IISc ECE Webinars

 

Webinar Schedule (October 2020 - February 2021)

Webinars will be live streamed on youtube : https://www.youtube.com/c/eceiisc/

Upcoming webinars [Archived webinars link]

Speaker Title Date Time
Goutam Chattopadhyay
(NASA Jet Propulsion Lab)
Design and Innovation: Sensors, Antennas, and Systems 30 October 2020 7.30 pm - 8.30 pm
Michael Bronstein
(Imperial College London and Twitter, UK)
TBD 13 November 2020 4.00 pm - 5.00 pm
Kausik Majumdar
(ECE, IISc)
Heterogeneous integration at nanoscale for multi-functional devices 27 November 2020 4.00 pm - 5.00 pm
Neelesh B. Mehta
(Indian Institute of Science)
TBD 18 December 2020 4.00 pm - 5.00 pm
Arun Kumar Sridharan
(GE Research Labs)
Challenges in Renewable Energy & Evolving Role of Conventional, Fossil-fuel-based Energy Sources 30 December 2020 4.00 pm - 5.00 pm
Emil Björnson
(Linköping University and KTH, Sweden)
Reconfigurable Intelligent Surfaces: A Signal Processing Perspective 15 January 2021 4.00 pm - 5.00 pm
Chandra R. Murthy
(Indian Institute of Science)
TBD 12 February 2021 4.00 pm - 5.00 pm
Dipanjan Gope
(ECE, IISc)
TBD 26 February 2021 4.00 pm - 5.00 pm

Design and Innovation: Sensors, Antennas, and Systems

Goutam Chattopadhyay , Senior Research Scientist at the NASA’s Jet Propulsion Laboratory, California Institute of Technology
Goutam Chattopadhyay

Prof. Goutam Chattopadhyay (S’93-M’99-SM’01-F’11) is a Senior Research Scientist at the NASA’s Jet Propulsion Laboratory, California Institute of Technology, a Visiting Associate at the Division of Physics, Mathematics, and Astronomy at the California Institute of Technology, Pasadena, USA, BEL Distinguished Chair Professor at the Indian Institute of Science, Bangalore, India, and an Adjunct Professor at the Indian Institute of Technology, Kharagpur, India. He received the Ph.D. degree in electrical engineering from the California Institute of Technology (Caltech), Pasadena, in 2000. He is a Fellow of IEEE (USA) and IETE (India) and an IEEE Distinguished Lecturer.His research interests include microwave, millimeter-wave, and terahertz receiver systems and radars, and development of space instruments for the search for life beyond Earth. He has more than 300 publications in international journals and conferences and holds more than fifteen patents. He also received more than 35 NASA technical achievement and new technology invention awards. He received the IEEE Region 6 Engineer of the Year Award in 2018, Distinguished Alumni Award from the Indian Institute of Engineering Science and Technology (IIEST), India in 2017. He was the recipient of the best journal paper award in 2013 by IEEE Transactions on Terahertz Science and Technology, best paper award for antenna design and applications at the European Antennas and Propagation conference (EuCAP) in 2017, and IETE Prof. S. N. Mitra Memorial Award in 2014.

 Abstract: NASA’s Jet Propulsion Laboratory, which completed eighty years of its existence in 2016, builds instruments for NASA missions. Exploring the universe and our own planet Earth from space has been the mission of NASA. Robotics missions such as Voyager, which continues to go beyond our solar system, missions to Mars and other planets, exploring the stars and galaxies for astrophysics missions. Fundamental science questions drives the selection of NASA missions and innovative instrument development. We design and build instruments to make measurements that can answer those science questions. In this presentation, we will present an overview of the state of the art instruments that we are currently developing and layout the details of the science questions they will try to answer. Rapid progress on multiple fronts, such as commercial software for component and device modeling, low-loss circuits and interconnect technologies, cell phone technologies, and submicron scale lithographic techniques are making it possible for us to design and develop smart, low-power yet very powerful instruments that can even fit in a SmallSat or CubeSat. We will also discuss the challenges of the future generation instruments in addressing the needs for critical scientific applications. The research described herein was carried out at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, under contract with National Aeronautics and Space Administration.

Reconfigurable Intelligent Surfaces: A Signal Processing Perspective

Emil Björnson, Linköping University and KTH, Sweden
Emil Björnson

Emil Björnson received the M.S. degree in Engineering Mathematics from Lund University, Sweden, in 2007. He received the Ph.D. degree in Telecommunications from KTH Royal Institute of Technology, Sweden, in 2011. From 2012 to mid-2014, he was a joint postdoc at the Alcatel-Lucent Chair on Flexible Radio, SUPELEC, France, and at KTH. He joined Linköping University, Sweden, in 2014 and is currently Associate Professor and Docent at the Division of Communication Systems. He teaches Master level courses on communications and is responsible for the Master programme in Communication Systems.

