, however, are
prohibitively complex for large number of antennas. Recent
approaches to low-complexity multiuser/MIMO detection
involve application of techniques from belief propagation [12],
Markov Chain Monte-Carlo methods [13], neural networks
[14]–[16], etc. In particular, in [15] and [16], we presented
a powerful Hopfield neural network based low-complexity
search algorithm for detecting large-MIMO V-BLAST signals,

1Spectral efficiencies achieved in current MIMO wireless standards are only
about 10 bps/Hz or less.

2WiFi products in 2.5-GHz band which use 12 transmit antennas for beam-
forming purposes are becoming commercially available [4]. With such RF and
antenna technologies for placing large number of antennas in medium/large
aperture communication terminals (like set-top boxes/laptops) getting increas-
ingly matured, low-complexity high-performance MIMO baseband receiver
techniques (e.g., detection and channel estimation) are crucial to enable
practical implementations of high spectral efficiency large-MIMO systems,
which, in turn, can enable high data rate applications like wireless IPTV/HDTV
distribution.
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and showed that it performs quite close to (within 4.6 dB of)
the theoretical capacity, at high spectral efficiencies of the
order of tens to hundreds of bps/Hz using tens to hundreds of
antennas, at an average per-symbol detection complexity of just

, where and denote the number of transmit
and receive antennas, respectively.

In this paper, we present 1) a low-complexity near-ML
achieving detector, and 2) an iterative detection/channel esti-
mation scheme for large non-orthogonal STBC MIMO systems
having tens of transmit and receive antennas. Our key contribu-
tions here can be summarized as follows.

1) We generalize the 1-symbol update-based likelihood as-
cent search (LAS) algorithm we proposed in [15], [16], by
employing a low-complexity multistage multi-symbol up-
date based strategy; we refer to this new algorithm as multi-
stage LAS ( -LAS) algorithm. We show that the -LAS
algorithm outperforms the basic LAS algorithm with some
increase in complexity.

2) We propose a method to generate soft outputs from the
-LAS output vector. Soft outputs generation was not

considered in [15] and [16]. The proposed soft outputs gen-
eration for the individual bits results in about 1 to 1.5 dB
improvement in coded bit error rate (BER) compared to
hard decision -LAS outputs.

3) Assuming independent and identically distributed (i.i.d.)
fading and perfect channel state information at the receiver
(CSIR), our simulation results show that the proposed

-LAS algorithm is able to decode large non-orthogonal
STBCs (e.g., 16 16 and 32 32 STBCs) and achieve
near single-input single-output (SISO) AWGN uncoded
BER performance as well as near-capacity (within 4 dB
from theoretical capacity) coded BER performance.

4) Using the proposed detector, we decode and report the sim-
ulated BER performance of “perfect codes” [17]–[21] of
large dimensions.

5) Presenting a BER performance and complexity compar-
ison of the proposed CDA STBC/ -LAS detection ap-
proach with other large-MIMO/detector approaches (e.g.,
stacked Alamouti codes/QOSTBCs and associated inter-
ference canceling receivers reported in [22]), we show that
the proposed approach outperforms the other considered
approaches, both in terms of performance as well as com-
plexity.

6) We present simulation results that quantify the loss in BER
performance due to spatial correlation in large-MIMO sys-
tems, by considering a more realistic spatially correlated
MIMO fading channel model proposed by Gesbert et al.
in [23]. We show that this loss in performance can be al-
leviated by providing more receive dimensions (i.e., more
receive antennas than transmit antennas).

7) Finally, we present a training-based iterative detec-
tion/channel estimation scheme for large STBC MIMO
systems. We report BER and nearness-to-capacity results
when the channel matrix is estimated using the proposed
iterative scheme and compare these results with those
obtained using perfect CSIR assumption.

The rest of the paper is organized as follows. In Section II, we
present the STBC MIMO system model considered. The pro-
posed detection algorithm is presented in Section III. BER per-

formance results with perfect CSIR are presented in Section IV.
This section includes the results on the effect of spatial corre-
lation, BER performance of large perfect codes, and compar-
ison of the proposed scheme with other large-MIMO architec-
ture/detector combinations. The proposed iterative detection/
channel estimation scheme and the corresponding performance
results are presented in Section V. Conclusions are presented in
Section VI.

II. SYSTEM MODEL

Consider a STBC MIMO system with multiple transmit and
multiple receive antennas. An STBC is represented by
a matrix , where and denote the number of
transmit antennas and number of time slots, respectively, and
denotes the number of complex data symbols sent in one STBC
matrix. The th entry in represents the complex number
transmitted from the th transmit antenna in the th time slot.

The rate of an STBC is given by . Let and
denote the number of receive and transmit antennas,

respectively. Let denote the channel gain matrix,
where the th entry in is the complex channel gain from
the th transmit antenna to the th receive antenna. We assume
that the channel gains remain constant over one STBC matrix
duration. Assuming rich scattering, we model the entries of
as i.i.d .3 The received space–time signal matrix

can be written as

(1)

where is the noise matrix at the receiver and its
entries are modeled as i.i.d , where

is the average energy of the transmitted symbols, and is the
average received SNR per receive antenna [3], and the th
entry in is the received signal at the th receive antenna in
the th time slot. In a linear dispersion (LD) STBC, can
be decomposed into a linear combination of weight matrices
corresponding to each data symbol and its conjugate as [3]

(2)

where is the th complex data symbol, and
are its corresponding weight matrices. The detection al-

gorithm we propose in this paper can decode general LD STBCs
of the form in (2). For the purpose of simplicity in exposition,
here we consider a subclass of LD STBCs, where can be
written in the form

(3)

From (1) and (3), applying the operation4 we have

(4)

3�� ��� � � denotes a circularly symmetric complex Gaussian distribution
with mean zero and variance � .

4For a � � � matrix� � �� � � � �� �, where � is the �th column
of�� ��	��� is a �� � 
 vector defined as ��	��� � �� � � � �� � ,
where ��� denotes the transpose operation.
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If are matrices such that , then it is
true that , where denotes
tensor product of matrices [24]. Using this, we can write (4) as

(5)

where is the identity matrix. Further, define

, , ,

and . From these definitions, it is clear that
, , , and

. Let us also define a matrix ,
whose th column is . Let ,
whose th entry is the data symbol . With these definitions,
we can write (5) as

(6)

Each element of is an -PAM or -QAM symbol.
-PAM symbols take discrete values from

, where , and -QAM is
nothing but two PAMs in quadrature. Let , and be
decomposed into real and imaginary parts as

(7)

Further, we define , ,
, and as

(8)

Now, (6) can be written as

(9)

Henceforth, we work with the real-valued system in (9). For
notational simplicity, we drop subscripts in (9) and write

(10)

where , ,
, and . The channel coefficients are

assumed to be known only at the receiver but not at the trans-
mitter. Let denote the -PAM signal set from which ( th

entry of ) takes values . Now, define a -dimen-
sional signal space to be the Cartesian product of to .
The ML solution is given by

(11)

whose complexity is exponential in [25].

A. High-Rate Non-Orthogonal STBCs From CDA

We focus on the detection of square (i.e., ),
full-rate (i.e., ), circulant (where the weight
matrices ’s are permutation type), non-orthogonal STBCs
from CDA [26], whose construction for arbitrary number of
transmit antennas is given by the matrix in (11a) shown at
the bottom of the page [7].

In (11a), , , and
are the data symbols from a QAM alphabet. When

and , the STBC in (11a) achieves full transmit diver-
sity (under ML decoding) as well as information-losslessness
[7]. When , the code ceases to be of full-diversity
(FD), but continues to be information-lossless (ILL) [27], [52].
High spectral efficiencies with large can be achieved using this
code construction. For example, with transmit antennas,
the 32 32 STBC from (11a) with 16-QAM and rate-3/4 turbo
code achieves a spectral efficiency of 96 bps/Hz. This high spec-
tral efficiency is achieved along with the full-diversity of order

. However, since these STBCs are non-orthogonal, ML de-
tection gets increasingly impractical for large . Consequently,
a key challenge in realizing the benefits of these large STBCs in
practice is that of achieving near-ML performance for large
at low detection complexities. Our proposed detector, termed as
the multistage likelihood ascent search ( -LAS) detector, pre-
sented in the following section essentially addresses this chal-
lenging issue.

III. PROPOSED MULTISTAGE LAS DETECTOR

The proposed -LAS algorithm consists of a sequence of
likelihood-ascent search stages, where the likelihood increases
monotonically with every search stage. Each search stage con-
sists of several substages. There can be at most substages,
each consisting of one or more iterations (the first substage can
have one or more iterations, whereas all the other substages can
have at most one iteration). In the first substage, the algorithm
updates one symbol per iteration such that the likelihood mono-

...
...

...
...

...
(11a)
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tonically increases from one iteration to the next until a local
minima is reached. Upon reaching this local minima, the algo-
rithm initiates the second substage.

In the second substage, a two-symbol update is tried to further
increase the likelihood. If the algorithm succeeds in increasing
the likelihood by two-symbol update, it starts the next search
stage. If the algorithm does not succeed in the second substage,
it goes to the third substage where a three-symbol update is tried
to further increase the likelihood. Essentially, in the th sub-
stage, a -symbol update is tried to further increase the likeli-
hood. This goes on until ) either the algorithm succeeds in the

th substage for some (in which case a new search
stage is initiated), or ) the algorithm terminates.

The -LAS algorithm starts with an initial solution ,
given by , where is the initial solution filter,
which can be a matched filter (MF) or zero-forcing (ZF) filter or
MMSE filter. The index in denotes the iteration number
in a substage of a given search stage. The ML cost function after
the th iteration in a given search stage is

(12)

A. One-Symbol Update

Let us assume that we update the th symbol in the
th iteration; can take value from for -PAM and

for -QAM. The update rule can be written as

(13)

where denotes the unit vector with its th entry only as one,
and all other entries as zero. Also, for any iteration
should belong to the space , and therefore can take
only certain integer values. For example, in case of 4-PAM or
16-QAM (both have the same signal set ,

can take values only from . Using
(12) and (13), and defining a matrix as

(14)

we can write the cost difference as

(15)

where is the th column of , ,
is the th entry of the vector, and is the th entry
of the matrix. Also, let us define and as

(16)

With the above variables defined, we can rewrite (15) as

(17)

where denotes the signum function. For the ML cost
function to reduce from the th to the th iteration, the
cost difference should be negative. Using this fact and that

and are non-negative quantities, we can conclude from (17)
that the sign of must satisfy

(18)

Using (18) in (17), the ML cost difference can be rewritten as

(19)

For to be non-positive, the necessary and sufficient con-
dition from (19) is that

(20)

However, we can find the value of which satisfies (20) and
at the same time gives the largest descent in the ML cost func-
tion from the th to the th iteration (when symbol is
updated). Also, is constrained to take only certain integer
values, and therefore the brute-force way to get optimum
is to evaluate at all possible values of . This would
become computationally expensive as the constellation size
increases. However, for the case of one-symbol update, we could
obtain a closed-form expression for the optimum that min-
imizes , which is given by (corresponding theorem and
proof are given in the Appendix)

(21)

where denotes the rounding operation, where for a real
number is the integer closest to . If the th symbol in

, i.e., , were indeed updated, then the new value of the
symbol would be given by

(22)

However, can take values only in the set , and there-
fore we need to check for the possibility of being greater
than or less than . If ,
then is adjusted so that the new value of with the ad-
justed value of using (22) is . Similarly, if

, then is adjusted so that the new value of
is . Let be obtained from after these

adjustments. It can be shown that if is non-positive,

then is also non-positive. We compute ,
. Now, let

(23)

If , the update for the th iteration is

(24)

(25)
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where is the th column of . The update in (25) follows
from the definition of in (15). If , then the
one-symbol update search terminates. The data vector at this
point is referred to as “one-symbol update local minima.” After
reaching the one-symbol update local minima, we look for a fur-
ther decrease in the cost function by updating multiple symbols
simultaneously.

B. Why Multiple Symbol Updates?

The motivation for trying out multiple symbol updates can
be explained as follows. Let denote the set of data
vectors such that for any , if a -symbol update is
performed on resulting in a vector , then

. We note that ,
because any number of symbol updates on will not de-
crease the cost function. We define another set .
Note that , and

, i.e., is a singleton set with as the only el-
ement. It is noted that if the updates are done optimally, then
the output of the -LAS algorithm converges to a vector in

. Also, . For any
and , it can be seen

that and will differ in or more locations. The
probability that increases with increasing SNR, and
so the separation between and will monotonically
increase with increasing . Since , and de-
creases monotonically with increasing , there will be lesser
non-ML data vectors to which the algorithm can converge to
for increasing . Therefore, the probability of the noise vector

inducing an error would decrease with increasing . This in-
dicates that -symbol updates with large could get near to
ML performance with increasing complexity for increasing .

C. -Symbol Update,

In this subsection, we present the update algorithm for the
general case where symbols, , are updated
simultaneously in one iteration. -symbol updates can be done

in ways, among which we seek to find that update which

gives the largest reduction in the ML cost. Assume that in the
th iteration, symbols at the indices of

are updated. Each , , can take values from
for -PAM and for -QAM. Fur-

ther, define the set of indices, . The update
rule for the -symbol update can then be written as

(26)

For any iteration belongs to the space , and therefore
can take only certain integer values. In particular,

, where . For example,

for 16-QAM, , and if is , then

. Using (12), we can write the cost difference

function as

(27)

where , which can be compactly written as

, where denotes the Carte-

sian product of through to .
For a given , in order to decrease the ML cost, we would

like to choose the value of the -tuple
such that the cost difference given by (27) is negative. If mul-
tiple -tuples exist for which the cost difference is negative, we
choose the -tuple which gives the most negative cost differ-
ence.