He performs research on MIMO communications, radio resource allocation, machine learning for communications, energy-efficient communications, and future network design. He is on the editorial board of the IEEE Transactions on Communications (since 2017) and the IEEE Transactions on Green Communications and Networking (since 2016). He is the first author of the textbooks “Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency” (2017) and “Optimal Resource Allocation in Coordinated Multi-Cell Systems” (2013). He is dedicated to reproducible research and has made a large amount of simulation code publicly available.

Dr. Björnson has performed MIMO research for more than ten years and has filed more than ten related patent applications. He received the 2019 IEEE Communications Society Fred W. Ellersick Prize, the 2019 EURASIP Early Career Award, the 2018 IEEE Marconi Prize Paper Award in Wireless Communications, the 2016 Best PhD Award from EURASIP, the 2015 Ingvar Carlsson Award, and the 2014 Outstanding Young Researcher Award from IEEE ComSoc EMEA. He also co-authored papers that received best paper awards at the conferences WCSP 2017, IEEE ICC 2015, IEEE WCNC 2014, IEEE SAM 2014, IEEE CAMSAP 2011, and WCSP 2009.

 Abstract: Wireless connectivity is becoming as essential as electricity in our modern world. Although we would like to deliver wireless broadband services everywhere, the underlying physics makes it inherently complicated: the signal power vanishes very quickly with the propagation distance and is absorbed or scattered when interacting with objects in the way. Even when we have a “strong" signal, only one in a million parts of the signal energy is being received, thus, there is a huge room for improvements!

What if we could tune the propagation environment to our needs? This is the main goal of reconfigurable intelligent surfaces, which is an emerging concept for beyond-5G communications. The idea is to support the transmission from a source to a destination by deploying so-called metasurfaces that can reconfigure how incident signal waves are scattered. These surfaces can be electronically configured to interact with the wireless signals as if they had different shapes. For example, it can be configured to behave as a parabolic reflector that is perfectly rotated to gather signal energy and re-radiates it as a beam focused on the receiver. This feature makes use of a new design dimension: we can not only optimize the transmitter and receiver but also control the channel. This might be a game-changer when communicating at mmWave and THz frequencies, where the traditional propagation conditions are particularly cumbersome.

This might sound like science fiction but is theoretically possible. In this talk, I will explain the fundamentals of this new technology from a signal processing perspective. By deriving a signals-and-systems description, we can look beyond the initial hype and understand what is actually happening when using reconfigurable intelligent surfaces. I will cover the basic modeling and its practical limitations. The talk will culminate in the description of two major challenges that need to be tackled by the research community.

Archived webinars

Speaker Title Date Time
P.P. Vaidyanathan
(Caltech, USA)
Srinivasa Ramanujan and Signal Processing
Link to presentation slides
16 October 2020 7.30 pm - 8.30 pm

Srinivasa Ramanujan and Signal Processing [16 October 2020]

P.P. Vaidyanathan, Kiyo and Eiko Tomiyasu Professor of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Link to presentation slides
P.P. Vaidyanathan

Prof. Vaidyanathan is the Kiyo and Eiko Tomiyasu Professor of Electrical Engineering at the California Institute of Technology where he has been on the faculty since 1983. He also served as the department head for the period 2002-2005. He has authored more than 500 papers in the areas of digital signal processing and communications, and several of his papers have received prizes from the IEEE. He is the author/coauthor of the four books, and a Life Fellow of the IEEE. Some of his recognitions include the F. E. Terman Award of the American Society for Engineering Education, the IEEE CAS Society's Golden Jubilee Medal, and several awards for excellence in teaching at the California Institute of Technology, including the Northrop-Grumman prize for excellence in teaching. He has also received the IEEE Signal Processing Society's Technical Achievement Award, Education Award, and the “Society Award”. He received the IEEE Gustav Robert Kirchhoff Award (an IEEE Technical Field Award) in 2016, for “Fundamental contributions to digital signal processing.” He was elected to the U.S. National Academy of Engineering in 2019.

 Abstract: The great mathematician Srinivasa Ramanujan introduced a summation in 1918, today called the Ramanujan-sum. For many years this summation was used by mathematicians to prove important results in number theory. In recent years, some researchers have found applications of this sum in digital signal processing, especially in identifying periodic components of signals buried in noise. In our recent work we have generalized the Ramanujan-sum decomposition in several directions, and this has opened up some new theory as well as applications. Many beautiful properties are enjoyed by the new representations, thanks to the genius and vision of Ramanujan. In this talk we briefly talk about Ramanujan as a person and then give an overview of the new developments. Applications in the study of DNA and protein sequences will be presented among others.

IEEE
IEEE
IEEE
IEEE

Copyright © IISc ECE Webinars