Unlike for one-symbol update, for -symbol up-
date we do not have a closed-form expression for

which minimizes the cost

difference over , since the cost difference is a function
of discrete valued variables. Consequently, a brute-force
method is to evaluate over all

possible values of . Approximate methods
can be adopted to solve this problem using lesser complexity.
One method based on zero-forcing is as follows. The cost
difference function in (27) can be rewritten as

(28)

where , ,
and , where and

. Since is a strictly

convex quadratic function of (the Hessian is positive
definite with probability 1), a unique global minima exists, and
is given by

(29)

However, the solution given by (29) need not lie in . So, we
first round-off the solution as

(30)

where the operation in (30) is done element-wise, since

is a vector. Further, let . It is still
possible that the solution in (30) need not lie in . This
would result in for some . For example, if
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is -PAM, then if

or . In such cases, we propose the

following adjustment to for :

when

when

(31)

After these adjustments, we are guaranteed that .
Therefore, the new cost difference function value is given by

. It is noted that the complexity of
this approximate method does not depend on the size of the
set , i.e., it has constant complexity. Through simulations,
we have observed that this approximation results in a perfor-
mance close to that of the brute-force method for and .
Defining the optimum for the approximate method as , we
can write

(32)

The -update is successful and the update is done only if
. The update rules for the

and vectors are given by

(33)

(34)

D. Computational Complexity of the -LAS Algorithm

The complexity of the proposed -LAS algorithm com-
prises of three components, namely, 1) computation of the
initial vector 2) computation of , and 3) the search
operation. Fig. 1 shows the per-symbol complexity plots as a
function of for 4-QAM at an SNR of 6 dB using
MMSE initial vector. Two good properties of the STBCs from
CDA are useful in achieving low orders of complexity for
the computation of and . They are: 1) the weight
matrices ’s are permutation type, and 2) the
matrix formed with -sized vectors as columns is a
scaled unitary matrix. These properties allow the computation
of MMSE/ZF initial solution in complexity, i.e., in

per-symbol complexity since there are symbols
in one STBC matrix. Likewise, the computation of can
be done in per-symbol complexity.

The average per-symbol complexities of the 1-LAS and
2-LAS search operations are and , re-
spectively, which can be explained as follows. The average
search complexity is the complexity of one search stage times
the mean number of search stages till the algorithm terminates.
For 1-LAS, the number of search stages is always one. There
are multiple iterations in the search, and in each iteration

Fig. 1. . Computational complexity of the proposed � -LAS algorithm in
decoding non-orthogonal STBCs from CDA. MMSE initial vector, 4-QAM,
SNR � � dB.

all possible 1-symbol updates are considered. So,

the per-iteration complexity in 1-LAS is , i.e.,
complexity per symbol. Further, the mean number of itera-
tions before the algorithm terminates in 1-LAS was found to
be through simulations. So, the overall per-symbol
complexity of 1-LAS is . In 2-LAS, the complexity
of the two-symbol update dominates over the one-symbol

update. Since there are possible two-symbol updates,

the complexity of one search stage is , i.e.,
complexity per symbol. The mean number of stages till the
algorithm terminates in 2-LAS was found to be
through simulations. Therefore, the overall per-symbol com-
plexity of 2-LAS is . These can be observed from
Fig. 1, where it can be seen that the per-symbol complexity in
the initial vector computation plus the 1-LAS/2-LAS search
operation is / ; i.e., 1-LAS and 2-LAS
complexity plots run parallel to the and
lines, respectively. With the computation of included, the
complexity order is more than . From the slopes of the plots
in Fig. 1, we find that the overall complexities for and

are proportional to and , respectively.
For the special case of ILL-only STBCs (i.e., ),

the complexity involved in computing and can be
reduced further. This becomes possible due to the following
property of ILL-only STBCs. Let be the complex
matrix with as its th column. The computation of
(or ) involves multiplication of with another vector
(or matrix). The columns of can be permuted in such a
way that the permuted matrix is block-diagonal, where each
block is a DFT matrix for . So, the
multiplication of by any vector becomes equivalent to a

-point DFT operation, which can be efficiently computed
using fast Fourier transform (FFT) in com-
plexity. Using this simplification, the per-symbol complexity
of computing is reduced from to .
Computing using MMSE filter involves the computation
of .
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The complexity of computing the vector
is , and the complexity

of computing
is . In the case of ILL-only STBC, because of
the above-mentioned property, the complexity of computing

gets reduced to
from . So the total complexity for com-

puting in ILL-only STBC is ,
which gives a per-symbol complexity of .
So, the overall per-symbol complexity for 1-LAS detection of
ILL-STBCs is .

E. Generation of Soft Outputs

We propose to generate soft values at the -LAS output
for all the individual bits that constitute the -PAM/ -QAM
symbols as follows. These output values are fed as soft inputs
to the decoder in a coded system. Let ,

denote the detected output symbol vector from the
-LAS algorithm. Let the symbol map to the bit vector

, where , and
, , and . Let

denote the soft value for the th bit of the th symbol. Given
, we need to find .
Note that the quantity is inversely related to the

likelihood that is indeed the transmitted symbol vector. Let
the vector with its th bit of the th symbol forced to be
denoted as vector . Likewise, let be the vector with
its th bit of the th symbol forced to . Then the quantities

and are inversely related to the
likelihoods that the th bit of the th transmitted symbol is
and , respectively. So, if is

ve (or ve), it indicates that the th bit of the th transmitted
symbol has a higher likelihood of being (or ). So, the
quantity , appropriately normal-
ized to avoid unbounded increase for increasing , can be a
good soft value for the th bit of the th symbol. With this mo-
tivation, we generate the soft output value for the th bit of the
th symbol as

(35)

where the normalization by is to contain unbounded in-
crease of for increasing . The RHS in the above can be
efficiently computed in terms of and as follows. Since
and differ only in the th entry, we can write

(36)

Since we know and , we know from (36). Substi-
tuting (36) in (35), we can write

(37)

(38)

If , then and substituting this in (37) and
dividing by , we get

(39)

If , then and substituting this in (38) and
dividing by , we get

(40)

It is noted that and are already available upon the termi-
nation of the -LAS algorithm, and hence the complexity
of computing in (39) and (40) is constant. Hence, the
overall complexity in computing the soft values for all the
bits is . We also see from (39) and (40) that
the magnitude of depends upon . For large-size signal
sets, the possible values of will also be large in magnitude.
We therefore have to normalize for the turbo decoder to
function properly. It has been observed through simulations that
normalizing by resulted in good performance.
In [28], we have shown that this soft decision output generation
method, when used in large V-BLAST systems, offers about 1
to 1.5 dB improvement in coded BER performance compared
to that achieved using hard decision outputs from the -LAS
algorithm. We have observed similar improvements in STBC
MIMO systems also. In all coded BER simulations in this
paper, we use the soft outputs proposed here as inputs to the
decoder.

IV. BER PERFORMANCE WITH PERFECT CSIR

In this section, we present the uncoded/turbo coded BER per-
formance of the proposed -LAS detector in decoding non-or-
thogonal STBCs from CDA, assuming perfect knowledge of
CSI at the receiver.5 In all the BER simulations in this section,
we have assumed that the fade remains constant over one STBC
matrix duration and varies i.i.d. from one STBC matrix dura-
tion to the other. We consider two STBC designs; 1) “FD-ILL”
STBCs where in (11a), and 2) “ILL-only”
STBCs where . The SNRs in all the BER perfor-
mance figures are the average received SNR per received an-
tenna, , defined in Section II [3]. We have used MMSE filter
as the initial filter in all the simulations.

A. Uncoded BER as a Function of Increasing

In Fig. 2, we plot the uncoded BER performance of
the proposed 1-, 2-, and 3-LAS algorithms in decoding
ILL-only STBCs (4 4, 8 8, 16 16, 32 32 STBCs) for

and 4-QAM. SISO AWGN perfor-
mance (without fading) and MMSE-only performance (i.e.,
without the search using LAS) are also plotted for compar-
ison. It can be seen that MMSE-only performance does not
improve with increasing STBC size (i.e., increasing ).
However, it is interesting to see that, when the proposed search
using LAS is performed following the MMSE operation, the
performance improves for increasing , illustrating

5We will relax this perfect channel knowledge assumption in the next section,
where we present an iterative detection/channel estimation scheme for the con-
sidered large STBC MIMO system.
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Fig. 2. Uncoded BER of the proposed 1-LAS, 2-LAS and 3-LAS detectors for
ILL-only STBCs for different� � � . 4-QAM, �� bps/Hz. BER improves
as � � � increases and approaches SISO AWGN performance for large
� � � .

the performance benefit due to the proposed search strategy.
For example, though the LAS detector performs far from
SISO AWGN performance for small number of dimensions
(e.g., 4 4, 8 8 STBCs with 32 and 128 real dimensions,
respectively), its large system behavior at increased number of
dimensions (e.g., 16 16 and 32 32 STBCs with 512 and
2048 real dimensions, respectively) effectively renders near
SISO AWGN performance; e.g., with , for
BERs better than , the LAS detector performs very close
to SISO AWGN performance. We also observe that 3-LAS
performs better than 2-LAS for , and 2-LAS
performs better than 1-LAS. Since close to SISO AWGN per-
formance is achieved with one-, two-, or three-symbol update
itself, the cases of more than three-symbol update, which
will result in increased complexity with diminishing returns
in performance gain, are not considered in the performance
evaluation.

B. Performance of FD-ILL Versus ILL-Only STBCs

In Fig. 3, we present uncoded BER performance comparison
between FD-ILL versus ILL-only STBCs for 4-QAM at dif-
ferent using 1-LAS detection. The BER plots in Fig. 3
illustrate that the performance of ILL-only STBCs with 1-LAS
detection for and 4-QAM are almost
as good as those of the corresponding FD-ILL STBCs. A sim-
ilar closeness between the performance of ILL-only and FD-ILL
STBCs is observed in the turbo coded BER performance as well,
which is shown in Fig. 8 for a 16 16 STBC with 4-QAM and
turbo code rates of 1/3, 1/2 and 3/4. This is an interesting obser-
vation, since this suggests that, in such cases, the computational
complexity advantage with in ILL-only STBCs can
be taken advantage of without incurring much performance loss
compared to FD-ILL STBCs.

Fig. 3. Uncoded BER comparison between FD-ILL and ILL-only STBCs for
different � � � . 4-QAM, �� bps/Hz, 1-LAS detection. ILL-only STBCs
perform almost same as FD-ILL STBCs.

Fig. 4. Uncoded BER comparison between perfect codes and ILL-only
STBCs for different � � � , 4-QAM, �� bps/Hz, 1-LAS detection. For
small dimensions (e.g., 4� 4, 6� 6, 8� 8), perfect codes with 1-LAS detection
perform worse than ILL-only STBCs. For large dimensions (e.g., 16� 16,
32� 32), ILL-only STBCs and perfect codes perform almost same.

C. Decoding and BER of Perfect Codes of Large Dimensions

While the STBC design in (11a) offers both ILL and FD,
perfect codes6 under ML decoding can provide coding gain in
addition to ILL and FD [17]–[21]. Decoding of perfect codes
has been reported in the literature for only up to five antennas
using sphere/lattice decoding [20]. The complexity of these de-
coders are prohibitive for decoding large-sized perfect codes,
although large-sized codes are of interest from a high spectral
efficiency view point. We note that, because of its low-com-
plexity attribute, the proposed -LAS detector is able to decode

6We note that the definition of perfect codes differ in [19] and [20]. The per-
fect codes covered by the definition in [20] includes the perfect codes of [19] as
a proper subclass. However, for our purpose of illustrating the performance of
the proposed detector in large STBC MIMO systems, we refer to the codes in
[19] as well as [20] as perfect codes.
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Fig. 5. Uncoded BER comparison between perfect codes, ILL-only, and
FD-ILL STBCs for � � � � ��� ��, 16-QAM, �� bps/Hz, 1-LAS
detection. For larger modulation alphabet sizes (e.g., 16 QAM), perfect codes
with 1-LAS detection perform poorer than ILL-only and FD-ILL STBCs.

perfect codes of large dimensions. In Figs. 4 and 5, we present
the simulated BER performance of perfect codes in comparison
with those of ILL-only and FD-ILL STBCs for up to 32 transmit
antennas using 1-LAS detector.

In Fig. 4, we show uncoded BER comparison between perfect
codes and ILL-only STBCs for different and 4-QAM
using 1-LAS detection. The 4 4 and 6 6 perfect codes are
from [19], and the 8 8, 16 16 and 32 32 perfect codes are
from [20]. From Fig. 4, it can be seen that the 1-LAS detector
achieves better performance for ILL-only STBCs than for per-
fect codes, when codes with small number of transmit antennas
are considered (e.g., ). While perfect codes are ex-
pected to perform better than ILL-only codes under ML detec-
tion for any , we observe the opposite behavior under 1-LAS
detection for small (i.e., ILL-only STBCs performing better
than perfect codes for small dimensions). This behavior could
be attributed to the nature of the LAS detector, which achieves
near-optimal performance only when the number of dimensions
is large,7 and it appears that, in the detection process, LAS is
more effective in disentangling the symbols in STBCs when

(i.e., in ILL-only STBCs) than in perfect codes. The
performance gap between perfect codes and ILL-only STBCs
with 1-LAS detection diminishes for increasing code sizes such
that the performance for 32 32 perfect code and ILL-only
STBC with 4-QAM are almost same and close to the SISO
AWGN performance. In Fig. 5, we show a similar comparison
between perfect codes, ILL-only and FD-ILL only STBCs when
larger modulation alphabet sizes (e.g., 16-QAM) are used in
the case of 16 16 and 32 32 codes. It can be seen that with
higher-order QAM like 16-QAM, perfect codes with 1-LAS de-
tection perform poorer than ILL-only and FD-ILL STBCs, and
that ILL-only and FD-ILL STBCs perform almost same and
close to the SISO AWGN performance. The results in Figs. 4
and 5 suggest that, with 1-LAS detection, owing to the com-
plexity advantage and good performance in using ,

7In [29], we have presented an analytical proof that the bit error performance
of 1-LAS detector for V-BLAST with 4-QAM in i.i.d. Rayleigh fading con-
verges to that of the ML detector as � �� ��, keeping � � � .

ILL-only STBCs can be a good choice for practical large STBC
MIMO systems [27], [52].

D. Comparison With Other Large-MIMO
Architecture/Detector Combinations

In [30], Choi et al. have presented an iterative soft interfer-
ence cancellation (ISIC) scheme for multiple antenna systems,
derived based on maximum a posteriori (MAP) criterion. We
compared the performance of the ISIC scheme in [30] with
that of the proposed 1-LAS algorithm in detecting 4 4, 8 8
and 16 16 ILL-only STBCs with and 4-QAM.
Fig. 6 shows this performance comparison. In [30], zero-forcing
vector was used as the initial vector in the ISIC scheme. How-
ever, performance is better with MMSE initial vector. Since we
used MMSE initial vector for 1-LAS, we have used MMSE ini-
tial vector for the ISIC algorithm as well. Also, in [30], four to
five iterations were shown to be good enough for the ISIC al-
gorithm to converge. In our simulations of the ISIC algorithm,
we used ten iterations. Two key observations can be made from
Fig. 6: 1) like the 1-LAS algorithm, the ISIC algorithm also
shows large system behavior (i.e., improved BER for increasing

), and 2) the proposed 1-LAS algorithm outperforms
the ISIC algorithm by about 3 to 5 dB at uncoded BER. In
addition, the complexity of the ISIC scheme is higher than the
proposed scheme (see the complexity comparison in Table I).

Next, we compare the proposed large-MIMO architecture
using STBCs from CDA and -LAS detection with other
large-MIMO architectures and associated detectors reported
in the literature. Large-MIMO architectures that use stacking
of multiple small-sized STBCs and interference cancellation
(IC) detectors for these schemes have been investigated in [22],
[31], [32]. Here, we compare different architecture/detector
combinations, fixing the total number of transmit/receive an-
tennas and spectral efficiency to be same in all the considered
combinations. Specifically, we fix and a
spectral efficiency of 32 bps/Hz for all the combinations. We
compare the following seven different architecture/detector
combinations which use the same and achieve
32 bps/Hz spectral efficiency (see Table I): 1) proposed scheme
using 16 16 ILL-only STBC (rate-16) with 4-QAM and
1-LAS detection, 2) 16 16 ILL-only STBC (rate-16) with
4-QAM and ISIC algorithm in [30] with ten iterations, 3) four
4 4 stacked QOSTBCs (rate-1) with 256-QAM and IC algo-
rithm presented in [22], 4) eight 2 2 stacked Alamouti codes
(rate-1) with 16-QAM and IC algorithm in [22], 5) 16 16
V-BLAST scheme (rate-16) with 4-QAM and sphere decoding
(SD) algorithm in [53], 6) 16 16 V-BLAST scheme (rate-16)
with 4-QAM and ZF-SIC detector, and 7) 16 16 V-BLAST
scheme (rate-16) with 4-QAM and ISIC algorithm in [30]. We
present the BER performance comparison of these different
combinations in Fig. 7. We also obtained the complexity num-
bers (in number of real operations per bit) from simulations for
these different combinations at an uncoded BER of ;
these numbers are presented in Table I, along with the SNRs
at which uncoded BER is achieved. The following
interesting observations can be made from Fig. 7 and Table I:

• the proposed scheme [combination 1)] significantly outper-
forms the stacked architecture/IC detector combinations
presented in [22] [combinations 3) and 4)]; e.g., at
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TABLE I
COMPLEXITY AND PERFORMANCE COMPARISON OF DIFFERENT LARGE-MIMO ARCHITECTURE/DETECTOR COMBINATIONS, ALL

WITH � � � � �� AND ACHIEVING 32 bps/Hz SPECTRAL EFFICIENCY. Proposed Scheme Outperforms the Other Considered
Architectures/Detectors Both in Terms of Performance as Well as Complexity

Fig. 6. Uncoded BER comparison between the proposed 1-LAS algorithm
and the ISIC algorithm in [30] for ILL-only STBCs for different � � � .
4-QAM, �� bps/Hz. MMSE initial vectors for both 1-LAS and ISIC. 1-LAS
performs significantly better than ISIC in [30].

uncoded BER, the proposed scheme performs better than
the stacked architecture/IC in [22] by 17 dB (for four 4 4
QOSTBCs) and 10 dB (for eight 2 2 Alamouti codes).
Also, the proposed scheme achieves this significant perfor-
mance advantage at a much lesser complexity than those of
the stacked architecture/IC combinations (see Table I).

• the proposed scheme performs slightly better than the
V-BLAST/sphere decoder combination [combination 5)];
6.8 dB in proposed scheme versus 7 dB in V-BLAST with
sphere decoding at uncoded BER. Importantly,
the proposed scheme enjoys a significant complexity ad-
vantage (by more than an order) over the V-BLAST/sphere
decoder combination.

• the ISIC algorithm in [30] applied to ILL-only STBC de-
tection [combination 2)] is inferior to the proposed scheme

Fig. 7. Uncoded BER comparison between different large-MIMO architecture/
detector combinations for given number of transmit/receive antennas �� �
� � ��� and spectral efficiency (32 bps/Hz). Proposed scheme performs
better than other architecture/detector combinations considered. It outperforms
them in complexity as well (see Table I).

in both performance (by about 4.5 dB at uncoded
BER) as well as complexity (by about two orders).

• the ISIC algorithm in [30] applied to 16 16 V-BLAST
detection [combination 7)] is also inferior to the proposed
scheme in BER performance (by about 3.8 dB at
uncoded BER) as well as complexity (by about a factor of
2).

• comparing the stacked architecture/IC combinations with
V-BLAST/ZF-SIC [combination 6)] and V-BLAST/ISIC
combinations, we see that although the diversity orders
achieved in stacked architecture/IC combinations are high
(see their slopes at high SNRs in Fig. 7), V-BLAST with
ZF-SIC and ISIC detectors perform much better at low and
medium SNRs.
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Fig. 8. Turbo coded BER of 1-LAS detector for 16� 16 FD-ILL and ILL-
only STBCs. � � � � ��, 4-QAM, turbo code rates: 1/3, 1/2, 3/4 (10.6,
16, 24 bps/Hz). 1-LAS detector performs close to within 4 dB from capacity
ILL-only STBCs preform as good as FD-ILL STBCs.

In summary, the proposed scheme outperforms the other con-
sidered architecture/detector combinations both in terms of per-
formance as well as complexity.

E. Turbo Coded BER and Nearness-to-Capacity Results

Next, we evaluated the turbo coded BER performance of the
proposed scheme. In all the coded BER simulations, we fed
the soft outputs presented in Section III-E as input to the turbo
decoder. In Fig. 8, we plot the turbo coded BER of the 1-LAS
detector in decoding 16 16 FD-ILL and ILL-only STBCs,
with , 4-QAM and turbo code rates 1/3 (10.6
bps/Hz), 1/2 (16 bps/Hz), 3/4 (24 bps/Hz). The minimum SNRs
required to achieve these capacities in a 16 16 MIMO channel
(obtained by evaluating the ergodic capacity expression in [1]
through simulation) are also shown. It can be seen that the
1-LAS detector performs close to within just about 4 dB from
capacity, which is very good in terms of nearness-to-capacity
considering the high spectral efficiencies achieved. It can
also be seen that the coded BER performance of FD-ILL and
ILL-only STBCs are almost the same for the system parameters
considered.

F. Effect of MIMO Spatial Correlation

In generating the BER results in Figs. 2–8, we have assumed
i.i.d. fading. However, MIMO propagation conditions witnessed
in practice often render the i.i.d. fading model as inadequate.
More realistic MIMO channel models that take into account the
scattering environment, spatial correlation, etc., have been in-
vestigated in the literature [23], [33]. For example, spatial cor-
relation at the transmit and/or receive side can affect the rank
structure of the MIMO channel resulting in degraded MIMO
capacity [33]. The structure of scattering in the propagation en-
vironment can also affect the capacity [23]. Hence, it is of in-
terest to investigate the performance of the -LAS detector in
more realistic MIMO channel models. To this end, we use the

non-line-of-sight (NLOS) correlated MIMO channel model pro-
posed by Gesbert et al.8 in [23], and evaluate the effect of spa-
tial correlation on the BER performance of the -LAS detector
[34].

We consider the following parameters9 in the simulations:
GHz, m, , m,

, and . For GHz,
cm and cm. In [34, Fig. 3], we plot the BER per-
formance of the 1-LAS detector in decoding 16 16 ILL-only
STBC with and 16-QAM. Uncoded BER as well
as rate-3/4 turbo coded BER (48-bps/Hz spectral efficiency) for
i.i.d. fading as well as correlated fading are shown. In addition,
from the MIMO capacity formula in [1], we evaluated the the-
oretical minimum SNRs required to achieve a capacity of 48
bps/Hz in i.i.d. as well as correlated fading, and plotted them
also in [34, Fig. 3]. It is seen that the minimum SNR required
to achieve a certain capacity (48 bps/Hz) gets increased for cor-
related fading compared to i.i.d. fading. From the BER plots
in [34, Fig. 3], it can be observed that at an uncoded BER of

, the performance in correlated fading degrades by about 7
dB compared that in i.i.d. fading. Likewise, at a rate-3/4 turbo
coded BER of , a performance loss of about 6 dB is ob-
served in correlated fading compared to that in i.i.d. fading. In
terms of nearness to capacity, the vertical fall of the coded BER
for i.i.d. fading occurs at about 24-dB SNR, which is about 13
dB away from theoretical minimum required SNR of 11.1 dB.
With correlated fading, the detector is observed to perform close
to capacity within about 18.5 dB. One way to alleviate such
degradation in performance due to spatial correlation can be by
providing more number of dimensions at the receive side, which
is highlighted in Fig. 9.

Fig. 9 illustrates that the 1-LAS detector can achieve sub-
stantial improvement in uncoded as well as coded BER per-
formance in decoding 12 12 ILL-only STBC by increasing

beyond for 16-QAM in correlated fading. In the sim-
ulations, we have maintained cm and
in both the cases of symmetry (i.e., ) as well
as asymmetry (i.e., ). By comparing the
1-LAS detector performance with versus

, we observe that the uncoded BER per-
formance with improves by about 17 dB
compared to that of at BER. Even
the uncoded BER performance with is sig-
nificantly better than the coded BER performance with

by about 11.5 dB at BER. This improvement is
essentially due to the ability of the 1-LAS detector to effectively
pick up the additional diversity orders provided by the increased
number of receive antennas. With a rate-3/4 turbo code (i.e., 36
bps/Hz), at a coded BER of , the 1-LAS detector achieves
a significant performance improvement of about 13 dB with

8Please see [23] for more elaborate details of the spatially correlated MIMO
channel model. We note that this model can be appropriate in application sce-
narios like high data rate wireless IPTV/HDTV distribution using high spectral
efficiency large-MIMO links, where large� and� can be placed at the base
station (BS) and customer premises equipment (CPE), respectively.

9The parameters used in the model in [23] include: � � � � # transmit and
receive (omni-directional) antennas; � � � : spacing between antenna elements
at the transmit side and at the receive side; �: distance between transmitter and
receiver, � �� : transmit and receive scattering radii; �: number of scatterers
on each side; � � � : angular spread at the transmit and receiver sides, and � � 	:
carrier frequency, wavelength.
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Fig. 9. Effect of � � � in correlated MIMO fading channel model in [23]
keeping � � constant and � � � . � � � �� cm, � � � GHz, � � ���

m, � � ��� � � � � �� m, 	 � 	 � �� � ��� �� ILL-only STBC,
� � ���� � ����	, 16-QAM, rate-3/4 turbo code, 36 bps/Hz. Increasing
# receive dimensions alleviates the loss due to spatial correlation.

Fig. 10. Transmission scheme with one pilot matrix followed by � data
STBC matrices in each frame.

compared to that with .
With , the vertical fall of coded BER is
such that it is only about 8 dB from the theoretical minimum
SNR needed to achieve capacity. This points to the potential
for realizing high spectral efficiency multi-gigabit large-MIMO
systems that can achieve good performance even in the presence
of spatial correlation. We further remark that transmit correla-
tion in MIMO fading can be exploited by using non-isotropic
inputs (precoding) based on the knowledge of the channel cor-
relation matrices [35]–[37]. While [35]–[37] propose precoders
in conjunction with orthogonal/quasi-orthogonal small MIMO
systems in correlated Rayleigh/Ricean fading, design of pre-
coders for large-MIMO systems can be investigated as future
work.

V. ITERATIVE DETECTION/CHANNEL ESTIMATION

In this section, we relax the perfect CSIR assumption made in
the previous section, and estimate the channel matrix based on
a training-based iterative detection/channel estimation scheme
[38]. Training-based schemes, where a pilot signal known to the
transmitter and the receiver is sent to get a rough estimate of
the channel (training phase) has been studied for STBC MIMO
systems in [39]–[42]. Here, we adopt a training-based approach
for channel estimation in large STBC MIMO systems. In the
considered training-based channel estimation scheme, transmis-
sion is carried out in frames, where one pilot matrix,

, for training purposes, followed by data
STBC matrices, , are sent in
each frame as shown in Fig. 10. One frame length, , (taken to
be the channel coherence time) is channel uses.
A frame of transmitted pilot and data matrices is of dimension

), which can be written as

(41)

As in [43], let and denote the average SNR during
pilot and data phases, respectively, which are related to the
average received SNR as . De-

fine , and . Let denote
the average energy of the transmitted symbol during the
data phase. The average received signal power during the

data phase is given by , and
the average received signal power during the pilot phase

is , where

. For optimal training, the pilot matrix

should be such that [43]. As in Section II,
let denote the channel matrix, which we want
to estimate. We assume block fading, where the channel gains
remain constant over one frame consisting of
channel uses, which can be viewed as the channel coherence
time. This assumption can be valid in slow fading fixed wireless
applications (e.g., as in possible applications like BS-to-BS
backbone connectivity and BS-to-CPE wireless IPTV/HDTV
distribution). For this training-based system and channel
model, Hassibi and Hochwald presented a lower bound on the
capacity in [43]; we will illustrate the nearness of the perfor-
mance achieved by the proposed iterative detection/estimation
scheme to this bound. The received frame is of dimension

), and can be written as

(42)

where is the
) noise matrix and its entries are mod-

eled as i.i.d. . Equation (42) can
be decomposed into two parts, namely, the pilot matrix part and
the data matrices part, as

(43)

(44)

A. MMSE Estimation Scheme

A straight-forward way to achieve detection of data symbols
with estimated channel coefficients is as follows:

1) Estimate the channel gains via an MMSE estimator from
the signal received during the first channel uses (i.e.,

Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on January 18, 2010 at 01:55 from IEEE Xplore.  Restrictions apply. 



970 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 3, NO. 6, DECEMBER 2009

Fig. 11. Hassibi–Hochwald (H-H) capacity bound for �� � �� �� �
���� � � �	� � � � � �
 and ��� �� �� � ��� � � �	� � � � � �

training for a 16� 16 MIMO channel. Perfect CSIR capacity is also shown.

during pilot transmission); i.e., given and , an
estimate of the channel matrix is found as

(45)

2) Use the above in place of in the LAS algorithm (as
described in Sections II and III) and detect the transmitted
data symbols.

We refer to the above scheme as the “MMSE estimation
scheme.” In the absence of the knowledge of , a zero-forcing
estimate can be obtained at the cost of some performance
loss compared to the MMSE estimate. The performance of
the estimator can be improved by using a cyclic minimization
technique for minimizing the ML metric [44].

B. Proposed Iterative Detection/Estimation Scheme

Techniques that employ iterations between channel estima-
tion and detection can offer improved performance. Iterative re-
ceiver algorithms are attractive to achieve a good tradeoff be-
tween performance and complexity [45]–[51]. In [45]–[47], re-
ceivers that iterate between channel estimation, multiuser de-
tection and channel decoding in coded CDMA systems are pre-
sented. Similar iterative techniques in the context of MIMO and
MIMO-OFDM systems are presented in [48]–[51]. Here, we
propose an iterative scheme, where we iterate between channel
estimation and detection in the considered large STBC MIMO
system. The proposed scheme works as follows.

1) Obtain an initial estimate of the channel matrix using the
MMSE estimator in (45) from the pilot part.

2) Using the estimated channel matrix, detect the data STBC
matrices using the LAS detector.
Substituting these detected STBC matrices into (41), form

.
3) Re-estimate the channel matrix using from the pre-

vious step, via

(46)

4) Iterate steps 2 and 3 for a specified number of iterations.

The total complexity of obtaining the MMSE estimate of the
channel matrix in (45) and (46) is ),
which is less than the total complexity of 1-LAS detection of

) for ILL-only STBCs.

C. BER Performance With Estimated CSIR

We evaluated the BER performance of the 1-LAS detector
using estimated CSIR, where we estimate the channel gain ma-
trix through the training-based estimation schemes described
in the previous two subsections. We consider the BER perfor-
mance under three scenarios, namely, 1) under perfect CSIR, 2)
under CSIR estimated using the MMSE estimation scheme in
Section V-A, and 3) under CSIR estimated using the iterative
detection/estimation scheme in Section V-B. In the case of es-
timated CSIR, we show plots for 1P+ D training, where by
1P+ D training we mean a training scheme with a frame size
of matrices, with one pilot matrix followed data
STBC matrices from CDA. For this training scheme,
a lower bound on the capacity is given by [43]

(47)

where and , respectively, are the frame size (i.e., channel
coherence time) and pilot duration in number of channel
uses, and , where

is the MMSE estimate of the channel
gain matrix. We computed the capacity bound in (47) through
simulations for and training for a 16 16
MIMO channel. For training ,

, and for training .
In computing the bounds (shown in Fig. 11) and in BER sim-
ulations (in Figs. 12 and 13), we have used . In
Fig. 11, we plot the computed capacity bounds, along with the
capacity under perfect CSIR [1]. We obtain the minimum SNR
for a given capacity bound in (47) from the plots in Fig. 11,
and show (later in Fig. 11) the nearness of the coded BER of
the proposed scheme to this SNR limit. We note that improved
capacity and BER performance can be achieved if optimum
pilot/data power allocation derived in [43] is used instead of the
allocation used in Figs. 11 to 13 (i.e., ). We have
used the optimum power allocation in [43] for generating the
BER plots in Figs. 14 and 15. In all the BER simulations with
training, is used as the pilot matrix. ILL-only STBCs
and 1-LAS detection are used.

First, in Fig. 12, we plot the uncoded BER performance of
1-LAS detector when and training are used
for channel estimation in a 16 16 STBC MIMO system with

and 4-QAM. BER performance with perfect
CSIR is also plotted for comparison. From Fig. 12, it can be ob-
served that, as expected, the BER degrades with estimated CSIR
compared to that with perfect CSIR. With MMSE estimation
scheme, the performance with and are same
because of the one-shot estimation. Also, with training,
both the MMSE estimation scheme as well as the iterative detec-
tion/estimation scheme (with four iterations between detection
and estimation) perform almost the same, which is about 3 dB
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Fig. 12. Uncoded BER of 1-LAS detector for 16� 16 ILL-only STBC with
1) perfect CSIR, 2) CSIR using MMSE estimation scheme, and ���) CSIR using
iterative detection/channel estimation scheme (four iterations). � � � �
��, 4-QAM, �� � �� �� � �	� � � ��� � � � � �
 and ��� �� �� �
���� � � ��� � � � � �
 training.

Fig. 13. Turbo coded BER performance of 1-LAS detector for 16 ��� 16 ILL-
only STBC with i) perfect CSIR, ii) CSIR using MMSE estimation, and ���)
CSIR using iterative detection/channel estimation (four iterations).� � � �
��, 4-QAM, rate-3/4 turbo code, �� � �� �� � �	� � � ��� � � � � �

and �� � �� �� � ���� � � ��� � � � � �
 training.

worse compared to that of perfect CSIR at an uncoded BER of
. This indicates that with training, iteration be-

tween detection and estimation does not improve performance
much over the non-iterative scheme (i.e., the MMSE estimation
scheme) for small . With large (e.g., slow fading), how-
ever, the iterative scheme outperforms the non-iterative scheme;
e.g., with training, the performance of the iterative
detection/estimation improves by about 1 dB compared to the
MMSE estimation.

Next, in Fig. 13, we present the rate-3/4 turbo coded BER of
1-LAS detector using estimated CSIR for the cases of
and training. From Fig. 13, it can be seen that, com-
pared to that of perfect CSIR, the estimated CSIR performance
is worse by about 3 dB in terms of coded BER for

Fig. 14. Turbo coded BER performance of 1-LAS detection and iterative esti-
mation/detection as a function of coherence time, � � �	������

����, for a
given � � � � ��, 16� 16 ILL-only STBC, 4-QAM, rate-3/4 turbo code.
Spectral efficiency and BER performance with estimated CSIR approaches to
those with perfect CSIR in slow fading (i.e., large � ).

Fig. 15. Comparison between two ���� D training-based systems, one with
a larger � than the other for a given � and �with � � ��� � � �� and
optimum power allocation in both systems, System-II with � � �	 achieves
a higher spectral efficiency (13.5 versus 10.33 bps/Hz) while achieving �

coded BER at a lesser SNR (8.6 versus 8.9 dB) than System-I with � � ��.

training. With MMSE estimation scheme, coded BER oc-
curs at about dB away from the capacity bound
for and training. This nearness to capacity
bound improves by about 0.6 dB for the iterative detection/es-
timation scheme. We note that for the system in Fig. 13 with
parameters 16 16 STBC, 4-QAM, rate-3/4 turbo code, and

training with we achieve a high
spectral efficiency of bps/Hz
even after accounting for the overheads involved in channel es-
timation (i.e., pilot matrix) and channel coding, while achieving
good near-capacity performance at low complexity. This points
to the suitability of the proposed approach of using LAS detec-
tion along with iterative detection/estimation in practical imple-
mentation of large STBC MIMO systems.
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Finally, in Fig. 14, we illustrate the coded BER performance
of 1-LAS detection and iterative detection/estimation scheme
for different coherence times, , for a fixed ,
16 16 STBC, 4-QAM, and rate-3/4 turbo code. The various
values of considered and the corresponding spectral efficien-
cies are 1) bps/Hz, 2)

bps/Hz, 3) bps/Hz, and 4)
bps/Hz. In all these cases, the corre-

sponding optimum pilot/data power allocations in [43] are used.
From Fig. 14, it can be seen that for these four cases, coded
BER occurs at around 12 dB, 10.6 dB, 9.7 dB, and 9.4 dB, re-
spectively. The coded BER for perfect CSIR happens at
around 8.5 dB. This indicates that the performance with esti-
mated CSIR improves as is increased, and that a performance
loss of less than 1 dB compared to perfect CSIR can be achieved
with large (i.e., slow fading). For example, with
training , the performance with estimated CSIR gets
close to that with perfect CSIR both in terms of spectral effi-
ciency (23.5 24 bps/Hz) as well as SNR at which coded
BER occurs (8.5 9.4 dB). This is expected, since the channel
estimation becomes increasingly accurate in slow fading (large
coherent times) while incurring only a small loss in spectral ef-
ficiency due to pilot matrix overhead. This result is significant
because is typically large in fixed/low-mobility wireless ap-
plications, and the proposed system can effectively achieve high
spectral efficiencies as well as good performance in such appli-
cations.

D. On Optimum for A Given and

In [43], through theoretical capacity bounds it has been
shown that, for a given and SNR, there is an optimum
value of that maximizes the capacity bound (refer Figs. 5
and 6 in [43], where the optimum is shown to be greater
than in Fig. 5 and less than in Fig. 6). For example,
for , and SNR dB, the capacity
bound evaluated using (47) with optimum power allocation for

is 19.73 bps/Hz, whereas for the capacity
bound reduces to 17.53 bps/Hz showing that the optimum

in this case will be less than . We demonstrate such
an observation in practical systems by comparing the simu-
lated coded BER performance of two systems, referred to as
System-I and System-II, using 1-LAS detection and iterative
detection/estimation scheme. The parameters of System-I and
System-II are listed in Table II. and are fixed at 16 and
48, respectively, in both systems. System-I uses 16 transmit an-
tennas and 16 16 STBC, whereas System-II uses 12 transmit
antennas and 12 12 STBC. Since the pilot matrix is ,
the pilot duration is 16 and 12, respectively, for System-I and
System-II. Optimum pilot/data power allocation and 4-QAM
modulation are employed in both systems. System-I uses
rate-1/2 turbo code and system-II uses rate-3/4 turbo code.
With the above system parameters, the spectral efficiency
achieved in System-I is
bps/Hz, whereas System-II achieves a higher spectral efficiency
of bps/Hz. In Fig. 15, we
plot the coded BER of both these systems using 1-LAS de-
tection and iterative detection/estimation. From the simulation
points shown in Fig. 15, it can be observed that System-II with
a smaller and higher spectral efficiency in fact achieves a

TABLE II
ON OPTIMUM � FOR A GIVEN � AND � . SYSTEM-II WITH A SMALLER �

ACHIEVES A HIGHER SPECTRAL EFFICIENCY WHILE ACHIEVING �� CODED

BER AT A LESSER SNR THAN SYSTEM-I WITH A LARGER �

certain coded BER performance at a lesser SNR compared to
System-I. For example, to achieve coded BER, System-I
requires an SNR of about 8.9 dB, whereas System-II requires
only 8.6 dB. This implies that because of the reduction of
throughput due to pilot symbols (by a factor of
for a given and ), a larger does not necessarily
mean a higher spectral efficiency. Such an observation has
also been made in [43] based on theoretical capacity bounds.
The proposed detection/channel estimation scheme allows the
prediction of such behavior through simulations, which, in turn,
allows system designers to find optimum and STBC size
to achieve a certain spectral efficiency in large STBC MIMO
systems.

VI. CONCLUSION

We presented a low-complexity algorithm for the detection
of high-rate, non-orthogonal STBC large-MIMO systems with
tens of antennas that achieve high spectral efficiencies of the
order of several tens of bps/Hz. We also presented a training-
based iterative detection/channel estimation scheme for such
large STBC MIMO systems. Our simulation results showed that
the proposed 1-LAS detector along with the proposed itera-
tive detection/channel estimation scheme achieved very good
performance at low complexities. With the feasibility of low-
complexity high-performance receivers, like the proposed de-
tection/channel estimation scheme, large-MIMO systems with
tens of antennas at high spectral efficiencies can become prac-
tical, enabling interesting high data rate wireless applications
(e.g., wireless IPTV/HDTV distribution). This can motivate the
inclusion of large-MIMO architectures (e.g., 12 12, 16 16,
24 24, 32 32 MIMO systems, including those using STBCs
from CDA) into wireless standards like IEEE 802.11n/VHT and
IEEE 802.16/LTE-A in their evolution to achieve high data rates
at increased spectral efficiencies.

APPENDIX

Theorem 1: The in (21) minimizes ) in (19) and
this minimum value is non-positive.

Proof: Let . Then
, where , and so we can write

(48)
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If were unconstrained to be any real number, then the op-
timal value of is , which would lie between
and (as per (48)). Since is quadratic in , it is
unimodular, and hence the optimal point (with constrained)
would be either or . Using (19) and (48), we can eval-
uate ) to be

(49)

Since is a positive quantity, the sign of
depends upon the sign of . If , then

, and therefore is the optimal value of . Simi-
larly, when is the optimal value of . Therefore,
it follows that indeed the rounding solution given by (21) is op-
timal. is non-positive for all values of between zero
and . If , then is optimal, and, from
(48), we know that , and therefore

. Hence, is non-positive. Simi-
larly, if , then is optimal, and .
However, since is always less than , is
non-positive and therefore is non-positive.
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